
CHAPTER 1

Preliminaries: the higher-dimensional heaven

We start by recalling some basic notions of differential topology (such as man-
ifolds, fiber bundles, transversality, immersions) and homotopy. We then introduce
handle decompositions and use them quite intensively to describe Smale’s proof of
Poincaré Conjecture in dimension > 6.

The proof of Poincaré Conjecture in high dimension introduces various tech-
niques, some of which are valid only in dimension > 5 or > 6.

1. Manifolds and fiber bundles

1.1. Manifolds. A topological manifold is a topological paracompact Haus-
dorff space M locally homeomorphic to Rn. A differentiable structure on M is an
open covering {Uα} of M and a set of homeomorphisms

fα : Uα → Vα ⊂ Rn

called charts with open sets Vα of Rn, that are pairwise compatible. That is, the
map fα ◦ f−1

β is a diffeomorphism wherever it makes sense. Two differentiable
structures are equivalent if their union is again a differentiable structure.

If n = 2k and the diffeomorphisms are actually biolomorphisms of open sets in
Ck = R2k, the manifold has a complex structure. Recall that a biolomorphism is a
diffeomorphism whose differential in every point is C-linear.

Differentiable (holomorphic) maps between smooth (complex) manifolds are
defined as maps that are locally differentiable (holomorphic) when transported
along charts into open sets of Rn (Cn).

A (topological or smooth) manifold with boundary is defined as above, with
a half-space Rn+ instead of Rn. A closed manifold is a compact manifold without
boundary.

1.2. Fiber bundles. A fiber bundle is a smooth surjective map π : En+k →
Bn between manifolds which is locally a product. More precisely, there is another
manifold F k, a covering of B into open sets, and for each such open set U the map
π : E → U looks locally like the projection p : F × U → U . That is, there is a
diffeomorphism ψ : π−1(U)→ F × U such that p ◦ ψ = π.

A section of a bundle is a smooth map σ : B → E such that π◦σ is the identity.
As the example below shows, some bundles do not have sections. A trivial bundle
is a bundle B × F → B.

Example 1.1. The Hopf fibration π : S3 → S2 is defined by considering S3 as
the unit sphere |z|2 + |w|2 = 1 in C2 = {(z, w)} and taking

π : (z, w) 7−→ [z, w] ∈ CP1 ∼= S2.
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This map is indeed a fiber bundle with F 1 = S1. If (z, w) ∈ S3, the fiber
π−1(π(z, w)) is the circle (eiθz, eiθw).

The Hopf fibration has no sections. If σ were a section, the map π ◦σ would be
the identity and hence σ∗ : π2(S2)→ π2(S3) would be injective, which is impossible
since π2(S2) = Z and π2(S3) is trivial.

1.3. Vector bundles. A real vector bundle is a fiber bundle where each fiber
f−1(x) has a structure of R-vector space, which varies smoothly on x. That is,
we require that F = Rk and the local trivializations ψ : π−1(U) → F × U restrict
to isomorphisms of vector spaces on fibers. A complex vector bundle is defined
analogously. The dimension k is the rank of the vector bundle.

On a vector bundle we usually identify B with the image of the 0-section, i.e.
the section σ(x) = 0. Some h sections are independent if they give h independent
vectors at each point (in particular, they are nowhere zero). A trivialization of a
vector bundle of rank k is the choice of k independent sections.

Two vector bundles π : E → B and π′ : E′ → B are isomorphic if there is a
diffeomorphism ψ : E → E′ with π = π′ ◦ ψ which is an isomorphism on fibers. A
trivialization is in fact an isomorphism with the trivial vector bundle B×Rk → B.
Many vector bundles do not have trivializations, and this leads to the definition of
various characteristic classes1.

1.4. Operations on vector bundles. Every operation on vector spaces ex-
tend easily to vector bundles. That is, given two vector bundles E → B and
E′ → B, we may construct new vector bundles such as E∗, Hom(E,E′), E ⊕ E′,
E ⊗ E′, etc. A subbundle of π : E → B is a subset E′ ⊂ E such that π|E′ is a
vector bundle. A quotient bundle E/E′ → B is then defined.

A vector bundle E → B may be restricted to a submanifold B′ ⊂ B. More
generally, for any smooth map of manifolds f : B′ → B, the vector bundle E → B
defines a pull-back E′ → B′, denoted by f∗E. It is defined as

f∗E = {(b′, e) ∈ B′ × E | f(b′) = π(e)}.

A riemannian metric on a real vector bundle E → B is a positive definite scalar
product on each fiber f−1(x), which varies smoothly on x (that is, it is a section of
E∗ ⊗ E∗). A riemannian metric on a real vector bundle of rank k defines a sphere
bundle (with F = Sk−1, by taking the unitary vectors) and a disc bundle (with
F = Dk, by taking vectors of norm 6 1). By using a partition of unity for B, it is
always possible to assign a riemannian metric to a vector bundle.

An orientation on a real vector bundle E → B is an orientation on each f−1(x)
which varies continuously on x. An orientation might not exist, and in this case
the bundle is not orientable.

1.5. Structure group. A fiber bundle π : En+k → Bn has structure group
G if G is a fixed group of homeomorphism of the abstract fiber F k and there is
an open covering Uα of B and trivializations ψα : π−1(Uα) → F × Uα that match
along fibers via elements of G. That is, for every x ∈ Uα ∩ Uβ the map

ψα ◦ ψ−1
β |ψβ(π−1(x)) : F −→ F

1Some of which are introduced in Section 4.
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is an element of G. A vector bundle may be defined as a fiber bundle with fiber Rn
and structure group GLn(Rn). A structure group may sometimes be reduced to a
subgroup G′ < G by choosing more appropriate local trivializations.

Proposition 1.2. The group structure of a vector bundle E may always be
reduced to O(n).

Proof. Pick a riemannian metric for E and choose local isometric trivializa-
tions with U ×Rn. The matching functions must preserve the metric, and thus lie
in O(n). �

A vector bundle is orientable if and only if its structure group may be reduced
to SO(n). One such reduction fixes an orientation for E.2

1.6. Tangent bundle. Let Mn be a smooth manifold, whose differential
structure is determined by some charts fα : Uα → Vα. The tangent bundle may
be defined as follows. For every α, take the trivial bundle Vα × Rn. Wherever
h = fα ◦ f−1

β makes sense, identify the corresponding portions of Vβ × Rn and
Vα × Rn by gluing (x, v) to (h(x), dhx(v)). The resulting object is naturally a
vector bundle over M .

The tangent bundle is denoted by TM → M and the fiber over a point x is
the tangent space TxM . A smooth function f : M → N induces a bundle map
f : TM → TN .

1.7. Riemannian metric. A riemannian metric on M is a metric on the
tangent bundle. A riemannian metric is a very powerful object, which furnishes a
large series of useful geometric entities, such as geodesics, angles, lengths, volumes,
and a (Levi-Civita) connection for M .

It also yields the exponential map at each point x ∈M , a map expx : Tx →M
with expx(0) = x which is locally invertible in a neighborhood of 0. The tangent
space thus gives a local approximation of a neighborhood of x, as one would expect3.

1.8. Normal bundle. A submanifold of a smooth manifold M is a subset
Xh ⊂ Mm which is locally like a linear h-subspace S in Rm. That is, every point
x ∈ X has an open neighborhood U in M such that (U,U ∩ X) is diffeomorphic
to (Rm, S). Of course, the submanifold X inherits a structure of h-dimensional
manifold.

The tangent bundle TX is naturally a subbundle of the restriction TM |X of the
tangent bundle TM on X. The normal bundle NX → X is the quotient TM |X/TX.
More concretely, a riemannian metric on M identifies NX with the subbundle of
TM |X orthogonal to TX.

Moreover, if X is compact, it is possible to extend the exponential function
to the whole of TX and map (with a diffeomorphism) the ε-disc bundle of NX
onto an open neighborhood of X in M , called tubolar neighborhood. A tubolar
neighborhood is therefore diffeomorphic to NX .

