Geometrisation of three-manifolds

Bruno Martelli

17 november 2016

Bruno Martelli

Geometrisation of three-manifolds

17 november 2016 1 / 18

Hyperbolic manifolds

A hyperbolic n-manifold M is:

___ ▶

3

Hyperbolic manifolds

A hyperbolic n-manifold M is:

• a complete riemannian manifold with sectional curvature -1,

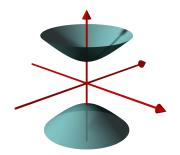
A hyperbolic n-manifold M is:

- a complete riemannian manifold with sectional curvature -1,
- $M = \mathbb{H}^n/\Gamma$ with $\Gamma < \operatorname{Isom}(\mathbb{H}^n)$ discrete subgroup acting freely on \mathbb{H}^n .

Hyperbolic manifolds

A hyperbolic n-manifold M is:

- ullet a complete riemannian manifold with sectional curvature -1,
- $M = \mathbb{H}^n/\Gamma$ with $\Gamma < \operatorname{Isom}(\mathbb{H}^n)$ discrete subgroup acting freely on \mathbb{H}^n .

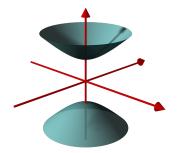


$$\operatorname{Isom}(\mathbb{H}^n) = \operatorname{O}_+(n,1)$$

Hyperbolic manifolds

A hyperbolic n-manifold M is:

- ullet a complete riemannian manifold with sectional curvature -1,
- $M = \mathbb{H}^n/\Gamma$ with $\Gamma < \operatorname{Isom}(\mathbb{H}^n)$ discrete subgroup acting freely on \mathbb{H}^n .



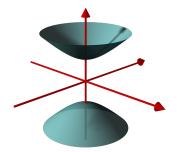
$$\operatorname{Isom}(\mathbb{H}^n) = \operatorname{O}_+(n,1)$$

For instance:

$$\Gamma = \mathrm{O}_+(n,1) \cap \mathrm{SL}(n+1,\mathbb{Z})$$

A hyperbolic n-manifold M is:

- a complete riemannian manifold with sectional curvature -1,
- $M = \mathbb{H}^n/\Gamma$ with $\Gamma < \operatorname{Isom}(\mathbb{H}^n)$ discrete subgroup acting freely on \mathbb{H}^n .



$$\operatorname{Isom}(\mathbb{H}^n) = \operatorname{O}_+(n,1)$$

For instance:

$$\mathsf{\Gamma} = \mathrm{O}_+(n,1) \cap \mathrm{SL}(n+1,\mathbb{Z})$$

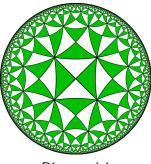
More precisely: some finite-index subgroup of Γ .

More models of the hyperbolic space \mathbb{H}^n :

Image: A matrix

э

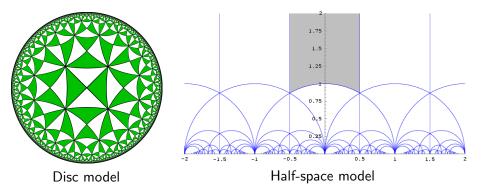
More models of the hyperbolic space \mathbb{H}^n :



Disc model

< 🗗 🕨

More models of the hyperbolic space \mathbb{H}^n :



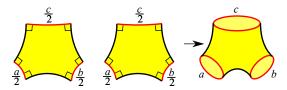
Pictures created by Claudio Rocchini and Kilom691

Image: A mathematical states and a mathem

Geometrisation of three-manifolds

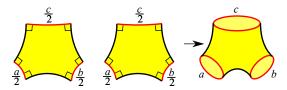
17 november 2016 3 / 18

Hyperbolic pairs-of-pants:

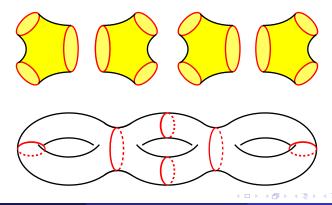


э

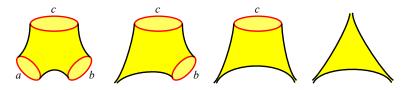
Hyperbolic pairs-of-pants:



Hyperbolic surfaces:

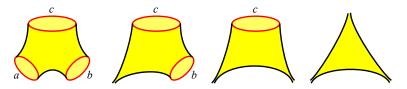


Pants with cusps:

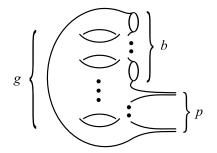


æ

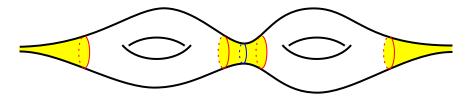
Pants with cusps:



Surfaces of finite type, possibly with geodesic boundary and/or cusps:

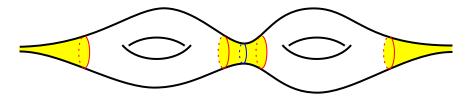


Thick-thin decomposition for finite-volume hyperbolic manifolds:



Points with injectivity radius $< \varepsilon_n$ form *tubes* (tubular neighbourhoods of simple closed geodesics) and *cusps*.

Thick-thin decomposition for finite-volume hyperbolic manifolds:



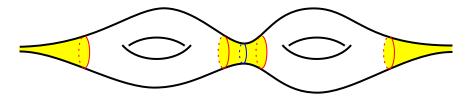
Points with injectivity radius $< \varepsilon_n$ form *tubes* (tubular neighbourhoods of simple closed geodesics) and *cusps*.

A cusp is isometric to

 $M \times [0, +\infty)$

with *M* flat (n-1)-manifold, rescaled by e^{-2t} at time $t \in [0, +\infty)$.

Thick-thin decomposition for finite-volume hyperbolic manifolds:



Points with injectivity radius $< \varepsilon_n$ form *tubes* (tubular neighbourhoods of simple closed geodesics) and *cusps*.

A cusp is isometric to

 $M \times [0, +\infty)$

with *M* flat (n-1)-manifold, rescaled by e^{-2t} at time $t \in [0, +\infty)$.

$$\operatorname{Vol}(\operatorname{cusp}) = \frac{\operatorname{Vol}(M)}{n-1}.$$

Regular polyhedra:

э

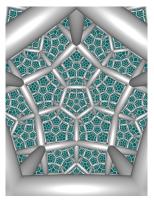
Regular polyhedra:

polyhedron	$\theta = \frac{\pi}{3}$	$\theta = \frac{2\pi}{5}$	$\theta = \frac{\pi}{2}$	$\theta = \frac{2\pi}{3}$
tetrahedron cube	ideal \mathbb{H}^3 ideal \mathbb{H}^3	5 ³ Ⅲ ³	5 ³ ℝ ³	5 ³ 5 ³
octahedron icosahedron			ideal \mathbb{H}^3	S^3 \mathbb{H}^3
dodecahedron	ideal \mathbb{H}^3	\mathbb{H}^3	\mathbb{H}^3	S^3

The right picture was created by Win

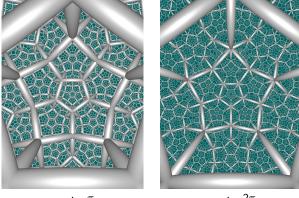
э

Every regular polyhedron with dihedral angle $\theta = \frac{2\pi}{n}$ gives rise to a tessellation of S^3 , \mathbb{R}^3 , or \mathbb{H}^3 :



angle $\frac{\pi}{2}$

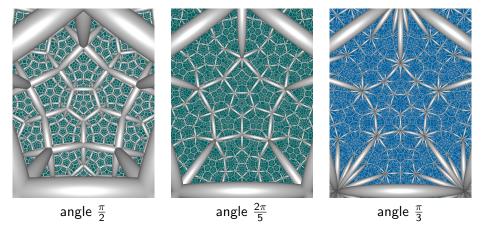
Every regular polyhedron with dihedral angle $\theta = \frac{2\pi}{n}$ gives rise to a tessellation of S^3 , \mathbb{R}^3 , or \mathbb{H}^3 :



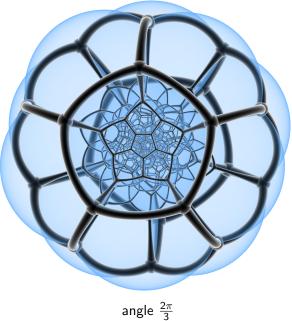
angle $\frac{\pi}{2}$

angle
$$\frac{27}{5}$$

Every regular polyhedron with dihedral angle $\theta = \frac{2\pi}{n}$ gives rise to a tessellation of S^3 , \mathbb{R}^3 , or \mathbb{H}^3 :



Pictures created by Roice3



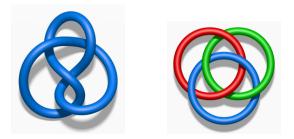
A finite-volume hyperbolic orientable 3-manifold is M = int(N) with N compact and ∂N made of tori. At every boundary torus we have a cusp

 $T \times [0, +\infty).$

A finite-volume hyperbolic orientable 3-manifold is M = int(N) with N compact and ∂N made of tori. At every boundary torus we have a cusp

 $T \times [0, +\infty).$

The complements in S^3 of the *figure-eight knot* and the *borromean link* are hyperbolic:



They decompose in regular ideal octahedra and tetrahedra, respectively.

• (Kneser, Milnor, Jaco – Shalen, Johansson '60) There is a canonical way to decompose *M* along spheres and tori.

- (Kneser, Milnor, Jaco Shalen, Johansson '60) There is a canonical way to decompose *M* along spheres and tori.
- (Thurston '80 Perelman '00) Every piece of the decomposition has a finite-volume complete locally homogeneous riemannian metric.

- (Kneser, Milnor, Jaco Shalen, Johansson '60) There is a canonical way to decompose *M* along spheres and tori.
- (Thurston '80 Perelman '00) Every piece of the decomposition has a finite-volume complete locally homogeneous riemannian metric.
- There are 8 types of such metrics:

 S^3 , \mathbb{R}^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil, Sol, $\widetilde{\mathrm{SL}_2(\mathbb{R})}$.

- (Kneser, Milnor, Jaco Shalen, Johansson '60) There is a canonical way to decompose *M* along spheres and tori.
- (Thurston '80 Perelman '00) Every piece of the decomposition has a finite-volume complete locally homogeneous riemannian metric.
- There are 8 types of such metrics:

$$S^3$$
, \mathbb{R}^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil, Sol, $\widetilde{SL_2(\mathbb{R})}$.

• The manifolds with the 7 non-hyperbolic metrics all have some particular fibrations and are topologically classified (Seifert '30).

- (Kneser, Milnor, Jaco Shalen, Johansson '60) There is a canonical way to decompose *M* along spheres and tori.
- (Thurston '80 Perelman '00) Every piece of the decomposition has a finite-volume complete locally homogeneous riemannian metric.
- There are 8 types of such metrics:

 S^3 , \mathbb{R}^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, Nil, Sol, $\widetilde{SL_2(\mathbb{R})}$.

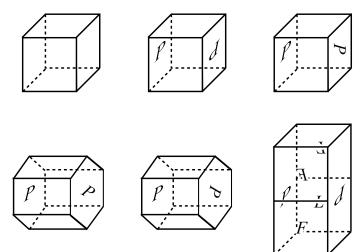
- The manifolds with the 7 non-hyperbolic metrics all have some particular fibrations and are topologically classified (Seifert '30).
- (Mostow rigidity) The hyperbolic metric is unique.

The six orientable flat three-manifolds:

- ∢ 🗗 ▶

æ

The six orientable flat three-manifolds:



There are three types of knots:

2

There are three types of knots:

toric

< 🗗 🕨

э

There are three types of knots:

satellite

toric

э

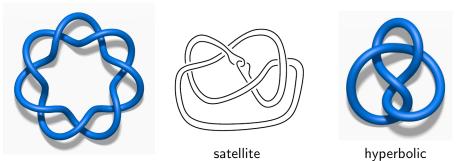
There are three types of knots:

satellite

hyperbolic

toric

There are three types of knots:



toric

	crossings	3	4	5	6	7	8	9	10	11	12	13	14
	toric	1	0	1	0	1	1	1	1	1	0	1	1
	satellite	0	0	0	0	0	0	0	0	0	0	2	2
h	toric satellite yperbolic	0	1	1	3	6	20	48	164	551	2176	9985	46969

13 / 18

э

Let M be a closed 3-manifold (compact, no boundary).

Let M be a closed 3-manifold (compact, no boundary).

• Poincaré conjecture: $\pi_1(M) = \{e\} \Longrightarrow M = S^3$.

Let M be a closed 3-manifold (compact, no boundary).

- Poincaré conjecture: $\pi_1(M) = \{e\} \Longrightarrow M = S^3$.
- Spherical space-form conjecture: $|\pi_1(M)| < +\infty \Longrightarrow M = S^3/_{\Gamma}$ is elliptic

Let M be a closed 3-manifold (compact, no boundary).

- Poincaré conjecture: $\pi_1(M) = \{e\} \Longrightarrow M = S^3$.
- Spherical space-form conjecture: $|\pi_1(M)| < +\infty \Longrightarrow M = S^3/_{\Gamma}$ is elliptic
- Hyperbolisation: $|\pi_1(M)| = \infty$, indecomposable and without $\mathbb{Z} \times \mathbb{Z}$ $\implies M = \mathbb{H}^3/_{\Gamma}$ is hyperbolic.

* ロ > * 個 > * 注 > * 注 >

æ

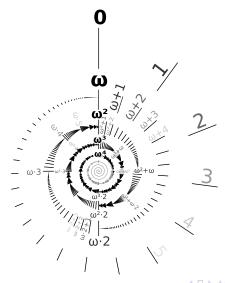
What's next?

Classify all finite-volume hyperbolic 3-manifolds.

3

What's next?

Classify all finite-volume hyperbolic 3-manifolds.



• Schönflies: is every $S^3 \subset S^4$ standard?

- Schönflies: is every $S^3 \subset S^4$ standard?
- There is no canonical decomposition whatsoever.

- Schönflies: is every $S^3 \subset S^4$ standard?
- There is no canonical decomposition whatsoever.
- There are plenty of smooth manifolds: for instance the K3 surface has infinitely many distinct smooth structures.

- Schönflies: is every $S^3 \subset S^4$ standard?
- There is no canonical decomposition whatsoever.
- There are plenty of smooth manifolds: for instance the K3 surface has infinitely many distinct smooth structures.
- There are plenty of exotic aspherical four-manifolds.

- Schönflies: is every $S^3 \subset S^4$ standard?
- There is no canonical decomposition whatsoever.
- There are plenty of smooth manifolds: for instance the K3 surface has infinitely many distinct smooth structures.
- There are plenty of exotic aspherical four-manifolds.
- What is the role of hyperbolic geometry in dimension four?

Hyperbolic four-manifolds

ም.

æ

Hyperbolic four-manifolds

$$\operatorname{Vol}(M) = \frac{4\pi^2}{3}\chi(M).$$

Hyperbolic four-manifolds

• In even dimensions, the volume is roughly the Euler characteristic:

$$\operatorname{Vol}(M) = \frac{4\pi^2}{3}\chi(M).$$

• For every V there are finitely many hyperbolic manifolds with volume V [Wang 72]

$$\operatorname{Vol}(M) = \frac{4\pi^2}{3}\chi(M).$$

- For every V there are finitely many hyperbolic manifolds with volume V [Wang 72]
- Those with $\chi = 1$ are at least 1171, and probably many more [Ratcliffe Tschanz 00]

$$\operatorname{Vol}(M) = \frac{4\pi^2}{3}\chi(M).$$

- For every V there are finitely many hyperbolic manifolds with volume V [Wang 72]
- Those with $\chi = 1$ are at least 1171, and probably many more [Ratcliffe Tschanz 00]
- There are manifolds with any number c > 0 of cusps [Kolpakov Martelli 13]

$$\operatorname{Vol}(M) = \frac{4\pi^2}{3}\chi(M).$$

- For every V there are finitely many hyperbolic manifolds with volume V [Wang 72]
- Those with $\chi = 1$ are at least 1171, and probably many more [Ratcliffe Tschanz 00]
- There are manifolds with any number c > 0 of cusps [Kolpakov Martelli 13]
- There are many non-arithmetic hyperbolic manifolds [Gelander Levit 14]

Image: A matrix

æ

• Can we find a closed hyperbolic four-manifold with odd intersection form?

- Can we find a closed hyperbolic four-manifold with odd intersection form?
- Are there infinitely many hyperbolic four-manifolds *M* with bounded $b_1(M)$?

- Can we find a closed hyperbolic four-manifold with odd intersection form?
- Are there infinitely many hyperbolic four-manifolds *M* with bounded $b_1(M)$?
- Can we classify all the hyperbolic four-manifolds M with $\chi(M) = 1$?

- Can we find a closed hyperbolic four-manifold with odd intersection form?
- Are there infinitely many hyperbolic four-manifolds *M* with bounded $b_1(M)$?
- Can we classify all the hyperbolic four-manifolds M with $\chi(M) = 1$?
- Can we construct some hyperbolic four-manifolds *M* that fiber in some nice way?