Compito di Analisi Matematica III e IV

Corso di Laurea in Fisica, Corso A, A.A. 2004/05

Pisa, 16 giugno 2005

N.B.: chi intende sostenere l'esame di Analisi Matematica III e IV svolga gli esercizi 1), 5) e 6) ed eventualmente il secondo dei due esercizi facoltativi.

I Parte.

1) Al variare dei numeri α e β) con $\alpha > 0$ si considerino

$$S_{\alpha} = \left\{ (x, y, z) \in \mathbb{R}^3 \middle| 0 \le z \le (x^2 + y^2)^{\alpha} \le 1 \right\}$$

e la funzione

$$f_{\beta}(x, y, z) = \frac{z}{(1 + x^4 + y^4 + 2x^2y^2)} \frac{1}{\left(\arctan(x^2 + y^2)\right)^{\beta}}.$$

a) Si dimostri l'integrabilità di f_{β} su S_{α} per $\alpha = 1$ e $\beta = -1$ e si calcoli l'integrale

$$\int_{S_1} f_{-1}(x, y, z) \, dx dy dz.$$

- b) Si studi l'integrabilità di f_{β} su S_{α} al variare di α e β con $\alpha > 0$.
- 2) Si determinino il massimo e il minimo della funzione

$$f(x, y, z) = xy - yz + xz$$
 $(x, y, z) \in \mathbb{R}^3$,

sul vincolo

$$M = \left\{ (x, y, z) \in \mathbb{R}^3: \ x^2 + y^2 + z^2 \le 1 \right\}.$$

3) Studiare la convergenza puntuale e uniforme delle seguenti serie di funzioni sul loro dominio di definizione

a)
$$\sum_{n=1}^{\infty} \frac{n^x}{x^n}, \quad \text{ove} \quad x \in \mathbb{R} \setminus \{0\}, \tag{1}$$

b)
$$\sum_{n=1}^{\infty} \arccos\left[\left(1 - \frac{1}{n^{\alpha}(1+x^2)}\right)^{1/\sqrt{n}}\right], \quad \text{ove} \quad x \in [0, +\infty[.$$
 (2)

4) [facoltativo] Siano $g_n : \mathbb{R} \longrightarrow \mathbb{R}$ funzioni integrabili per ogni n in \mathbb{N} e si assuma che esista una funzione integrabile $f : \mathbb{R} \longrightarrow \mathbb{R}$ tale che $g_n(x) \ge f(x)$ per quasi ogni x in \mathbb{R} e per ogni n in \mathbb{N} . Provare che le condizioni

$$\liminf_{n \to \infty} g_n \ge 0 \qquad \text{e} \qquad \limsup_{n \to \infty} \int_{\mathbb{R}} g_n \le 0 \tag{3}$$

implicano che $\int_{\mathbb{R}} |g_n| \longrightarrow 0$ per $n \to \infty$.

II Parte.

5) Si consideri il seguente sistema di equazioni differenziali ordinarie

$$\begin{cases} x' = y(x^2 + y^2 + 1) \\ y' = -x(x^2 + y^2 - 1). \end{cases}$$
 (4)

- a) Tracciare le orbite delle soluzioni.
- b) Determinare l'insieme di definizione delle soluzioni massimali e motivarne la risposta.
- c) Si dica se esistono soluzioni non periodiche, motivando la risposta.
- 6) Si consideri il sottoinsieme S_{λ} di \mathbb{R}^{3} definito dalle equazioni

$$\begin{cases} x^2 + y^2 + z^2 = 1\\ x^2 + y^2 - z^2 = \lambda \end{cases}$$
 (5)

- a) Si determini l'insieme $\mathcal N$ dei valori di λ tali che $S_\lambda \neq \emptyset$
- b) Si determini l'insieme S dei valori λ tali che S_{λ} è una sottovarietà di dimensione uno.
- c) Data la funzione $f(x, y, z) = (x^2 + xy + y^2)/2$, si determinino i punti di massimo e di minimo di f su S_{λ} , assieme ai valori $\max_{S_{\lambda}} f$ e $\min_{S_{\lambda}} f$, al variare di λ in \mathcal{S} .
- 7) Si consideri la seguente applicazione $\phi: \mathbb{R}^2 \to \mathbb{R}^2$

$$\phi(x,y) = \left(x^2 + y^2 - xy, +xy\right).$$

- a) Si determini il luogo dei punti critici della funzione ϕ .
- b) Si determini l'immagine della funzione.
- c) Si determini il numero di elementi di $\phi^{-1}(x_0, y_0)$ al variare del punto $(x_0, y_0) \in \mathbb{R}^2$.
- 8) [facoltativo] Sia f in $C^1(\mathbb{R}^2; \mathbb{R}^2)$ e sia $\mathcal{C} = \{(x,y) \mid x^2 + y^2 = 1\}$. Consideriamo una soluzione massimale $u: I \longrightarrow \mathbb{R}^2$ del sistema differenziale y' = f(y) e supponiamo che $f(x,y) \neq 0$ per ogni $(x,y) \in \mathcal{C}$ e che $u(I) \subset \mathcal{C}$. Provare che $I = \mathbb{R}$ e u è periodica.