2This may be taken as a definition for orientability.
3Actually, the exponential map is defined in the whole of Tx only if M is complete, which is

always the case when M is closed. Otherwise, it is only defined on an open neighborhood of 0.
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2. Transversality and immersions

2.1. Transversality. Two vector subspaces U, V in Rn are transverse if U +
V = Rn. Two smooth submanifolds N1, N2 ⊂ M are transverse if their tangent
spaces intersect transversely. That is, for every x ∈ N1 ∩ N2, the tangent spaces
TxN1 and TxN2 are transverse in TxM . Note that two disjoint submanifolds are
transverse!

Proposition 2.1. Two transverse manifolds N1 and N2 intersect in a smooth
submanifold.

Proof. The exponential map (for some riemannian metric) furnishes an open
neighborhood U of every point x ∈ N1 ∩ N2 such that (U,U ∩ N1, U ∩ N2) ∼=
(Rn, V1, V2) for some transverse linear subspaces V1, V2. �

Two oriented transverse manifolds N1 ad N2 in an oriented manifold M inter-
sect in points. At each such point x, compare the orientations of TxN1⊕TxN2 and
TxM . If they coincide, assign a sign +1. If not, assign −1. The sum of these num-
bers is the algebraic intersection number of N1 and N2 and we denote it by N1 ·N2.
The geometric intersection number is just the number of intersection points.

More generally, vector subspaces V1, . . . , Vk in Rn are transverse if

codim(V1 ∩ . . . ∩ Vk) = codimV1 + . . .+ codimVk.

and the notion of transversality may be extended to an arbitrary number of mani-
folds.

2.2. Immersions. Let M be a compact manifold. A smooth map f : M → N
is an immersion if the differential dfx is injective for every x ∈ M . If f is also
injective, the function f is an embedding4. In that case, the image f(M) is a
smooth submanifold of N and f |M : M → f(M) is a diffeomorphism.

Theorem 2.2 (Whitney, weak immersion). Let f : Mm → Nn be a continuous
map between smooth manifolds. Let Mm be compact.

• There is a map g : Mm → Nn arbitrarily close to f which is smooth.
• If m < 2n, there is a map g arbitrarily close to f which is an embedding.
• If m = 2n, there is a map g arbitrarily close to f which is an immersion.

In all cases, “arbitrarily close” means that for any riemannian metric on N and
any ε > 0 there is a g homotopic to f with d(f(x), g(x)) < ε for all x.

Whitney also proved a strengthened version of the theorem concerning immer-
sions in RN .

Theorem 2.3 (Whitney, strong immersion). Every closed manifold Mn embeds
in R2n and immerses in R2n−1.

2.3. Generic immersions. An immersion f : Mm → Nn is generic if for
every y ∈ Nn the set f−1(y) = {x1, . . . , xk} is finite and the vector subspaces
Im dfx1 , . . . , Im dfxk are transverse in TyNn. Every immersion is arbitrarily close to
a generic one. Some examples follow.
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2.3.1. Surfaces. A generic immersion of a surface in a 3-manifold self-intersects
into double and triple points. Note that Theorem 2.2 does not apply here: someFigure.

maps from S2 to R3 cannot be perturbed to immersions.Verificare! e figure.

A generic immersion of a surface in a 4-manifold self-intersects into finitely
many isolated double points. Each double point is locally like {zw = 0} in C2 =
{(z, w)}.

2.3.2. Higher-dimensional manifolds. By Whitney’s weak theorem, for every
pair of manifolds Mm and N2m there is a generic immersion of Mm in N2m. Such
an immersion self-intersects in finitely many double points. By Whitney’s strong
immersion theorem, every compact manifold Mn also has a generic immersion in
R2n−1. If n > 3, this immersion self-intersects only in double points, which form
compact 1-manifolds in R2n−1, i.e. circles.

2.4. Isotopy. In various cases, submanifolds can be put in transverse position
up to arbitrarily small perturbations. Perturbation in this case means isotopy.

An isotopy between two embeddings f0, f1 : M → N is a smooth homotopy
F : M × [0, 1]→ N relating them such that each level ft = F (·, f) is an embedding.
An ambient isotopy is an isotopy induced by an isotopy of the ambient space N ; that
is, there is an isotopy between id : N → N and some diffeomorphism ψ : N → N
such that ψ ◦ f0 = f1. Two embeddings are in fact isotopic if and only if they are
ambient isotopic. Mettere funzioni trasverse

rispetto a sottovarietá

2.5. Cut and paste. Let N ⊂ M be a closed smooth submanifold. The
operation of cutting M along N consists of removing from M an open tubolar
neighborhood of N .

Let M be a (possibly disconnected) smooth manifold with boundary of dimen-
sion n. Let N1, N2 ⊂ ∂M be two compact (n − 1)-submanifolds of ∂M , possibly
with boundary. (For instances, these might be two boundary components of M .)
Let ϕ : N1 → N2 be a diffeomorphism. Let M/ϕ be the topological space obtained
by identifying N1 and N2 along ϕ. Such a space is a topological manifold, and is
also equipped with a differential structure (which depends only on M and ϕ). We
say that M/ϕ is obtained by gluing M along the map ϕ.

If M is oriented, then N1 and N2 also are. If ϕ reverses orientations, then
there is a canonical orientation on M/ϕ coherent with the one on M .

3. Homology and homotopy groups

We assume that the reader is familiar with basic algebraic topology, includ-
ing homotopy groups and the main (co-)homology theories of topological spaces
(cellular homology, singular homology, De Rham cohomology).

3.1. Homology. Integral homology H∗(M,Z) and cohomology H∗(M,Z) are
essential tools in dimension 4. We recall some important facts.

Theorem 3.1. Let Mn be a compact manifold, possibly with boundary.
(1) Every Hi(M,Z) is a finitely generated abelian group, which thus decom-

poses as Fi ⊕ Ti, with Fi free and Ti torsion. Analogously, Hi(M,Z) ∼=
F i ⊕ T i. Such groups are trivial when i > n.

(2) If M is connected then H0(M,Z) ∼= H0(M,Z) ∼= Z.
(3) We have Fi ∼= F i and Ti ∼= T i+1 for all i.

4If M is not compact we also need to require that f |M : M → f(M) is a homeomorphism.
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(4) If M is closed and oriented, there is a canonical isomorphism between
Hi(M,Z) and Hn−i(M,Z).

If there is no torsion, the groups Hi(M,Z) and Hi(M,Z) are thus isomorphic;
the isomorphism is however not canonical5.

The properties listed allow us to describe the (co-)homology groups of closed
oriented 2-, 3-, and 4-manifolds.

Two-manifolds:

i 0 1 2

Hi Z F1 Z

Hi Z F1 Z

Three-manifolds:

i 0 1 2 3

Hi Z F1 F1 + T1 Z

Hi Z F1 + T1 F1 Z

Four-manifolds:

i 0 1 2 3 4

Hi Z F1 F2 + T1 F1 + T1 Z

Hi Z F1 + T1 F2 + T1 F1 Z

This shows in particular that the homology of a closed oriented 4-manifold is
governed by three groups F1, T1, and F2. If the manifold is simply connected,
the first two groups vanish and all (co-)homology groups are determined by the
free abelian group F2

∼= H2(M,Z). Moreover, we have χ(M) = 2 + b2, where
b2 = dimF2 is the second Betti number of M .

If M is not simply connected the second homology may have torsion, in contrast
with dimension three.

3.2. Homotopy. A continuous map f : X → Y between topological spaces
is a homotopy equivalence if there is a g : Y → X such that f ◦ g and g ◦ f are
both homotopic to identities. A homotopy equivalence induces isomorphisms on
all (co-)homology and homotopy groups. Conversely, we have the following (due to
Whitehead).

Theorem 3.2 (Whitehead, homotopy). Let f : X → Y be a continuous map
between CW-complexes. It is a homotopy equivalence if and only if it induces iso-
morphisms f∗ : πn(X)→ πn(Y ) on all homotopy groups.

Integral homology suffices if the spaces are simply connected.

Theorem 3.3 (Whitehead, homology). Let f : X → Y be a continuous map
between simply connected CW-complexes. It is a homotopy equivalence if and only
if it induces isomorphisms f∗ : Hn(X,Z)→ Hn(Y,Z) on all homology groups.

A homology sphere is a closed n-manifold N having the same Z-homology as
a sphere Sn, that is having Hi(N,Z) = {e} for all i = 1, . . . , n − 1. A homotopy
sphere is a closed manifold N homotopically equivalent to Sn. A homotopy sphere

5This holds for every CW-complex M .
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is also a homology sphere, while the converse does not hold6. The only obstruction
actually lies in the fundamental group.

Proposition 3.4. A simply connected homology sphere is a homotopy sphere.

Proof. For every oriented manifold Mn there is a map f : Mn → Sn which
induces an isomorphism f∗ : Hn(M)→ Hn(Sn).7 Simply take a disc Dn ⊂Mn and
the projection f : Dn → Sn which quotients ∂Dn to a point. Extend f : Mn → Sn

by sending the rest of M to this point.
The map f∗ is an isomorphism on homology groups and by Whitehead homol-

ogy theorem it is a homotopy equivalence. �

The following result is also useful. A map f : πn(X) → Hn(X,Z) is naturally
defined for all n.

Theorem 3.5 (Hurewicz). Let X be a connected CW-complex. If π1(X) =
. . . = πn(X) = 0 for some n > 1, then fn+1 is an isomorphism.

3.3. Eilenberg-MacLane spaces. Let G be a finitely generated group and
n > 1 a natural number. An Eilenberg-MacLane space K(G,n) is any CW-complex
X whose homotopy groups are all trivial, except that πn(X) ∼= G. If n > 2, we of
course require G to be abelian. An Eilenberg-MacLane exists for every G and n
and is unique up to homotopy equivalence.

Example 3.6. We have K(Z, 1) = S1. Let RP∞ (CP∞) denote the infinite real
(complex) projective space, obtained by taking the union of all inclusions RP1 ⊂
RP2 ⊂ . . . (CP1 ⊂ CP2 ⊂ . . .). It has a CW complex structure with one cell for
each (even) dimension. We have K(Z2, 1) = RP∞ and K(Z, 2) = CP∞.

IfG is an abelian group, thenHn(K(G,n), G) is canonically isomorphic toG∗ =
Hom(G,G) and has a preferred element u, corresponding to identity.8 Therefore a
CW complex X and a map f : X → K(G,n) yield an element f∗(u) ∈ Hn(X,G).

Theorem 3.7. Let G be an abelian group and X be a CW-complex. The above
construction gives a bijection

[X,K(G,n)] −→ Hn(X,G)

where [X,K(G,n)] is the set of continuous maps f : X → K(G,n) up to homotopy.

Corollary 3.8. The sets H1(X,Z), H1(X,Z2), H2(X,Z) are in natural bijec-
tion with [X,S1], [X,RP∞], [X,CP∞].

4. Handle decompositions

4.1. Handles. Let Mn be a compact manifold with boundary. A k-handle
over M is the operation of gluing a n-disc Dk ×Dn−k to M along an embedding
ϕ : Sk−1 ×Dn−k → ∂Mn. The result is a new manifold

M ′ = M ∪ϕ (Dk ×Dn−k).

6The first known example of homology sphere which is not a homotopy sphere was discovered

by Poincaré, and is called the Poincaré homology sphere.
7Such a map has degree one. Therefore every manifold has degree-one maps onto the sphere.

In general, given two manifolds, there might be no degree-one map between them.
8Here we are actually only interested in the case G = Z: for such a G, this is a consequence

of Hurewicz lemma.
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The integer k > 0 is the index of the handle. Such a move modifies the topology
of both M and ∂M . The effect on the boundary ∂M consists of substituting an
embedded (along ϕ) copy of Sk−1×Dn−k with a copy of Dk×Sn−k−1 (both objects
share the same boundary Sk−1 × Sn−k−1). This operation is called a surgery.

The disc Dk × 0 is the core disc, and its boundary Sk−1 × 0 is the attaching
sphere. Dually, the disc 0×Dn−k is the cocore disc and its boundary 0× Sn−k−1

is the belt (or cocore) sphere.
In particular, a 0-handle is a n-disc which is not attached to any manifold.

Conversely, a n-handle is a n-disc which is attached along its entire boundary.

4.2. Handle decompositions. A handle decomposition of a compact mani-
fold M (possibly with boundary) is a description of M as a result of the attaching
of finitely many handles:

M = H1 ∪ϕ2 H2 ∪ϕ3 . . . ∪ϕh Hh.

That is, H1 is a 0-handle, and the handle Hi+1 is attached to the manifold

Mj = H1 ∪ϕ2 H2 ∪ϕ3 . . . ∪ϕj Hj

via some map ϕj+1. We often omit the maps for simplicity and write

M = H1 ∪ . . . ∪Hh.

If M is closed, the last handle Hh is necessarily a n-handle.
The (n−1)-dimensional closed manifold ∂Mj is a level manifold. The attaching

sphere of Hj+1 is contained in the level manifold ∂Mj . Every level manifold ∂Mj+1

is obtained from the previous one ∂Mj by surgery along the attaching sphere of Hi.
Morse theory shows the following.

Theorem 4.1. Every smooth manifold may be described via some handle de-
composition.

Such a decomposition is however not unique, and we now describe some moves
that relate different decompositions of the same manifold.

4.3. Reordering handles. Let Hj , Hj+1 be two subsequent handles of index
kj , kj+1. Suppose kj > kj+1. These two handles can be permuted, as we now show.

The level manifold ∂Mj contains the attaching sphere of Hj+1 and the belt
sphere of Hj . These have dimensions respectively kj+1 − 1 and n − kj − 1. The
sum of the dimensions is strictly smaller than n− 1 = dimMj . Therefore the two
spheres can be separated by a small isotopy. The handles Hj and Hj+1 intersect
the level manifolds into two tubolar neighborhoods of such spheres: if the spheres
can be made disjoint by an isotopy, their neighborhoods can too.

We can therefore attach Hj and Hj+1 to two disjoint regions of ∂Mj−1. In
particular, we can reorder the two handles, by attaching first Hj+1 and then Hj .

As a consequence, we can reorder the handles of any handle decomposition
so that their indexes are non-decreasing. We first take all the 0-handles, then we
attach (either simultaneously, or with an arbitrary ordering) all the 1-handles, and
so on. We write an ordered handle decomposition as

M = (H0
1 ∪ . . . ∪H0

i0

)
∪
(
H1

1 ∪ . . . ∪H1
i1

)
∪ . . . ∪

(
Hn

1 ∪ . . . Hn
in

)
where Hj

i is the i-th handle of index j. We also re-define

Mj = (H0
1 ∪ . . . ∪H0

i0

)
∪
(
H1

1 ∪ . . . ∪H1
i1

)
∪ . . . ∪

(
Hj

0 ∪ . . . H
j
ij

)
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and the level manifold ∂Mj . All handles of index j+ 1 are attached simultaneously
to ∂Mj .

4.4. Turning a decomposition upside-down. A handle decomposition

M = (H0
1 ∪ . . . ∪H0

i0

)
∪
(
H1

1 ∪ . . . ∪H1
i1

)
∪ . . . ∪

(
Hn

1 ∪ . . . Hn
in

)
of a closed manifold can be turned upside-down. Every n-handle may be interpreted
as a 0-handle, every (n− 1)-handle can then be interpreted as a 1-handle attached
to the former n-handles, and so on. Every k-handle Dk×Dn−k may be interpreted
as a (n − k)-handle attached to the (former) higher handles by simply permuting
its factors.

4.5. Intersection numbers. Consider an ordered handle decomposition

M = (H0
1 ∪ . . . ∪H0

i0

)
∪
(
H1

1 ∪ . . . ∪H1
i1

)
∪ . . . ∪

(
Hn

1 ∪ . . . Hn
in

)
.

The level manifold ∂Mj contains all the attaching j-spheres of the (j + 1)-handles,
and the belt (n− j − 1)-spheres of the j-handles. Attaching and belt spheres have
complementary dimensions in ∂Mj . We can therefore suppose that they intersect
transversely in a finite number of points.

Consider two handlesHj
a andHj+1

b . The belt sphere Sa ofHj
a and the attaching

sphere Sb of Hj+1
b are oriented. A tubolar neighborhood of the belt sphere in ∂Mj is

also oriented by Hj
a. Such a neighborhood contains all the transverse intersections

of the two oriented spheres. Since everything is oriented, we have a well-defined
algebraic intersection Sa · Sb. We set

i(Hj
a, H

j+1
b ) = Sa · Sb.

This is the algebraic intersection number of the two handles. The geometric inter-
section number is the geometric intersection number of Sa and Sb, i.e. simply the
number of these transverse intersections.

We can construct a homology theory, similar to cellular homology. Let Cj be the
Z-module generated by the k-handles. Define a boundary map ∂j+1 : Cj+1 → Cj
via

∂j+1(Hj+1
b ) =

ij∑
a=0

i(Hj
a, H

j+1
b )Hj

a.

We have ∂j ◦ ∂j+1 = 0 and the resulting homology is isomorphic to the standard
homology H∗(M,Z).9

4.6. Canceling pair. Two handles Hj
a and Hj+1

b with geometric intersection
1 can be canceled, since they somehow annihilate each other. This can be seen as
follows. Tentare di semplificare la di-

mostrazione.We have Hj
a = Dj × Dn−j and Hj+1

b = Dj+1 × Dn−j−1. The belt sphere
0 × Sn−j−1 and the attaching sphere Sj × 0 intersect transversely in a point, say
0 × p ∼ q × 0. Therefore we can suppose that the handles intersect in Dj ×D(p)
and D(q) × Dn−j−1 respectively, where D(p) ⊂ Sn−j−1 and D(q) ⊂ Sj are discs
centered in p and q. Let D∗(p), D∗(q) be their complementary discs in Sn−j−1, Sj .

We first attach Hj+1
b and then Hj

a and prove that at each stage nothing changes.
The handleHj+1

b is attached alongD(q)×Dn−j−1 to ∂Hj
a and alongD∗(q)×Dn−j−1

9By “shrinking” all the handles to their cores we may construct a CW-complex homotopically
equivalent to M , whose cellular homology coincides with the homology just defined.
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to the rest of ∂Mj . If we first attach Hj+1
b we do nothing, since we attach a n-disc

along a (n−1)-subdisc of the boundary. Next, it remains to attach Hj
a: the handle

has to be attached along Sj−1×Dn−j ∪Dj ×D(p). This is again a disc, since it is
the complement in ∂(Dj ×Dn−j) of the disc Dj ×D∗(q). Again, we have attached
a n-disc along a (n− 1)-disc in its boundary, which has no effect.

Conversely, we may create two canceling pair of j- and (j + 1)-handles which
do not intersect geometrically any other handle.

4.7. Handle slide. We may slide a j-handle Hj
b over another j-handle Hj

a.
As a result, the handle Hj

b is replaced by a new j-handle H ′jb . This operation is
defined as follows.

Instead of attaching them simultaneously, let us first attach Ha and then Hb.
Let then N be the level manifold between them. It contains the belt sphere of Ha

and the attaching sphere of Hb. These have dimension respectively n − k − 1 and
k−1. Note that the sum is n−2 and the ambient manifold N has dimension n−1.
Choose an arc joining two points of the two spheres. We can slide the attaching
sphere along this arc, so that at the end it crosses through the belt sphere.10 By
sliding a tubolar neighborhood of the attaching sphere, we in fact isotope the handle
Hb. The result is a new handle H ′a.

This operation may be also encoded as follows. Recall that both Hj
a and Hj

b

are attached to ∂Mj−1. Let Sa and Sb be their attaching spheres in ∂Mj−1. Take
an arc in joining the two spheres, and slide Sb along it as shown in the figure. Thefigura

resulting sphere S′b is the attaching sphere of H ′b. As a result, we have

i(Hc, H
′
b) = i(Hc, Hb)± i(Hc, Ha)

for every (j − 1)-handle Hc, with sign depending upon whether the orientations of
the two spheres match along the joining arc. This depends on how we decide to
slide Sb, as the figure suggests.Ri-figura.

4.8. Killing 0-handles. We prove the following.

Proposition 4.2. Every compact connected manifold M has a handle decom-
position with a single 0-handle.

Proof. Let a decomposition start with some 0-handles H0
1 , . . . ,H

0
i0

. If i0 = 1
we are done. If i0 > 1, they form a disconnected set.

The addition of a k-handle with k > 0 does not modify the number of connected
components of a manifold, except when k = 1 and the 1-handle is attached to
distinct 0-handles. Since M is connected, there must be at least one such 1-handle.
The geometric intersection of this 1-handle and one adjacent 0-handle is 1, so the
pair may be canceled: we proceed by induction. �

Corollary 4.3. Every closed connected manifold Mn has a handle decompo-
sition with one 0-handle and one n-handle.

Proof. Apply the proposition. Turn the handle decomposition upside-down.
Apply the proposition again. �

10This makes sense, like for knots in S3.
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5. Poincaré in dimensions n > 6

We prove here the following result.

Theorem 5.1 (Smale). A smooth manifold homotopy equivalent to Sn is home-
omorphic to Sn if n > 6.

The proof goes roughly as follows: let Mn be homotopy equivalent to Sn. We
take a handle decomposition of Mn with one 0- and one n-handle. We kill all the
other intermediate handles11. Then Mn is obtained by gluing two discs, and is thus
homeomorphic to Sn.

5.1. Trading 1-handles for 3-handles. We have shown how to kill redun-
dant 0-handles in Corollary 4.3, so we now turn to 1-handles.

Proposition 5.2. A simply connected manifold Mn of dimension n > 5 has a
handle decomposition with one 0-handle and no 1-handles.

Proof. We have a handle decomposition

M = H0 ∪
(
H1

1 ∪ . . . ∪H1
i1

)
∪ . . . ∪

(
Hn

1 ∪ . . . Hn
in

)
with a single 0-handle H0. We have ∂M0

∼= Sn−1. Take a 1-handle, say H1
1 . Its

belt sphere S has dimension n−2. Since both ends of H1
1 are attached to the same

0-handle H0, there is a loop γ ⊂ ∂M1 intersecting S transversely in one point. We
can take γ disjoint from the attaching 2-spheres of the 2-handles (because n > 3).
The curve γ thus survives in ∂M2.

We now note that ∂M2 is simply connected. In fact, we can turn upside-down
the 0-, 1-, and 2-handles and say that M is obtained from ∂M2× [0, 1] by attaching
3-, . . ., n-handles on the right side and n-, (n − 1)-, (n − 2)-handles on the left.
Attaching handles of index > 3 does not modify the fundamental group of the
manifold. Since n > 5, this holds here. Therefore π1(M2) ∼= π1(M) = {e}.

Since n > 5, the level manifold ∂M2 has dimension > 4, and in such dimension
a null-homotopic curve γ bounds an embedded disc D.12

We can now thicken D to a new canceling pair consisting of a 2- and 3-handle.
By construction, the new 2-handle intersects H1

1 geometrically once. Therefore we
can cancel H1

1 and the 2-handle, being left with a new 3-handle. �

Corollary 5.3. A closed simply connected manifold Mn of dimension n > 5
has a handle decomposition with one 0-handle, one n-handle, and no 1- and (n−1)-
handles.

Proof. Use the previous proposition. Turn it upside-down. Use the proposi-
tion again. �

5.2. Whitney trick. The Whitney trick is a move which allows (in high di-
mensions) to transform algebraic intersections into geometric intersections.

Lemma 5.4. Let P p and Qq be two transverse connected oriented manifolds in
an oriented Mp+q. Suppose that n = p+q > 5 and π1(M \ (P ∪Q)) = {e}. Let x, y
be a pair of intersection points with opposite sign. There is an isotopy of P which
cancels these two intersections.

11We need n > 6 for this.
12See Corollary 2.2 on page 19.
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Proof. Take two arcs α ⊂ P , β ⊂ Q joining x and y. Consider the closed
curve α ∪ β. Since M \ (P ∪ Q) is simply connected, there is a map f : D2 → M
such that Im f ∩ (P ∪ Q) = γ. This map can be perturbed to be an embedding
because n > 5.13

We fix a riemannian metric, so that P and Q intersect orthogonally at x, y, and
D is also orthogonal to both P and Q.

