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Hyperbolic manifolds
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Introduction

Hyperbolic manifolds

A hyperbolic n-manifold M is a riemannian manifold with constant
sectional curvature —1, i.e. locally isometric to H".

The manifold M is complete if and only if M = H"/r for a discrete
I < Isom(H") acting freely.

Theorem (Margulis lemma)

If M has finite volume, it is the interior of a compact manifold with
boundary. Every boundary component is diffeomorphic to a flat
(n — 1)-manifold N and gives a cusp isometric to

N x [0, 4+00)

with N x t rescaled by e=2t.
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Introduction

Thick-thin decomposition:
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Introduction

Thick-thin decomposition:

Hyperbolic link complements in S3:

® ©
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Hyperbolic manifolds
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Introduction
We can see a cusp using the half-space model
Hn:{Xn>O}CRn

with metric tensor at x = (x,..., X,) rescaled by X—lz

4 /271
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Manifolds with one cusp

We are interested in the following:

For which n > 2 there exists a hyperbolic n-manifold with only one cusp?

“Hyperbolic” will always mean “finite-volume complete hyperbolic”.

Bruno Martelli Constructions of hyperbolic four-manifolds bruary 28, 2014 5/27



Hyperbolic manifolds
®00

Manifolds with one cusp

We are interested in the following:

For which n > 2 there exists a hyperbolic n-manifold with only one cusp?

“Hyperbolic” will always mean “finite-volume complete hyperbolic”.

In dimension n = 2,3 there are plenty of examples.

Theorem (Stover 2013)

There are no arithmetic n-manifolds with one cusp for n > 30.
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Hyperbolic manifolds
®00

Manifolds with one cusp

We are interested in the following:

For which n > 2 there exists a hyperbolic n-manifold with only one cusp?

“Hyperbolic” will always mean “finite-volume complete hyperbolic”.

In dimension n = 2,3 there are plenty of examples.

Theorem (Stover 2013)

There are no arithmetic n-manifolds with one cusp for n > 30.

A flat (n — 1)-manifold M bounds geometrically if there is a hyperbolic
n-manifold with only one cusp, diffeomorphic to M x [0, 4+00).

Theorem (Long, Ried 2000)

Some flat 3-manifolds do not bound geometrically.
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Manifolds with one cusp

The n-invariant n(M) € R is defined for any closed oriented 3-manifold.
Long and Reid proved that if a closed flat 3-manifold M bounds
geometrically a hyperbolic 4-manifold W then

(W) +n(M) =0

where o (W) is the signature. Therefore n(M) € Z.
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Manifolds with one cusp

The n-invariant n(M) € R is defined for any closed oriented 3-manifold.
Long and Reid proved that if a closed flat 3-manifold M bounds
geometrically a hyperbolic 4-manifold W then

o(W)+n(M) =0
where o (W) is the signature. Therefore n(M) € Z.

There are six flat 3-manifolds up to diffeomorphism. Five are torus bundles
over S with monodromy:

10 -1 0 0 1 -1 1 1 -1

01)> \o -1)° =10/ \-10)0 ? \1 o
and a sixth one has a Seifert fibration over RP? with two singular fibers.
They all have integral n-invariant, except the last two fiber bundles.
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Manifolds with one cusp

Which of the remaining four flat manifolds bounds geometrically?

Theorem (Kolpakov, M. 2013)

The 3-torus bounds geometrically.
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Manifolds with one cusp

Which of the remaining four flat manifolds bounds geometrically?

Theorem (Kolpakov, M. 2013)

The 3-torus bounds geometrically.

Theorem (Kolpakov, M. 2013)

There are infinitely many hyperbolic four-manifolds M with any fixed
number k of cusps. The number of such manifolds with volume < V
grows faster than CY'™V for some C > 0.

These manifolds are constructed explicitly by gluing some copies of the
hyperbolic right-angled ideal 24-cell.
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Regular polyhedra

Constructions

Regular polyhedra:

polyhedron | 6=% =2 =7 ¢=%
tetrahedron | ideal H3 s3 s3 s3
cube ideal H?3 H3 R3 S3
octahedron ideal H3 s3
icosahedron H3
dodecahedron || ideal H?3 H3 H3 s3
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Constructions
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Regular polyhedra

A regular polyhedron with angle 6 = 27“ yields a tessellation:

dodecahedra with 8 = 2{ cubes with 6 = 2%
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Constructions
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Regular polyhedra

The isometry group ' < Isom(H?3) of the tessellation is discrete. To get a
finite-index subgroup I'" < I that acts freely we can invoke

Theorem (Selberg lemma)

Let T <GL(n,C) be a finitely generated group. There is a finite-index
" < T without torsion.

No torsion implies that " acts freely. Therefore M = H" /1 is a
finite-volume complete hyperbolic manifold that tessellates into finitely
many regular polyhedra.

