Hyperbolic Dehn filling in dimension four

Bruno Martelli
(joint work with Stefano Riolo)

University of Pisa
31-08-2016

Definition

A (hyperbolic, flat, spherical) cone n-manifold M is:

- a Riemannian manifold if $n=1$;

Definition

A (hyperbolic, flat, spherical) cone n-manifold M is:

- a Riemannian manifold if $n=1$;
- locally modeled on a (hyperbolic, flat, spherical) cone over a compact connected spherical cone $(n-1)$-manifold if $n>1$.

Definition

A (hyperbolic, flat, spherical) cone n-manifold M is:

- a Riemannian manifold if $n=1$;
- locally modeled on a (hyperbolic, flat, spherical) cone over a compact connected spherical cone $(n-1)$-manifold if $n>1$.

Natural stratification:

$$
M=M[0] \sqcup M[1] \sqcup \ldots \sqcup M[n-2] \sqcup M[n] .
$$

Natural stratification:

$$
M=M[0] \sqcup M[1] \sqcup \ldots \sqcup M[n-2] \sqcup M[n] .
$$

Join of spherical cone-manifolds:

$$
S^{m} * S^{n} \cong S^{m+n+1}
$$

Natural stratification:

$$
M=M[0] \sqcup M[1] \sqcup \ldots \sqcup M[n-2] \sqcup M[n] .
$$

Join of spherical cone-manifolds:

$$
S^{m} * S^{n} \cong S^{m+n+1}
$$

(McMullen) Every compact spherical cone-manifold N decomposes uniquely as

$$
N \cong S^{k-1} * B
$$

for some prime B (does not decompose as $B=S^{0} * C$).

Natural stratification:

$$
M=M[0] \sqcup M[1] \sqcup \ldots \sqcup M[n-2] \sqcup M[n] .
$$

Join of spherical cone-manifolds:

$$
S^{m} * S^{n} \cong S^{m+n+1}
$$

(McMullen) Every compact spherical cone-manifold N decomposes uniquely as

$$
N \cong S^{k-1} * B
$$

for some prime B (does not decompose as $B=S^{0} * C$).
If $x \in M$ is locally a cone over N, then $x \in M[k]$.

Natural stratification:

$$
M=M[0] \sqcup M[1] \sqcup \ldots \sqcup M[n-2] \sqcup M[n] .
$$

Join of spherical cone-manifolds:

$$
S^{m} * S^{n} \cong S^{m+n+1}
$$

(McMullen) Every compact spherical cone-manifold N decomposes uniquely as

$$
N \cong S^{k-1} * B
$$

for some prime B (does not decompose as $B=S^{0} * C$).
If $x \in M$ is locally a cone over N, then $x \in M[k]$.
Every connected ($n-2$)-stratum has $N=S^{n-3} * C_{\alpha}$ and we say that it has cone angle α.

Some spherical cone-surfaces:

$$
S^{0} * C_{\theta}
$$

$$
S^{2}(\alpha, \beta, \gamma)
$$

Some spherical cone-surfaces:

Some spherical cone-surfaces:

Suppose cone angles are $<2 \pi$.
In a locally orientable cone 3-manifold, the underlying space is a 3 -manifold and the singular locus Σ is a 1-complex.

Some spherical cone-surfaces:

Suppose cone angles are $<2 \pi$.
In a locally orientable cone 3-manifold, the underlying space is a 3 -manifold and the singular locus Σ is a 1-complex.

If cone angles are $\leq \pi$, vertices have valence 3 .

Some spherical cone 3-manifolds:

$S^{1} * C_{\theta}$

$S^{0} * S^{2}(\alpha, \beta, \gamma)$

$C_{\theta} * C_{\varphi}$

The underlying space here is S^{3}.

Some spherical cone 3-manifolds:

$S^{0} * S^{2}(\alpha, \beta, \gamma)$
$S^{1} * C_{\theta}$

$C_{\theta} * C_{\varphi}$

The underlying space here is S^{3}.
The corresponding strata in a cone 4-manifold:

Some spherical cone 3-manifolds:

$S^{0} * S^{2}(\alpha, \beta, \gamma)$
$S^{1} * C_{\theta}$

$C_{\theta} * C_{\varphi}$

The underlying space here is S^{3}.
The corresponding strata in a cone 4-manifold:

Example: double of a simple polytope.

Hyperbolic Dehn filling

Hyperbolic Dehn filling

Hyperbolic Dehn filling

Slope (1, 2): hyperbolic with cone angles $<2 \pi+K$

Hyperbolic Dehn filling

Slope (2,1): hyperbolic with cone angles $<2 \pi$

Hyperbolic Dehn filling

Slope (1, 0): hyperbolic with cone angles $<2 \pi-K$

Theorem (M, Riolo)

There is an analytic path M_{t} with $t \in[0,1]$ of finite-volume complete hyperbolic cone four-manifolds with singular set

$$
\Sigma=T \cup K
$$

where T is a torus and K a Klein bottle, with cone angles α and β respectively, intersecting transversely in two points. We have

$$
\alpha(0)=0, \quad \alpha(1)=2 \pi, \quad \beta(0)=2 \pi, \quad \beta(1)=0 .
$$

The angles α and β vary strictly monotonically in t.

The hyperbolic manifolds M_{0} and M_{1} have no singularities.

The volume of M_{t} :

A similar deformation W_{t} :

(Kerchoff - Storm) Let the polytope $P_{t} \subset \mathbb{H}^{4}$ be the intersection of the following 24 half-spaces:
(Kerchoff - Storm) Let the polytope $P_{t} \subset \mathbb{H}^{4}$ be the intersection of the following 24 half-spaces:

$$
\begin{aligned}
\mathbf{0}^{+}=(\sqrt{2}, 1,1,1,1 / t), & \mathbf{0}^{-}=(\sqrt{2}, 1,1,1,-t), \\
\mathbf{1}^{+}=(\sqrt{2}, 1,-1,1,-1 / t), & \mathbf{1}^{-}=(\sqrt{2}, 1,-1,1, t), \\
\mathbf{2}^{+}=(\sqrt{2}, 1,-1,-1,1 / t), & \mathbf{2}^{-}=(\sqrt{2}, 1,-1,-1,-t), \\
\mathbf{3}^{+}=(\sqrt{2}, 1,1,-1,-1 / t), & \mathbf{3}^{-}=(\sqrt{2}, 1,1,-1, t), \\
\mathbf{4}^{+}=(\sqrt{2},-1,1,-1,1 / t), & \mathbf{4}^{-}=(\sqrt{2},-1,1,-1,-t), \\
\mathbf{5}^{+}=(\sqrt{2},-1,1,1,-1 / t), & \mathbf{5}^{-}=(\sqrt{2},-1,1,1, t), \\
\mathbf{6}^{+}=(\sqrt{2},-1,-1,1,1 / t), & \mathbf{6}^{-}=(\sqrt{2},-1,-1,1,-t), \\
\mathbf{7}^{+}=(\sqrt{2},-1,-1,-1,-1 / t), & \mathbf{7}^{-}=(\sqrt{2},-1,-1,-1, t), \\
A=(1, \sqrt{2}, 0,0,0), & B=(1,0, \sqrt{2}, 0,0), \\
\mathbf{C}=(1,0,0, \sqrt{2}, 0), & D=(1,0,0,-\sqrt{2}, 0), \\
E=(1,0,-\sqrt{2}, 0,0), & F=(1,-\sqrt{2}, 0,0,0), \\
G=(1,0,0,0,-\sqrt{2} t), & H=(1,0,0,0, \sqrt{2} t) .
\end{aligned}
$$

$\left(t_{1}, 1\right)$

