Combinatorial constructions of hyperbolic and Einstein four-manifolds

Bruno Martelli
(joint with Alexander Kolpakov)

February 28, 2014

Hyperbolic manifolds

A hyperbolic n-manifold M is a riemannian manifold with constant sectional curvature -1 , i.e. locally isometric to \mathbb{H}^{n}.

Hyperbolic manifolds

A hyperbolic n-manifold M is a riemannian manifold with constant sectional curvature -1 , i.e. locally isometric to \mathbb{H}^{n}.

The manifold M is complete if and only if $M=\mathbb{H}^{n} /\ulcorner$ for a discrete $\Gamma<\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ acting freely.

Hyperbolic manifolds

A hyperbolic n-manifold M is a riemannian manifold with constant sectional curvature -1 , i.e. locally isometric to \mathbb{H}^{n}.

The manifold M is complete if and only if $M=\mathbb{H}^{n} / \Gamma$ for a discrete $\Gamma<\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ acting freely.

Theorem (Margulis lemma)

If M has finite volume, it is the interior of a compact manifold with boundary. Every boundary component is diffeomorphic to a flat ($n-1$)-manifold N and gives a cusp isometric to

$$
N \times[0,+\infty)
$$

with $N \times t$ rescaled by $e^{-2 t}$.

Introduction

Thick-thin decomposition:

Introduction

Thick-thin decomposition:

Hyperbolic link complements in S^{3} :

We can see a cusp using the half-space model

$$
\mathbb{H}^{n}=\left\{x_{n}>0\right\} \subset \mathbb{R}^{n}
$$

with metric tensor at $x=\left(x_{1}, \ldots, x_{n}\right)$ rescaled by $\frac{1}{x_{n}^{2}}$.

$$
n=2
$$

$$
n=3
$$

$$
n=4
$$

We are interested in the following:

Question

For which $n \geqslant 2$ there exists a hyperbolic n-manifold with only one cusp?
"Hyperbolic" will always mean "finite-volume complete hyperbolic".

We are interested in the following:

Question

For which $n \geqslant 2$ there exists a hyperbolic n-manifold with only one cusp?
"Hyperbolic" will always mean "finite-volume complete hyperbolic".

In dimension $n=2,3$ there are plenty of examples.

Theorem (Stover 2013)

There are no arithmetic n-manifolds with one cusp for $n \geqslant 30$.

We are interested in the following:

Question

For which $n \geqslant 2$ there exists a hyperbolic n-manifold with only one cusp?
"Hyperbolic" will always mean "finite-volume complete hyperbolic".

In dimension $n=2,3$ there are plenty of examples.

Theorem (Stover 2013)

There are no arithmetic n-manifolds with one cusp for $n \geqslant 30$.
A flat $(n-1)$-manifold M bounds geometrically if there is a hyperbolic n-manifold with only one cusp, diffeomorphic to $M \times[0,+\infty)$.

Theorem (Long, Ried 2000)

Some flat 3-manifolds do not bound geometrically.

The η-invariant $\eta(M) \in \mathbb{R}$ is defined for any closed oriented 3-manifold. Long and Reid proved that if a closed flat 3-manifold M bounds geometrically a hyperbolic 4-manifold W then

$$
\sigma(W)+\eta(M)=0
$$

where $\sigma(W)$ is the signature. Therefore $\eta(M) \in \mathbb{Z}$.

The η-invariant $\eta(M) \in \mathbb{R}$ is defined for any closed oriented 3-manifold. Long and Reid proved that if a closed flat 3-manifold M bounds geometrically a hyperbolic 4-manifold W then

$$
\sigma(W)+\eta(M)=0
$$

where $\sigma(W)$ is the signature. Therefore $\eta(M) \in \mathbb{Z}$.

There are six flat 3-manifolds up to diffeomorphism. Five are torus bundles over S^{1} with monodromy:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)
$$

and a sixth one has a Seifert fibration over $\mathbb{R P}^{2}$ with two singular fibers. They all have integral η-invariant, except the last two fiber bundles.

Question

Which of the remaining four flat manifolds bounds geometrically?

Theorem (Kolpakov, M. 2013)

The 3-torus bounds geometrically.

Question

Which of the remaining four flat manifolds bounds geometrically?

Theorem (Kolpakov, M. 2013)

The 3-torus bounds geometrically.

Theorem (Kolpakov, M. 2013)

There are infinitely many hyperbolic four-manifolds M with any fixed number k of cusps. The number of such manifolds with volume $\leqslant V$ grows faster than $C^{V \ln V}$ for some $C>0$.

These manifolds are constructed explicitly by gluing some copies of the hyperbolic right-angled ideal 24-cell.

Constructions

Regular polyhedra:

polyhedron	$\theta=\frac{\pi}{3}$	$\theta=\frac{2 \pi}{5}$	$\theta=\frac{\pi}{2}$	$\theta=\frac{2 \pi}{3}$
tetrahedron	ideal \mathbb{H}^{3}	S^{3}	S^{3}	S^{3}
cube	ideal \mathbb{H}^{3}	\mathbb{H}^{3}	\mathbb{R}^{3}	S^{3}
octahedron			ideal \mathbb{H}^{3}	S^{3}
icosahedron				\mathbb{H}^{3}
dodecahedron	ideal \mathbb{H}^{3}	\mathbb{H}^{3}	\mathbb{H}^{3}	S^{3}

A regular polyhedron with angle $\theta=\frac{2 \pi}{n}$ yields a tessellation:

dodecahedra with $\theta=\frac{2 \pi}{5}$

cubes with $\theta=\frac{2 \pi}{5}$

The isometry group $\Gamma<\operatorname{Isom}\left(\mathbb{H}^{3}\right)$ of the tessellation is discrete. To get a finite-index subgroup $\Gamma^{\prime}<\Gamma$ that acts freely we can invoke

Theorem (Selberg lemma)

Let $\Gamma<G L(n, \mathbb{C})$ be a finitely generated group. There is a finite-index $\Gamma^{\prime}<\Gamma$ without torsion.

No torsion implies that Γ^{\prime} acts freely. Therefore $M=\mathbb{H}^{n} / \Gamma^{\prime}$ is a finite-volume complete hyperbolic manifold that tessellates into finitely many regular polyhedra.

Let us construct some concrete examples.

Minsky block

Dimension three

The Minsky block is obtained from two copies of an ideal regular right-angled hyperbolic octahedron:

by identifying the corresponding red faces.

The Minsky block is a complete hyperbolic manifold with geodesic boundary. Topologically it is diffeomorphic to the complement of:

It has:

- 4 geodesic thrice punctured spheres as boundary
- 6 annular cusps, of type $S^{1} \times[0,1] \times[0,+\infty)$

The combinatorics of the Minsky block is that of a tetrahedron:

[^0]The combinatorics of the Minsky block is that of a tetrahedron:

$$
\begin{aligned}
\{\text { faces }\} & \longleftrightarrow \text { \{geodesic thrice - punctured spheres }\} \\
\{\text { edges }\} & \longleftrightarrow \text { \{annular cusps }\}
\end{aligned}
$$

Let a triangulation be a face-pairing of some n tetrahedra. By replacing every tetrahedron with a Minsky block we get a finite-volume cusped orientable hyperbolic 3-manifold. The resulting map:

$$
\{\text { triangulations }\} \longrightarrow\{\text { hyperbolic } 3-\text { manifolds }\}
$$

is injective.

The Minksy block appears:

- as a bulding block of the model manifold constructed by Minsky to prove Thurston's Ending Lamination Conjecture [2002]
- in the theory of shadows, by Costantino and D. Thurston [2008]
- in a paper by Costantino, Frigerio, M., Petronio [2007]

The Minksy block appears:

- as a bulding block of the model manifold constructed by Minsky to prove Thurston's Ending Lamination Conjecture [2002]
- in the theory of shadows, by Costantino and D. Thurston [2008]
- in a paper by Costantino, Frigerio, M., Petronio [2007]

If we mirror the Minsky block we get the octahedral manifold:
It is made of four octahedra glued as:

and is the complement of the (minimally twisted) chain link with 6 components.

Dimension four

There are six regular polytopes in dimension four:

name	facets	2-faces	edges	vertices	link of vertices
5-cell	5 tetrahedra	10	10	5	tetrahedron
8-cell	8 cubes	24	32	16	tetrahedron
16-cell	16 tetrahedra	32	24	8	octahedron
24-cell	24 octahedra	96	96	24	cube
120-cell	120 dodecahedra	720	1200	600	tetrahedron
600-cell	600 tetrahedra	1200	720	120	icosahedron

The link of the 24 -cell is euclidean right-angled (a cube). Therefore the ideal 24 -cell is right-angled.

The 24 -cell \mathscr{C} is the convex hull in \mathbb{R}^{4} of the 24 points obtained permuting

$$
(\pm 1, \pm 1,0,0)
$$

It has 24 facets, contained in the hyperplanes

$$
\left\{ \pm x_{i}=1\right\}, \quad\left\{ \pm \frac{x_{1}}{2}, \pm \frac{x_{2}}{2}, \pm \frac{x_{3}}{2}, \pm \frac{x_{4}}{2}=1\right\} .
$$

Each facet is a regular octahedron.

The 24 -cell \mathscr{C} is the convex hull in \mathbb{R}^{4} of the 24 points obtained permuting

$$
(\pm 1, \pm 1,0,0)
$$

It has 24 facets, contained in the hyperplanes

$$
\left\{ \pm x_{i}=1\right\}, \quad\left\{ \pm \frac{x_{1}}{2}, \pm \frac{x_{2}}{2}, \pm \frac{x_{3}}{2}, \pm \frac{x_{4}}{2}=1\right\}
$$

Each facet is a regular octahedron. The dual polytope is hence

$$
\mathscr{C}^{*}=\operatorname{Conv}(G \cup R \cup B)
$$

where G contains the 8 points obtained by permuting

$$
(\pm 1,0,0,0)
$$

and $R \cup B$ contains 16 points $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2} \pm \frac{1}{2}\right)$. We let R (resp. B) be the 8 points having even (resp. odd) number of minus signs.

Facets of \mathscr{C} are colored in Green, Blue, and Red.
Pick four identical ideal hyperbolic 24 -cells and glue the facets as follows:

Facets of \mathscr{C} are colored in Green, Blue, and Red.
Pick four identical ideal hyperbolic 24 -cells and glue the facets as follows:

A vertex is a cone over a 3-colored cube. Four cubes are glued:

to produce a $T \times[0,1]$.

We get a block \mathscr{B}. It is a hyperbolic 4-manifold with geodesic boundary. The (green) boundary has 8 components, each isometric to the octahedral 3 -manifold. And it has 24 cusps of non-compact type, each isometric to

$$
T \times[0,1] \times[0,+\infty)
$$

where T is a 2×2 square torus and $T \times[0,1] \times t$ is shrinked by $e^{-2 t}$:

Each cusp is adjacent to two distinct green geodesic boundary components.

We have 8 boundary components and 24 cusps connecting them in pairs. What does the combinatorics of \mathscr{B} look like?

We have 8 boundary components and 24 cusps connecting them in pairs. What does the combinatorics of \mathscr{B} look like?

It looks like a hypercube H, with
$\{8$ facets of $H\} \longleftrightarrow\{8$ geodesic boundary components of $\mathscr{B}\}$ $\{24$ faces of $H\} \longleftrightarrow\{24$ cusps of $\mathscr{B}\}$

A facet in H is a cube (with 6 faces), which corresponds (dually) to a octahedral manifold (with 6 cusps) in $\partial \mathscr{B}$.

Vertices and edges of H have no interpretation in \mathscr{B}.

Let a (four-dimensional orientable) cubulation be a set of n hypercubes whose facets are paired via orientation-reversing isometries.

Let a (four-dimensional orientable) cubulation be a set of n hypercubes whose facets are paired via orientation-reversing isometries.
In a cubulation, the 2 -faces are identified in cycles:

$$
Q_{1} \xrightarrow{\psi_{1}} Q_{2} \xrightarrow{\psi_{2}} \cdots \xrightarrow{\psi_{h-1}} Q_{h} \xrightarrow{\psi_{h}} Q_{1} .
$$

Every cycle has a monodromy $\psi=\psi_{h} \circ \cdots \circ \psi_{1}$ which is:

$$
\psi=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

up to conjugation.

A cubulation defines an orientable cusped finite-volume hyperbolic 4 -manifold. A cycle with monodromy ψ gives a cusp isometric to

$$
(T \times[0, h]) / \psi \times \mathbb{R}_{>0}
$$

The first factor $M=T \times[0, h] / \psi$ is a flat 3 -manifold. The slice $M \times t$ is scaled by $e^{-2 t}$ as usual.

The resulting map

$$
\{\text { cubulations }\} \longrightarrow\{\text { hyperbolic } 4 \text { - manifolds }\}
$$

is injective on cubulations with $\geqslant 3$ hypercubes. The proof uses that the decomposition into 24-cells is the Epstein-Penner canonical one (w. r. to some intrinsically defined sections).

For a finite-volume complete hyperbolic four-manifold M, the generalized Gauss-Bonnet formula gives

$$
\operatorname{Vol}(M)=\frac{4 \pi^{2}}{3} \chi(M)=\frac{16 n}{3} \pi^{2}
$$

We have $\operatorname{Vol}(\mathscr{C})=\frac{4 \pi^{2}}{3}$ and $\chi(\mathscr{B})=4, \chi(M)=4 n$. Here n is the number of hypercubes, and hence blocks.

As an example, pick two copies H_{1} and H_{2} of a hypercube and pair the corresponding facets of H_{1} and H_{2}.

As an example, pick two copies H_{1} and H_{2} of a hypercube and pair the corresponding facets of H_{1} and H_{2}.

We get 24 cycles, each of 2 square faces, with trivial monodromy.

The hyperbolic manifold M has 24 toric cusps, each a $2 \times 2 \times 2$ cubic three-torus. It tessellates into eight 24 -cells glued along a cubic diagram:

This manifold has many symmetries.

Proposition

Fix $k>0$. The number of cubulations with n hypercubes and k cycles of squares grows faster than $C^{n \ln n}$, for some $C>0$.

This implies immediately:

Corollary

Fix $k>0$. The number of hyperbolic 4-manifolds M with $\chi(M)=4 n$ and k cusps grows faster than $C^{n \ln n}$, for some $C>0$.

In particular, there are hyperbolic manifolds with any number of cusps. We may require all cusp sections being 3-tori.

Dehn filling

Let $M=\operatorname{Int}(N)$ be a cusped hyperbolic n-manifold, with ∂N consisting of tori T^{n-1}. A Dehn filling of N is the operation of attaching a

$$
T^{n-2} \times D^{2}
$$

to some of these boundary tori. The filled manifold depends on

$$
\gamma=\{x\} \times S^{1} \in \pi_{1}\left(T^{n-1}\right)=\mathbb{Z}^{n-1}
$$

Dehn filling

Let $M=\operatorname{Int}(N)$ be a cusped hyperbolic n-manifold, with ∂N consisting of tori T^{n-1}. A Dehn filling of N is the operation of attaching a

$$
T^{n-2} \times D^{2}
$$

to some of these boundary tori. The filled manifold depends on

$$
\gamma=\{x\} \times S^{1} \in \pi_{1}\left(T^{n-1}\right)=\mathbb{Z}^{n-1}
$$

Fix disjoint flat cusp sections. Now γ has a geodesic representative of some length $I(\gamma)$. If M has k cusps we can fill them along curves $\gamma_{1}, \ldots, \gamma_{k}$ and get a closed filled manifold N.

Theorem (Gromov-Thurston 2π)

If $I\left(\gamma_{i}\right)>2 \pi$ for all i then N admits a metric of non-positive sectional curvature (and is hence aspherical by Cartan-Hadamard).

Theorem (Anderson 2003)

If $I\left(\gamma_{i}\right)$ is sufficiently large for all i then N admits an Einstein metric.
When $n=3$ this is Thurston's Dehn filling theorem (Einstein \Longrightarrow constant curvature when $n=3$).

We can construct an Einstein four-manifold via:

- a cubulation with trivial monodromies on cycles of squares,
- a sufficiently complicate primitive triple $(p, q, r) \in \mathbb{Z}^{3}$ at each cycle.

Geodesic boundary

Similarly, a hyperbolic 3-manifold M bounds geometrically if it is the geodesic boundary of a finite-volume complete 4-manifold.

Theorem (Long-Reid 2000, 2001)

Infinitely many closed hyperbolic 3-manifolds bound geometrically, infinitely many do not bound geometrically.

Concrete low-volume examples may be constructed using right-angled 120-cells and dodecahedra [Kolpakov, M., Tschantz 2013].

Cusped 3-manifolds can also bound:

Theorem (Slavich 2014)

The following link complement bounds geometrically:

It tessellates into eight regular ideal octahedra and bounds a four-manifold that tessellates into two regular ideal 24-cells.

[^0]: $\{$ faces $\} \longleftrightarrow$ \{geodesic thrice - punctured spheres $\}$
 \{edges $\} \longleftrightarrow$ \{annular cusps $\}$