Let us construct some concrete examples.
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Dimension three
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Minsky block

Dimension three

The Minsky block is obtained from two copies of an ideal regular
right-angled hyperbolic octahedron:

by identifying the corresponding red faces.
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Dimension three
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Minsky block

The Minsky block is a complete hyperbolic manifold with geodesic
boundary. Topologically it is diffeomorphic to the complement of:

It has:
@ 4 geodesic thrice punctured spheres as boundary
@ 6 annular cusps, of type S x [0,1] x [0, +00)
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Dimension three
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Minsky block

The combinatorics of the Minsky block is that of a tetrahedron:

{faces} +— {geodesic thrice — punctured spheres}
{edges} «— {annular cusps}
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Dimension three
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Minsky block

The combinatorics of the Minsky block is that of a tetrahedron:

{faces} +— {geodesic thrice — punctured spheres}
{edges} «— {annular cusps}

Let a triangulation be a face-pairing of some n tetrahedra. By replacing
every tetrahedron with a Minsky block we get a finite-volume cusped
orientable hyperbolic 3-manifold. The resulting map:

{triangulations} — {hyperbolic 3 — manifolds}

is injective.
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Dimension three
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Minsky block

The Minksy block appears:
@ as a bulding block of the model manifold constructed by Minsky to
prove Thurston's Ending Lamination Conjecture [2002]
@ in the theory of shadows, by Costantino and D. Thurston [2008]
@ in a paper by Costantino, Frigerio, M., Petronio [2007]
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Dimension three
oooe

Minsky block
The Minksy block appears:

@ as a bulding block of the model manifold constructed by Minsky to
prove Thurston's Ending Lamination Conjecture [2002]

@ in the theory of shadows, by Costantino and D. Thurston [2008]

@ in a paper by Costantino, Frigerio, M., Petronio [2007]

If we mirror the Minsky block we get the octahedral manifold.:

It is made of four octahedra glued as:
0
J
@)
and is the complement of the

(minimally twisted) chain link
with 6 components.

R

-

O<=—0O
2

-~
R
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Dimension four
.

Polytopes

Dimension four

There are six regular polytopes in dimension four:

name H facets 2-faces edges vertices link of vertices
5-cell 5 tetrahedra 10 10 5 tetrahedron
8-cell 8 cubes 24 32 16 tetrahedron
16-cell 16 tetrahedra 32 24 8 octahedron
24-cell 24 octahedra 96 96 24 cube
120-cell || 120 dodecahedra 720 1200 600 tetrahedron
600-cell 600 tetrahedra 1200 720 120 icosahedron

The link of the 24-cell is euclidean right-angled (a cube). Therefore the
ideal 24-cell is right-angled.
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Dimension four
Polytopes

The 24-cell € is the convex hull in R* of the 24 points obtained permuting
(£1,+£1,0,0).
It has 24 facets, contained in the hyperplanes

(+x = 1}, {iﬁ,iﬁ,iﬁ,iﬁ - 1}.
2’2 T

Each facet is a regular octahedron.
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Dimension four
Polytopes

The 24-cell € is the convex hull in R* of the 24 points obtained permuting
(£1,+£1,0,0).
It has 24 facets, contained in the hyperplanes

(+x = 1}, {iﬁ,iﬁ,iﬁ,iﬁ - 1}.
2’2 T

Each facet is a regular octahedron. The dual polytope is hence
¢* = Conv(GURUB)
where G contains the 8 points obtained by permuting
(£1,0,0,0)

and R U B contains 16 points (£3,+2,£3 £ 1) We let R (resp. B) be
the 8 points having even (resp. odd) number of minus signs.
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Dimension four
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The block

Facets of € are colored in Green, Blue, and Red.
Pick four identical ideal hyperbolic 24-cells and glue the facets as follows:

¢ <R

o s

Bruno Martelli Constructions of hyperbolic four-manifolds February 28, 2014 17 / 27



Dimension four
®00

The block

Facets of € are colored in Green, Blue, and Red.
Pick four identical ideal hyperbolic 24-cells and glue the facets as follows:

¢ <R

o s

A vertex is a cone over a 3-colored cube. Four cubes are glued:

\B —>

to produce a T x [0, 1].
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Dimension four
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The block

We get a block Z. It is a hyperbolic 4-manifold with geodesic boundary.
The (green) boundary has 8 components, each isometric to the octahedral
3-manifold. And it has 24 cusps of non-compact type, each isometric to

T x [0,1] x [0, 4+00)

where T is a 2 x 2 square torus and T x [0,1] x t is shrinked by e~2t:

-

Each cusp is adjacent to two distinct green geodesic boundary
components.
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Dimension four
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The block

We have 8 boundary components and 24 cusps connecting them in pairs.
What does the combinatorics of % look like?
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Dimension four
ooe

The block

We have 8 boundary components and 24 cusps connecting them in pairs.
What does the combinatorics of % look like?

It looks like a hypercube H, with

{8 facets of H} +— {8 geodesic boundary components of %A}
{24 faces of H} «— {24 cusps of £}

A facet in H is a cube (with 6 faces), which corresponds (dually) to a
octahedral manifold (with 6 cusps) in 0.24.