Trivialize the orthogonal bundle ND over D as D×Rn−2. Let E be the (p−1)-
dimensional sub-bundle over ∂D which is contained in P (over α) and orthogonal
to Q (over β). As a subbundle, it determines an element of π1(G(p−1, n−2)). Note
that this fundamental group is always Z2, except for G(1, 2). Since n > 5, we have
Z2. The element determined depends in fact on whether the algebraic intersections
of P and Q in x and y coincide or not. Since they are opposite, this element is
trivial.All’inizio mettere π1 di

grassmanniana? This implies that E can be extended to D. This trivialization over D allows
one to slide P over Q.14 �

5.3. Killing all the handles. We prove the following.

Theorem 5.5 (Smale). A closed smooth manifold Mn homotopy equivalent to
Sn has a decomposition with one 0-handle and one n-handle if n > 6.

Proof. By Proposition 5.2, we can describe Mn via a handle decomposition
with one 0-handle, no 1-handles, no (n − 1)-handles, and one n-handle. We now
show that, after finitely many handle slides, we end up with a decomposition in
which every i-handle has non-zero algebraic intersection with exactly one (i ± 1)-
handle, and this intersection is ±1.

We have the boundary maps

0 ∂n−−−−→ Cn−1
∂n−1−−−−→ . . .

∂4−−−−→ C3
∂3−−−−→ C2

∂2−−−−→ 0.
Since M is homotopy equivalent to Sn, the resulting homology is trivial. That is,
we have an exact sequence of free modules which split everywhere as Ci = Di ⊕Ei
with Ei = ker ∂i = Im ∂i+1 and isomorphisms

∂i|Di : Di −→ Ei+1.

Pick some basis for each Di, Ei. Now note that a handle slide may be interpreted as
an elementary move which changes a basis by adding (or subtracting) one element
from another. The other elementary moves (permuting two elements, replacing
an element by its opposite) can also be realized (permuting handles, changing the
orientation of a handle). By iterating such moves we can represent the elements in
the chosen basis for each Di, Ei as handles.

The handles are now paired. That is, for every i-handle there exists exactly
one handle (of index i± 1) having algebraic intersection ±1 with it (and all others
zero). We employ the Whitney trick to transform such algebraic intersections into
geometric ones. The same argument used in the proof of Proposition 5.2 shows
that all level manifolds are simply connected. We simply need to check that, inside
each level (n− 1)-manifold ∂M2, the belt (n− k − 1)-sphere of a k-handle and the

13If n = 4, we only get an immersion and the rest of the argument does not work.
14If n = 4, we have another problem here: even if γ bounds an embedded disc, the bundle E

does not necessarily extend over D because π1(G(1, 2)) = Z, and it might be impossible to slide

P over Q.
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attaching k-sphere of a (k + 1)-handle have simply connected complement. If they
both have codimension > 3 we are done. This always holds, except when k = 2
or k = n − 2 (both cannot occur). These two cases are actually symmetric, so
we suppose k = 2. So we have a belt sphere inside ∂M2. Note however that its
complement in ∂M2 is the same as that of the attaching sphere in ∂M0 = Sn−1:
the attaching sphere is a circle, so its complement in Sn−1 is simply connected. �

We can finally prove the topological Poincaré Conjecture in dimension n > 6.

Corollary 5.6. A closed smooth manifold Mn homotopy equivalent to Sn is
homeomorphic to Sn when n > 6.

Proof. By the previous theorem, the manifold M has a handle decomposition
made of a 0- and a n-handle. That is, it may be obtained by gluing two n-discs D1,
D2 along their boundaries. Correspondingly, represent Sn = D′1 ∪D′2 as the union
of two discs (the north and south emisphere). Pick a diffeomorphism ϕ : D1 → D′1.
Extend it to ϕ : M → Sn radially. That is, identify each D2, D

′
2 with Dn, so

that ϕ restricts to a diffeomorphism ϕ|Sn−1 : Sn−1 → Sn−1, and extend ϕ to the
continuous function

ϕ(tx) = tϕ(x).

This function is a homeomorphism from Dn to itself, which might not be a diffeo-
morphism! (As any continuous function, it may be perturbed into an arbitrarily
close smooth function, which does not need however to be injective.) �

Remark 5.7. Note that, if working in the PL category, the radial map is a PL
map: The Poincaré Conjecture in dimension n > 6 holds also in the PL category,
with the same proof (many concepts like handles, transversality, Whitney trick
must however be adapted to the PL setting).

5.4. Connected sum. If M is an oriented manifold, we denote by M the
same manifold with opposite orientation. We use the following.

Lemma 5.8 (Cerf). For every connected oriented manifold Mn there is a unique
orientation-preserving embedding ϕ : Dn →Mn up to self-homeomorphisms of Mn.

We can now define the connected sum M1#M2 of two compact oriented con-
nected n-manifolds (possilbly with boundary) as follows. Pick two orientations-
preserving embeddings ϕ1 : Dn → M1 and ϕ2 : Dn → M2 and define Ṁi =
Mi \ (ϕi(int(Dn))) for i = 1, 2. Define

M1#M2 = Ṁ1 ∪ϕ2◦ϕ−1
1
Ṁ2.

Cerf’s lemma implies the following.

Proposition 5.9. The connected sum M1#M2 is a smooth oriented manifold
which depends only on M1 and M2. The operation # is commutative, associative,
and M#Sn ∼= M .

Exercise 5.10. Let M1, M2 be closed connected oriented manifolds of dimen-
sion n. We have the following.

• π(M1#M2) ∼= π(M1) ∗ π(M2) if n > 3,
• Hi(M1#M2) ∼= Hi(M1)⊕Hi(M2) for every 0 < i < n.
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5.5. Exotic spheres. We can also get an inverse for # if we restrict to exotic
spheres.

Proposition 5.11. Oriented homotopy spheres form a group under # in di-
mension n > 6.

Proof. By Smale’s Theorem 5.5, every oriented homotopy sphere M is con-
structed by gluing two discs along an orientation-reversing map ϕ on their bound-
aries. If we use ϕ−1 instead of ϕ we get M . This easily implies that M#M ∼= Sn.
Therefore every homotopy sphere M has an inverse. �

We denote such group by Γn (defined here only for n > 6). Such groups are all
finite. The first ones are listed below.

n 6 7 8 9 10 11

Γn 0 Z28 Z2 Z4
2 Z6 Z992

5.6. Boundary-connected sum. The ∂-connected sum of two oriented man-
ifolds Mn

1 , Mn
2 with connected boundary is defined similarly. Take two embeddings

ϕ1 : Dn−1 → ∂M1 and ϕ2 : Dn−1 → ∂M2 and construct

M1\M2 = M1 ∪ϕ2◦ϕ−1
1
M2.

By Cerf’s lemma, the operation \ is well-defined, commutative, and associative on
compact manifolds with connected boundary. Of course, we have M\Dn = M .

Exercise 5.12. We have ∂(M1\M2) ∼= ∂M1#∂M2.



CHAPTER 2

Basics on dimension 4

We now turn to dimension 4. Much topology here is controlled by an impor-
tant object, which is absent in lower dimensions: this is the intersection form, a
bilinear unimodular pairing on the (integral) second homology (unimodularity is a
manifestation of Poincaré duality). After introducing the reader to this important
geometric/algebraic object, we turn to study some basic facts about curves and
surfaces in 4-manifolds. Curves are easily studied, while surfaces play a central rôle
in dimension 4.

We end with a section on characteristic classes and introduce some basic ex-
amples of 4-manifolds: the disc bundles over surfaces.

1. Intersection forms

On a simply connected 4-manifold M , all the homology is concentrated in the
free second homology module H2(M,Z).1 This module is equipped with a bilinear
form, induced by Poincaré duality. We introduce such forms in a more general
context.

1.1. Poincaré duality. Let M be a closed oriented manifold of dimension n.
The cup product yields a bilinear form

Q : Hk(M,Z)×Hn−k(M,Z) −→ Z
(α, β) 7−→ (α ∪ β)[M ]

called intersection pairing. Any bilinear form is necesarily zero on torsion elements.
It is therefore harmless to restrict the pairing to the quotients modulo torsion.

By Poincaré duality, the intersection pairing restricted to quotients modulo
torsion is unimodular. That is,

Definition 1.1. Let F1, F2 be two finitely generated free Z-modules (i.e each
is isomorphic to Zr for some r). A bilinear form Q : F1 × F2 → Z is a unimodular
pairing if the adjoint map

ϕ1
Q : F1 −→ F ∗2 = Hom(F2,Z)

α 7−→
(
β 7→ Q(α, β)

)
and the analogously defined ϕ2

Q : F2 → F ∗1 are both isomorphisms.

As we said, we have the following.

Theorem 1.2 (Poincaré duality). The intersection pairing Q is a unimodular
pairing.

1See Section 3.1 on page 5.

15
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Actually, Poincaré duality also yields informations on the torsion part of ho-
mology, and yields a canonical isomorphism Hi(M,Z) ∼= Hn−i(M,Z). Via this
isomorphism, the intersection form is also defined on homology:

Q : Hk(M,Z)×Hn−k(M,Z) −→ Z.
Moreover, this form has a nice geometric representation (which is actually closer to
Poincaré’s original definition).

Theorem 1.3 (Geometric representation). If two classes α ∈ Hk(M,Z) and
β ∈ Hn−k(M,Z) are represented by oriented transverse submanifolds Sα and Sβ of
dimension k and n− k, we have

Q(α, β) = Sα · Sβ .

1.2. Manifolds with boundary. On an oriented n-manifold M with bound-
ary, two types of intersection forms may be defined. On homology, they are as
follows.

Q : Hk(M,Z)×Hn−k(M,Z) −→ Z
Q′ : Hk(M,∂M,Z)×Hn−k(M,Z) −→ Z

Both of these pairings have a geometric representation as stated in Theorem 1.3
(when α lies in Hk(M,∂M,Z), the manifold Sα is a properly embedded manifold
possibly with boundary). Only the second one is always unimodular.

Theorem 1.4 (Lefschetz duality). The intersection pairing Q′ is a unimodular
pairing.

As above, we have a canonical identification Hi(M,Z) ∼= Hn−i(M,∂M,Z). The
pairing Q is not necessarily unimodular.

Example 1.5. Take M = S1× [−1, 1]. The module H1(M,Z) ∼= Z is generated
by S1× 0 and H1(M,∂M,Z) ∼= Z is generated by 0× [−1, 1]. We have Q = [0] and
Q′ = [1].

1.3. Middle homology. Let M be closed oriented of even dimension n = 2k.
The intersection form

QM : Hk(M,Z)×Hk(M,Z) −→ Z
is unimodular. Since we have the same module on both sides, unimodularity may
be stated more explicitly.

A basis for a Z-module F isomorphic to Zh is just a set of h generators. The
rank of a bilinear form on F is the number h. A bilinear form may be represented
as a square (h×h)-matrix. A square matrix is unimodular if its determinant is ±1.

Proposition 1.6. Let F be a free finitely generated Z-module. Let Q : F×F →
Z be a bilinear form. The following are equivalent.

(1) Q is a unimodular pairing.
(2) There is a basis B such that the matrix M associated to Q with respect to
B is unimodular.

(3) For every basis B, the matrix M associated to Q with respect to B is
unimodular.

(4) Every basis B = (a1, . . . , ah) has a (unique) dual basis, that is a basis
(b1, . . . , bh) such that Q(ai, bj) = δij.
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Proof. Note that every basis B = (a1, . . . , an) of F defines a (unique) dual
basis B∗ = (a∗1, . . . , a

∗
n) of F ∗ such that a∗i (aj) = δij .

(1)⇔(2)⇔(3): The matrices M and tM represent ϕ1 and ϕ2 with respect to B
and B∗. Both these maps are isomorphisms if and only if M is unimodular.

(1)⇒(4): Take bi = (ϕ2)−1(a∗i ).
(4)⇒(1): The adjoint ϕ1 sends ai to b∗i and is hence an isomorphism. �

Therefore QM is represented by unimodular matrices.

Proposition 1.7. The intersection form QM of a closed manifold M2k is
symmetric or antisymmetric, depending upon whether k is even or odd.

Proof. Concerning cup products, we have α∪β = (−1)k·kβ∪α. This formula
can analogously be checked using the geometric representation (when it exists!) �

We deduce the following.

Corollary 1.8. A closed oriented manifold M of dimension 4h+ 2 has χ(M)
even.

Proof. We have χ(M) =
∑4h+2
i=0 (−1)ibi, with bi = dimHi(M,Z). By Poincaré

duality we have bi = b4h+2−i and thus χ(M) = 2
(∑2h

i=0(−1)ibi
)

+b2h+1. The inter-
section form QM on H2h+1(M,Z) is unimodular and antisymmetric, hence b2h+1 is
even. �

1.4. Signature and parity. A symmetric unimodular bilinear form Q may
be diagonalized over the real numbers by Sylvester’s theorem, and has therefore a
well-defined signature (i+, i−). Actually, we define here as a signature σ(Q) the
difference i+ − i− between the two indexes.

Definition 1.9. The signature σ(M) of a closed oriented manifold M4h is the
signature of its symmetric intersection form QM .

A symmetric bilinear form Q over a free module has another invariant p(Q).
The form Q is said to be even if Q(v, v) is even for every v. It is odd otherwise. We
set correspondingly p(Q) = 0 or 1. Note that Q is even if and only if every element
in the diagonal (of a matrix representing Q) is even.

Definition 1.10. The parity p(M) of a closed oriented manifold M4h is the
parity of its symmetric intersection form QM .

Given a form Q, we denote by −Q the opposite form (−Q)(v, w) = −Q(v, w).
We have the following easy.

Proposition 1.11. We have QM ∼= −QM . Therefore σ(M) = −σ(M) and
p(M) = p(M).

Given two unimodular forms Q and Q′ defined on some free finitely generated
Z-module F and f ′, we let Q⊕Q′ be the form on F ⊕ F ′ as

(Q⊕Q′)
(
(v, v′), (w,w′)

)
= Q(v, w) +Q′(v′, w′).

Proposition 1.12. We have σ(Q ⊕ Q′) = σ(Q) + σ(Q′) and p(Q ⊕ Q′) =
p(Q) · p(Q′).

Proof. If M , M ′ are matrices representing Q,Q′, a matrix representing Q⊕Q′

is simply
(
M 0
0 M ′

)
. �
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Proposition 1.13. Let M,N be closed oriented manifolds of dimension 4k.
We have QM#N

∼= QM ⊕QN . In particular, σ(M#N) = σ(M) + σ(N).

Proof. Let Ṁ be M with an open ball removed. Recall that M#N is obtained
by gluing Ṁ and Ṅ along their boundaries. Inclusion gives an isomorphism i∗ :
H2k(Ṁ)→ H2k(M). Mayer-Vietoris sequence gives then an isomorphism between
H2k(Ṁ)⊕H2k(Ṅ) and H2k(M#N), which preserves pairings. �

1.5. Manifolds of zero signature. Non-zero signature is an obstruction to
bounding manifolds, as the following shows.

Theorem 1.14. Let M4k be an oriented (possibly disconnected) closed (4k)-
manifold. If M4k = ∂W 4k+1 is the boundary of an oriented (4k+1)-manifold, then
σ(M) = 0.

Proof. Suppose M = ∂W . We consider homology over R. A piece of the long
exact sequence shows

H2k+1(W,∂W ) ∂−−−−→ H2k(∂W ) i−−−−→ H2k(W ).

There are two unimodular pairings here, one Q between H2k(∂W ) and itself, and
another Q′ between H2k+1(W,∂W ) and H2k(W ). There is a compatibility between
them:

Q′
(
α, i(β)

)
= Q

(
∂α, β

)
.

This implies that Ker i = Im ∂ is totally isotropic with respect to Q, since

Q(∂α, ∂β) = Q′
(
α, i(∂β)

)
= Q′(α, 0) = 0.

Analogously, we see that the spaces Ker ∂ and Im i are Q′-orthogonal. Since Q′ is
non-degenerate, we get

dim Ker ∂ + dim Im i 6 dimH2k(W,∂W ) = dimH2k(W ).

This implies easily that

dim Im ∂ + dim Ker i > dimH2h(∂W ).

That is, we have dim Ker i > dimH2h(∂W )/2. Since Q is non-degenerate and Ker i
is totally isotropic, equality holds and the signature of Q is zero. �

Remark 1.15. The proof of Theorem 1.14 also shows that the image of

∂ : H2k+1(W,∂W ; R)→ H2k(∂W ; R)

has dimension b2k/2.

In dimension 4, signature is the only obstruction for bounding a 5-manifold.2

2See Theorem 2.15 on page 41.
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2. Loops in 4-manifolds

We study 1-manifolds in 4-manifolds. We start with the following.

Proposition 2.1. Let M be a compact 4-manifold. Two homotopic embedded
loops γ1, γ2 : S1 → int(M) with disjoint images bound a smooth annulus.

Proof. The homotopy is a map F : S1× [0, 1]→M . By transversality, we can
suppose F is an immersion from a 2-dimensional annulus to M , which some double
points. Since S1 × [0, 1] has boundary, each double point can be easily eliminated
by sliding it out. �

Corollary 2.2. A null-homotopic embedded loop in int(M) bounds a smooth
disc.

This result does not extend to loops contained in the boundary! For instance,
we have the following.

Proposition 2.3. Every knot in S3 bounds an immersed disc in D4. The
trefoil knot does not bound embedded discs in D4.

Proof. The loop is homotopically trivial and hence bounds an immersed disc.
The assertion concerting the trefoil knot is proved below. � Dove?

A knot in S3 which bounds a smooth embedded disc in D4 is called slice. More
generally, the slice genus of the knot is the minimum genus of a surface in D4

spanning it. Of course, the slice genus is smaller or equal then the (usual) genus
(defined as the minimum genus of a surface spanning it in S3, i.e. a Seifert surface).

Note that smoothness is important here.

Proposition 2.4. Every knot in S3 bounds a (piecewise-linear) topologically
embedded disc in D4.

Proof. Take the cone of the knot, with center the center of D4. �

In the piecewise-linear category, to avoid objects of this kind one usually re-
quires them to be locally flat. A submanifold Mm ⊂ Nn is locally flat if it is locally
embedded as an m-plane in Rn. In the smooth category, local flatness is guaran-
teed. In the PL and topological categories, it is not. A cone on a non-trivial knot
is not PL locally flat.

Every known example of slice knot belongs to the following category.

Definition 2.5. A ribbon knot is a knot in S3 which bounds an immersed
disc i : D2 → S3 self-intersecting in arcs, whose pre-images in D2 are arcs whose
endpoints are either both in ∂D2 or both in its interior.

Proposition 2.6. Every ribbon knot is a slice knot.

Proof. The pre-image of every self-intersecting arc consists of two arcs α and
β in D2, one (say α) with both endpoints in ∂D2 and β with both endpoints in the
interior of ∂D2. Eliminate the self-intersecting arc by pushing down towards the
interior of D4 a small subdisc of D2 containing β. �

It it still unknown whether every slice knot must be ribbon.
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3. Surfaces in 4-manifolds

We state some general facts about surfaces in 4-manifolds. We show in partic-
ular that the intersection form has a useful geometric representation.

3.1. Isolated double points. We want to show that the geometric realization
of Poincaré duality is possible in dimension 4. To do this, we introduce a basic move
which will also be used later at various points.

Every map f : Σ2 →M4 from a surface to a 4-manifold can be perturbed to be
a generic immersion.3 Such an immersion is everywhere injective, except at finitely
many isolated double points. Each such isolated intersection looks locally like two
transverse discs in R4, that is like the set C = {zw = 0} ∩D4.

This set may be perturbed by slightly modifying the equation defining it as
Cε = {zw = ε} ∩ D4 for some small real number ε > 0. Now Cε is a smooth
complex curve, i.e. a surface without singularities.

Proposition 3.1. We have

Cε =
{(
z,
ε

z

) ∣∣∣ m < |z| < M
}

for some 0 < m < M and therefore Cε is an annulus.

Proof. The set Cε consists of all points (z, ε/z) with |z|2 + ε2/|z|2 6 1, that
is |z|4 − |z|2 + ε2 6 0. Therefore

1−
√

1− 4ε2

2
6 |z|2 6 1 +

√
1− 4ε2

2
.

In particular, we get m→ 0 and M → 1 as ε→ 0. �

The boundary ∂C0 ⊂ S3 is a link with two components, called Hopf link. The
boundary ∂Cε is equivalent to ∂C0 up to a small isotopy: we can thus modify Cε
with a small isotopy so that ∂C0 = ∂Cε.

Every double point can be removed by substituting the two trasverse discs C0

with an annulus Cε. Note however that the topology of the immersed surface has
changed: before we had an immersion f : Σ2 → M4, now we have an immersion
f∗ : Σ2

∗ →M4 with one double point less, and the surface Σ∗ is obtained from Σ by
substituting two discs with an annulus. In particular, we have χ(Σ∗) = χ(Σ)− 2.

If Σ is oriented, the surface Σ∗ also is.4 Therefore f and f∗ represents elements
of H2(M,Z).

Proposition 3.2. The maps f and f∗ represent the same element in H2(M,Z).

Proof. The two functions define cycles that differ only in the interior of a
ball. Their difference is represented by a cycle whose image is entirely in a ball,
and is thus homologous to zero. �

Summing up, we can eliminate double points and remain within the same
homology class. The price to pay is to modify the topology of the surface, by
decreasing its Euler characteristic. If the surface is connected, this is equivalent to
raising its genus.

3See Section 2.3 on page 4.
4The surfaces C0 and Cε are oriented as complex curves, and they induce the same orientation

on the boundary.
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3.2. Geometric realizations. We first show that the geometric realization
of Poincaré duality is possible in dimension 4.

Proposition 3.3. Let M be a compact 4-manifold (possibly with boundary).
Every element in H2(M4,Z) can be realized as an embedding of an oriented (possibly
disconnected) surface.

Proof. A class α is a sum of maps from triangles to M . These maps can be
glued in pairs along edges, and the result is a continuous map from a (possibly
disconnected) surface to M representing α. By transversality, α is homotopic to an
immersion. Every double point can in turn be perturbed as described above. Note
that the genus of the surface increases by one at each desingularization. (More
precisely, its Euler characteristic decreases by −2.) �

The embedded surface representing a cycle is not necessarily a sphere. However,
if we drop embeddability, we have the following.

Proposition 3.4. If M is a simply connected 4-manifold, every element in
H2(M4,Z) can be realized as an immersed sphere.

Proof. By Hurewicz Theorem the map π2(M) → H2(M,Z) is an isomor-
phism. Therefore every element in H2(M,Z) is realized as a map f : S2 → M
which can be perturbed to an immersion. �

3.3. Examples. The intersection forms of S4, CP2, CP2
, CP2#CP2

, S2 × S2

are respectively

∅, [1], [−1],
(

1 0
0 −1

)
, H =

(
0 1
1 0

)
.

We denote the latter form by H. Note that the two latter forms have the same sig-
nature but are not isomorphic, since they have distinct parity: therefore CP2#CP2

is not homeomorphic to S2 × S2. We study these manifolds more closely. We start
with a preliminary remark on complex manifolds.

Remark 3.5. Every complex manifold M is naturally oriented, and two com-
plex submanifolds intersecting transversely in points always intersect positively
(i.e. with sign +1). Therefore their algebraic intersection equals the geomet-
ric intersection. As a consequence, if two homology classes α ∈ Hk(M,Z) and
β ∈ Hn−k(M,Z) can be represented by two complex submanifolds intersecting
transversely, then Q(α, β) > 0.

3.3.1. CP2. The even homology H2i(CPn,Z) of a complex projective space is
identified with Z, generated by the class [S], represented by any i-dimensional linear
subspace S. Odd homologies are trivial.

In particular, the group H2(CP2,Z) = Z is generated by [l] for any complex
line l ⊂ CP2. Two distinct lines l, l′ intersect in a point and represent the same
class [l] = [l′]. We thus have Q([l], [l]) = l · l′ = 1. Therefore the intersection pairing
of CP2 is [1].

A projective curve Cd of degree d is defined as the zero-set of a homogeneous
polynomial of degree d. The space of such polynomials is a big projective space
CPN . Smooth curves (i.e. curves without singularities) form an open Zariski set.
In particular, every two such curves are connected with a path in this open set,
which parametrizes an isotopy between them inside CP2.
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A smooth Cd defines a class [Cd] ∈ H2(CP2,Z) = Z. Not surprisingly, we have
[Cd] = d. This holds because Cd intersects a generic line in d points, and hence
Q([Cd], [l]) = Cd · l = d.

Corollary 3.6 (Bézout Theorem, easy case). Two smooth curves Cd and Cd′
intersecting transversely have d · d′ intersection points.

Proof. We have Cd ·Cd′ = Q
(
[Cd], [Cd′ ]

)
= d · 1 · d′ = d · d′ and the algebraic

intersection number equals the geometric one by Remark 3.5. �

3.3.2. S2 × S2. The homology group H2(S2 × S2,Z) ∼= Z× Z is generated by
α = [S2 × q] and β = [p × S2]. The two surfaces intersect positively in one point,
hence Q(α, β) = 1. Moreover, two representatives S2 × q1 and S2 × q2 of α with
q1 6= q2 do not intersect, hence Q(α, α) = 0. Similarly, we have Q(β, β) = 0.

The intersection form is therefore H =
(

0 1
1 0

)
.

Exercise 3.7. Show that S2 × S2 ∼= S2 × S2 and CP2 6∼= CP2
. (The symbol

“∼=” indicates an orientation-preserving diffeomorphism.)

4. Characteristic classes

Before proceeding in the study of 4-manifolds, we introduce some fundamental
objects in differential topology. A vector bundle E →M defines a numer of elements
in the (co-)homology groups of M , called characteristic classes. In the simplest
cases, these classes describe the bundle completely. We quickly recall some basic
facts on these classes.

4.1. Euler class. Let E → M be an oriented vector bundle of rank r on an
oriented closed n-manifold M . This object defines a Euler class

e(E) ∈ Hr(M,Z).

The Poincaré dual of e(M) lies in Hn−r(M,Z). It may be defined as (the homology
class of) the oriented (n− r)-manifold obtained by intersecting of the zero-section
of E with any other transverse section.

When n = r, the two sections intersect in points with sign ±1. The Euler
number e(M) ∈ Z is the algebraic intersection number of the two sections. We
single out a couple of useful results in that case, when E is the tangent and normal
bundle to N .

Proposition 4.1. We have e(TM ) = χ(M).

Proof. This is Poincaré-Hopf theorem on vector fields. �

Proposition 4.2. Let Xr be a smooth closed oriented submanifold of a smooth
manifold M2r. Let NX be the normal bundle over X. We have e(NX) = Q([X], [X]).

Proof. The normal bundle may be embedded as a tubolar neighborhood of
X in M , such that X corresponds to the zero-section and any transverse section is
another manifold X ′ ⊂ M isotopic to X and transverse to it. Therefore e(NX) =
X ·X ′ = Q([X], [X ′]) = Q([X], [X]). �

Proposition 4.3. If Xn ⊂ Rn+r then e(NX) = 0.
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Proof. Compactify Rn to Sn. Inclusion i : Xn ↪→ Sn+r gives a map

i∗ : Hr(Sn+r,Z) −→ Hr(Xn,Z).

By definition of Euler number, this map sends the Poincaré dual to [M ] ∈ Hn(Sn+r,Z)
to the Euler class e(NX). However, the group Hn(Sn+r,Z) is trivial and so also
e(NX) is.5

�
Spostare dopo.

Proposition 4.4. Let E →M be a rank-r bundle with e(E) = 0. The restric-
tion of E on any r-skeleton of M is trivial.

Sistemare queste due propo-
sizioni.

4.2. Chern classes. Let E → M be a complex vector bundle of rank r over
a closed connected oriented n-manifold M . This object defines some Chern classes

ci(E) ∈ H2i(M,Z)

for all i = 0, 1 . . . , r. We will actually use few properties of Chern classes. The
lowest Chern class c0(E) = 1 is constant and therefore not interesting. The top-
most one coincides with the Euler class.

Proposition 4.5. The top-most Chern class cr(E) equals the Euler number
e(E) of E, seen as a rank-2r real vector bundle.

In particular, on a complex line bundle (i.e. a complex bundle of rank r = 1) we
have c1(E) = e(E). The first Chern class (and hence the Euler number) classifies
completely complex line bundles up to isomorphism.

Proposition 4.6. The first Chern class c1 yields a bijection between isomor-
phism classes of (complex) line bundles over M and H2(M,Z).

Proof. For a complete proof, see the book of Griffiths-Harris. Complex line
bundles correspond to elements in the first cohomology H1(M,C∞(C∗)) of the
sheaf of smooth functions with values in C∗. The exact sequence of groups

Z i−−−−→ C exp−−−−→ C∗
yields a long exact sequence on sheaves cohomology

H1(M,C∞(C))
exp∗−−−−→ H1(M,C∞(C∗)) c1−−−−→ H2(M,Z) i∗−−−−→ H1(M,C∞(C))

where c1 is the first Chern class. The sheaf C∞(C) has no cohomology, hence c1 is
an isomorphism. � Trovare inglese per fine

The dual L∗ of a line bundle is another line bundle. The tensor product L⊗L′
of two line bundles is another line bundle.

Proposition 4.7. We have c1(L∗) = −c1(L) and c1(L⊗L′) = c1(L) + c1(L′).

A fundamental example is the tautological vector bundle E over CPn. It is
a sub-bundle of the product bundle Cn+1 × CPn, defined as follows: the fiber of
p ∈ CPn is the line of Cn+1 corresponding to p.

Proposition 4.8. We have c1(E) = −1 ∈ H2(CPn,Z) = Z.
Proof?

Finally, note that every oriented real plane bundle may be given a complex line
bundle structure.

5We have actually proved a stronger theorem: if Xn ⊂ Y n+r are closed oriented manifolds
and Xn is homologically trivial in Y n+r, then e(NX) = 0.
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Proposition 4.9. Let E →M be an oriented real plane bundle. It is possible
to assign to each fiber a complex structure which makes E a complex line bundle.

Proof. The structure group of E may be reduced to SO(2) by fixing a rie-
mannian metric on E.6 Take the usual identification of R2 with C on each triv-
ialization. A rotation in SO(2) is a complex-linear transition functions of type
z 7→ eαπiz. Therefore the whole E has a complex structure. �

4.3. Line bundles over surfaces. Our discussion on Chern classes implies
that complex line bundles on an oriented surface Σ are in 1-1 correspondence with
the elements of H2(Σ,Z) = Z, i.e. with integers. Every line bundle yields (via a
metric) a disc-bundle over Σ. The boundary of this disc-bundle in turn gives a
S1-bundle over Σ. All such objects are determined by an integer, the Euler number
(or equivalently the first Chern class).

We already know some bundles over the sphere S2. The trivial bundle has
Euler number zero, the principal vector bundle over S2 ∼= CP1 has Euler number
−1, while the tangent bundle has Euler number χ(S2) = 2 (and the cotangent one
−2). Topologically, we may state the following.

Proposition 4.10. The S1-bundle over S2 with Euler number e is homeomor-
phic to the lens space L(e, 1).

In particular, when e = 0, 1, 2 we get S2 × S1, S3, and RP3.

6See Section 1.5 on page 2.



CHAPTER 3

Topological 4-manifolds

A topological 4-manifold is a manifold without smooth structure. As shown
by Freedman in 1981, the topological and smooth categories differ radically in
dimension 4. There are topological manifolds that admit no smooth structure,
while others admit infinitely many.

This chapter is devoted to topological 4-manifold. The main results of Freed-
man are highly non-trivial and are thus only stated here, without a proof. They
furnish a beautiful and simple description of the world of topological 4-manifolds.

Some important tools in the smooth setting are introduced here. We start with
Kirby diagrams, which encode handle decompositions in dimension 4 (as Heegaard
diagrams do in dimension 3). Then we turn to contractible 4-manifolds. