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Introduction

Hyperbolic manifolds

A hyperbolic n-manifold M is a riemannian manifold with constant
sectional curvature −1, i.e. locally isometric to Hn.

The manifold M is complete if and only if M = Hn/Γ for a discrete
Γ < Isom(Hn) acting freely.

Theorem (Margulis lemma)

If M has finite volume, it is the interior of a compact manifold with
boundary. Every boundary component is diffeomorphic to a flat
(n − 1)-manifold N and gives a cusp isometric to

N × [0,+∞)

with N × t rescaled by e−2t .
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Introduction

Thick-thin decomposition:

Hyperbolic link complements in S3:
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Introduction

We can see a cusp using the half-space model

Hn = {xn > 0} ⊂ Rn

with metric tensor at x = (x1, . . . , xn) rescaled by 1
x2
n

.

n = 2 n = 3 n = 4
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Manifolds with one cusp

We are interested in the following:

Question

For which n > 2 there exists a hyperbolic n-manifold with only one cusp?

“Hyperbolic” will always mean “finite-volume complete hyperbolic”.

In dimension n = 2, 3 there are plenty of examples.

Theorem (Stover 2013)

There are no arithmetic n-manifolds with one cusp for n > 30.

A flat (n − 1)-manifold M bounds geometrically if there is a hyperbolic
n-manifold with only one cusp, diffeomorphic to M × [0,+∞).

Theorem (Long, Ried 2000)

Some flat 3-manifolds do not bound geometrically.
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Manifolds with one cusp

The η-invariant η(M) ∈ R is defined for any closed oriented 3-manifold.
Long and Reid proved that if a closed flat 3-manifold M bounds
geometrically a hyperbolic 4-manifold W then

σ(W ) + η(M) = 0

where σ(W ) is the signature. Therefore η(M) ∈ Z.

There are six flat 3-manifolds up to diffeomorphism. Five are torus bundles
over S1 with monodromy:(

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
−1 1
−1 0

)
, or

(
1 −1
1 0

)
and a sixth one has a Seifert fibration over RP2 with two singular fibers.
They all have integral η-invariant, except the last two fiber bundles.
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Manifolds with one cusp

Question

Which of the remaining four flat manifolds bounds geometrically?

Theorem (Kolpakov, M. 2013)

The 3-torus bounds geometrically.

Theorem (Kolpakov, M. 2013)

There are infinitely many hyperbolic four-manifolds M with any fixed
number k of cusps. The number of such manifolds with volume 6 V
grows faster than CV lnV for some C > 0.

These manifolds are constructed explicitly by gluing some copies of the
hyperbolic right-angled ideal 24-cell.
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Regular polyhedra

Constructions

Regular polyhedra:

polyhedron θ = π
3 θ = 2π

5 θ = π
2 θ = 2π

3

tetrahedron ideal H3 S3 S3 S3

cube ideal H3 H3 R3 S3

octahedron ideal H3 S3

icosahedron H3

dodecahedron ideal H3 H3 H3 S3
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Regular polyhedra

A regular polyhedron with angle θ = 2π
n yields a tessellation:

dodecahedra with θ = 2π
5 cubes with θ = 2π

5
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Regular polyhedra

The isometry group Γ < Isom(H3) of the tessellation is discrete. To get a
finite-index subgroup Γ′ < Γ that acts freely we can invoke

Theorem (Selberg lemma)

Let Γ <GL(n,C) be a finitely generated group. There is a finite-index
Γ′ < Γ without torsion.

No torsion implies that Γ′ acts freely. Therefore M = Hn/Γ′ is a
finite-volume complete hyperbolic manifold that tessellates into finitely
many regular polyhedra.