Vertices and edges of H have no interpretation in Z.
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Dimension four
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Cubulations

Let a (four-dimensional orientable) cubulation be a set of n hypercubes
whose facets are paired via orientation-reversing isometries.
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Dimension four
®000
Cubulations

Let a (four-dimensional orientable) cubulation be a set of n hypercubes
whose facets are paired via orientation-reversing isometries.
In a cubulation, the 2-faces are identified in cycles:

Q1ﬂ>Q2£>--'mQhﬂ>Q1-

Every cycle has a monodromy ) = 1, o - - - 09 which is:

G0 G (5

up to conjugation.

A cubulation defines an orientable cusped finite-volume hyperbolic
4-manifold. A cycle with monodromy ) gives a cusp isometric to
(T > [0, h])/¢ x R>o.

The first factor M = T x [0, h]/y is a flat 3-manifold. The slice M x t is
scaled by e~2 as usual.
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Dimension four
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Cubulations

The resulting map
{cubulations} — {hyperbolic 4 — manifolds}

is injective on cubulations with > 3 hypercubes. The proof uses that the
decomposition into 24-cells is the Epstein-Penner canonical one (w. r. to
some intrinsically defined sections).

For a finite-volume complete hyperbolic four-manifold M, the generalized
Gauss-Bonnet formula gives

472

16
3 -5

Vol(M) = .

x(M)

We have Vol(¥) = % and (%) = 4, x(M) = 4n.
Here n is the number of hypercubes, and hence blocks.
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Dimension four
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Cubulations

As an example, pick two copies H; and H, of a hypercube and pair the
corresponding facets of H; and H..
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Dimension four
fe7e] Yo)

Cubulations

As an example, pick two copies H; and H, of a hypercube and pair the
corresponding facets of H; and H..

We get 24 cycles, each of 2 square faces, with trivial monodromy.

The hyperbolic manifold M has 24 toric cusps, each a 2 x 2 x 2 cubic
three-torus. It tessellates into eight 24-cells glued along a cubic diagram:

. %<LG><5
/TR e
C<~——>F B

B¢ B
8|, ¢ B | ¢
i

This manifold has many symmetries.
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Dimension four
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Cubulations

Proposition
Fix k > 0. The number of cubulations with n hypercubes and k cycles of
squares grows faster than C"'™™", for some C > 0.

This implies immediately:

Fix k > 0. The number of hyperbolic 4-manifolds M with x(M) = 4n and
k cusps grows faster than C""™" for some C > 0.

In particular, there are hyperbolic manifolds with any number of cusps.
We may require all cusp sections being 3-tori.
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Dehn filling

Dehn filling

Let M = Int(N) be a cusped hyperbolic n-manifold, with 9N consisting of
tori T"~1. A Dehn filling of N is the operation of attaching a

T2 x D?
to some of these boundary tori. The filled manifold depends on

y={x}xStem(T" ) =2""
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Dehn filling

Dehn filling

Let M = Int(N) be a cusped hyperbolic n-manifold, with 9N consisting of
tori T"~1. A Dehn filling of N is the operation of attaching a

T2 x D?
to some of these boundary tori. The filled manifold depends on
y={x}xStem(T" ) =2""

Fix disjoint flat cusp sections. Now ~ has a geodesic representative of
some length /(). If M has k cusps we can fill them along curves
Y1,---,7vk and get a closed filled manifold M.

Theorem (Gromov-Thurston 27)

If (i) > 27 for all i then N admits a metric of non-positive sectional
curvature (and is hence aspherical by Cartan-Hadamard).
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Dehn filling

Theorem (Anderson 2003)

If I(~y;) is sufficiently large for all i then N admits an Einstein metric.

When n = 3 this is Thurston’s Dehn filling theorem (Einstein = constant
curvature when n = 3).

We can construct an Einstein four-manifold via:
@ a cubulation with trivial monodromies on cycles of squares,

e a sufficiently complicate primitive triple (p, g, r) € Z3 at each cycle.
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Geodesic boundary

Geodesic boundary

Similarly, a hyperbolic 3-manifold M bounds geometrically if it is the
geodesic boundary of a finite-volume complete 4-manifold.

Theorem (Long-Reid 2000, 2001)

Infinitely many closed hyperbolic 3-manifolds bound geometrically,
infinitely many do not bound geometrically.

Concrete low-volume examples may be constructed using right-angled
120-cells and dodecahedra [Kolpakov, M., Tschantz 2013].

Bruno Martelli Constructions of hyperbolic four-manifolds February 28, 2014 26 / 27



Geodesic boundary

Cusped 3-manifolds can also bound:

Theorem (Slavich 2014)

The following link complement bounds geometrically:

AT
Q/ Fo

It tessellates into eight regular ideal octahedra and bounds a four-manifold
that tessellates into two regular ideal 24-cells.
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