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M = M[0]U M[1]U...UM[n—2]U M][n].
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(McMullen) Every compact spherical cone-manifold N decomposes

uniquely as
N=Ss1yB

for some prime B (does not decompose as B = S x C).
If x € M is locally a cone over N, then x € M[k].

Every connected (n — 2)-stratum has N = S"~3 % C, and we say
that it has cone angle «.
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Suppose cone angles are < 27.

In a locally orientable cone 3-manifold, the underlying space is a
3-manifold and the singular locus ¥ is a 1-complex.

If cone angles are < , vertices have valence 3.
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The underlying space here is S3.

The corresponding strata in a cone 4-manifold:

@4 FE o

Example: double of a simple polytope.
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Slope (1,2): hyperbolic with cone angles < 27 + K




Hyperbolic Dehn filling

Slope (2,1): hyperbolic with cone angles < 27



Hyperbolic Dehn filling

&

(4,1) QN 1)
(50)\ 0 (1,0) }(50)
(4-1) (4,-1)

Slope (1,0): hyperbolic with cone angles < 27 — K



Theorem (M, Riolo)

There is an analytic path My with t € [0, 1] of finite-volume
complete hyperbolic cone four-manifolds with singular set

X=TUK

where T is a torus and K a Klein bottle, with cone angles o and (3
respectively, intersecting transversely in two points. We have

a(0) =0, o(l)=2m, B(0)=2m, B(1)=0.

The angles o and 3 vary strictly monotonically in t.

The hyperbolic manifolds My and M; have no singularities.



The volume of M;:




A similar deformation W;:
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(Kerchoff — Storm) Let the polytope P; C H* be the intersection
of the following 24 half-spaces:



(Kerchoff —

0+—(\f 1,1,1,1/t),

1t = (V2 ,—1/t),
2t = (V2 -1,1/¢),
3+—(f,1,1, ,—1/1),
4+—( -1,1/¢),
= (V2 1,1,1, l/t),
e+7( 1/t),
7t = (\@ -1,- 1/t),
(1 \f 2,0,0,0),

C = (1,0,0,v2,0),

E = (1,0,-v2,0,0),

G =(1,0,0,0,—V2t),
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Storm) Let the polytope P; C H* be the intersection
of the following 24 half-spaces:

= (V2,1,1,1,~t),

= (V2,1,-1,1,t),
(V2,1,-1,-1,-t),
= (V2,1,1,-1,t),
(V2,-1,1,-1,—t),
(V2,-1,1,1,t),
(V2,-1,-1,1,t),
(V2,-1,-1,-1,t),
(1,0,v2,0,0),
(1,0,0,—v2,0),
(1,-v2,0,0,0),
(1,0,0,0,v2t).
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