Let us construct some concrete examples.
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Minsky block

Dimension three

The Minsky block is obtained from two copies of an ideal regular
right-angled hyperbolic octahedron:

R

by identifying the corresponding red faces.
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Minsky block

The Minsky block is a complete hyperbolic manifold with geodesic
boundary. Topologically it is diffeomorphic to the complement of:

It has:

4 geodesic thrice punctured spheres as boundary

6 annular cusps, of type S1 × [0, 1]× [0,+∞)
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Minsky block

The combinatorics of the Minsky block is that of a tetrahedron:

{faces} ←→ {geodesic thrice− punctured spheres}
{edges} ←→ {annular cusps}

Let a triangulation be a face-pairing of some n tetrahedra. By replacing
every tetrahedron with a Minsky block we get a finite-volume cusped
orientable hyperbolic 3-manifold. The resulting map:

{triangulations} −→ {hyperbolic 3−manifolds}

is injective.
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Minsky block

The Minksy block appears:

as a bulding block of the model manifold constructed by Minsky to
prove Thurston’s Ending Lamination Conjecture [2002]

in the theory of shadows, by Costantino and D. Thurston [2008]

in a paper by Costantino, Frigerio, M., Petronio [2007]

If we mirror the Minsky block we get the octahedral manifold:

It is made of four octahedra glued as:

O oo
R //

OO

W
��

OOO

W
��

O oo
R
// O

and is the complement of the
(minimally twisted) chain link

with 6 components.
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Polytopes

Dimension four

There are six regular polytopes in dimension four:

name facets 2-faces edges vertices link of vertices

5-cell 5 tetrahedra 10 10 5 tetrahedron
8-cell 8 cubes 24 32 16 tetrahedron

16-cell 16 tetrahedra 32 24 8 octahedron
24-cell 24 octahedra 96 96 24 cube

120-cell 120 dodecahedra 720 1200 600 tetrahedron
600-cell 600 tetrahedra 1200 720 120 icosahedron

The link of the 24-cell is euclidean right-angled (a cube). Therefore the
ideal 24-cell is right-angled.
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Polytopes

The 24-cell C is the convex hull in R4 of the 24 points obtained permuting

(±1,±1, 0, 0).

It has 24 facets, contained in the hyperplanes

{±xi = 1},
{
±x1

2
,±x2

2
,±x3

2
,±x4

2
= 1
}
.

Each facet is a regular octahedron.

The dual polytope is hence

C ∗ = Conv(G ∪ R ∪ B)

where G contains the 8 points obtained by permuting

(±1, 0, 0, 0)

and R ∪ B contains 16 points
(
±1

2 ,±
1
2 ,±

1
2 ±

1
2

)
. We let R (resp. B) be

the 8 points having even (resp. odd) number of minus signs.
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The block

Facets of C are colored in Green, Blue, and Red.
Pick four identical ideal hyperbolic 24-cells and glue the facets as follows:

C oo
R //

OO

B
��

COO

B
��

C oo
R
// C

A vertex is a cone over a 3-colored cube. Four cubes are glued:

R

R

B B

to produce a T × [0, 1].
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The block

We get a block B. It is a hyperbolic 4-manifold with geodesic boundary.
The (green) boundary has 8 components, each isometric to the octahedral
3-manifold. And it has 24 cusps of non-compact type, each isometric to

T × [0, 1]× [0,+∞)

where T is a 2× 2 square torus and T × [0, 1]× t is shrinked by e−2t :

Each cusp is adjacent to two distinct green geodesic boundary
components.
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The block

We have 8 boundary components and 24 cusps connecting them in pairs.
What does the combinatorics of B look like?

It looks like a hypercube H, with

{8 facets of H} ←→ {8 geodesic boundary components of B}
{24 faces of H} ←→ {24 cusps of B}

A facet in H is a cube (with 6 faces), which corresponds (dually) to a
octahedral manifold (with 6 cusps) in ∂B.

Vertices and edges of H have no interpretation in B.
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Hyperbolic manifolds Constructions Dimension three Dimension four Dehn filling Geodesic boundary

The block

We have 8 boundary components and 24 cusps connecting them in pairs.
What does the combinatorics of B look like?

It looks like a hypercube H, with

{8 facets of H} ←→ {8 geodesic boundary components of B}
{24 faces of H} ←→ {24 cusps of B}

A facet in H is a cube (with 6 faces), which corresponds (dually) to a
octahedral manifold (with 6 cusps) in ∂B.

Vertices and edges of H have no interpretation in B.

Bruno Martelli Constructions of hyperbolic four-manifolds February 28, 2014 19 / 27



Hyperbolic manifolds Constructions Dimension three Dimension four Dehn filling Geodesic boundary

Cubulations

Let a (four-dimensional orientable) cubulation be a set of n hypercubes
whose facets are paired via orientation-reversing isometries.

In a cubulation, the 2-faces are identified in cycles:

Q1
ψ1−→ Q2

ψ2−→ · · · ψh−1−→ Qh
ψh−→ Q1.

Every cycle has a monodromy ψ = ψh ◦ · · · ◦ ψ1 which is:

ψ =

(
1 0
0 1

)
,

(
−1 0
0 −1

)
, or

(
0 1
−1 0

)
up to conjugation.

A cubulation defines an orientable cusped finite-volume hyperbolic
4-manifold. A cycle with monodromy ψ gives a cusp isometric to

(T × [0, h])/ψ × R>0.

The first factor M = T × [0, h]/ψ is a flat 3-manifold. The slice M × t is
scaled by e−2t as usual.
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Cubulations

The resulting map

{cubulations} −→ {hyperbolic 4−manifolds}

is injective on cubulations with > 3 hypercubes. The proof uses that the
decomposition into 24-cells is the Epstein-Penner canonical one (w. r. to
some intrinsically defined sections).

For a finite-volume complete hyperbolic four-manifold M, the generalized
Gauss-Bonnet formula gives

Vol(M) =
4π2

3
χ(M) =

16n

3
π2.

We have Vol(C ) = 4π2

3 and χ(B) = 4, χ(M) = 4n.
Here n is the number of hypercubes, and hence blocks.
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Cubulations

As an example, pick two copies H1 and H2 of a hypercube and pair the
corresponding facets of H1 and H2.

We get 24 cycles, each of 2 square faces, with trivial monodromy.

The hyperbolic manifold M has 24 toric cusps, each a 2× 2× 2 cubic
three-torus. It tessellates into eight 24-cells glued along a cubic diagram:

C oo
R //

OO

B ��

COO

B

��
C
��

G ??

oo R //
OO

B

��

C
��

G ??

OO
B

��
C oo

R // C

C oo
R
//

��
G ??

C
��
G

??

This manifold has many symmetries.
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Cubulations

Proposition

Fix k > 0. The number of cubulations with n hypercubes and k cycles of
squares grows faster than Cn ln n, for some C > 0.

This implies immediately:

Corollary

Fix k > 0. The number of hyperbolic 4-manifolds M with χ(M) = 4n and
k cusps grows faster than Cn ln n, for some C > 0.

In particular, there are hyperbolic manifolds with any number of cusps.
We may require all cusp sections being 3-tori.
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Dehn filling

Let M = Int(N) be a cusped hyperbolic n-manifold, with ∂N consisting of
tori T n−1. A Dehn filling of N is the operation of attaching a

T n−2 × D2

to some of these boundary tori. The filled manifold depends on

γ = {x} × S1 ∈ π1(T n−1) = Zn−1

Fix disjoint flat cusp sections. Now γ has a geodesic representative of
some length l(γ). If M has k cusps we can fill them along curves
γ1, . . . , γk and get a closed filled manifold N.

Theorem (Gromov-Thurston 2π)

If l(γi ) > 2π for all i then N admits a metric of non-positive sectional
curvature (and is hence aspherical by Cartan-Hadamard).
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Theorem (Anderson 2003)

If l(γi ) is sufficiently large for all i then N admits an Einstein metric.

When n = 3 this is Thurston’s Dehn filling theorem (Einstein =⇒ constant
curvature when n = 3).

We can construct an Einstein four-manifold via:

a cubulation with trivial monodromies on cycles of squares,

a sufficiently complicate primitive triple (p, q, r) ∈ Z3 at each cycle.
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Geodesic boundary

Similarly, a hyperbolic 3-manifold M bounds geometrically if it is the
geodesic boundary of a finite-volume complete 4-manifold.

Theorem (Long-Reid 2000, 2001)

Infinitely many closed hyperbolic 3-manifolds bound geometrically,
infinitely many do not bound geometrically.

Concrete low-volume examples may be constructed using right-angled
120-cells and dodecahedra [Kolpakov, M., Tschantz 2013].
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Cusped 3-manifolds can also bound:

Theorem (Slavich 2014)

The following link complement bounds geometrically:

It tessellates into eight regular ideal octahedra and bounds a four-manifold
that tessellates into two regular ideal 24-cells.
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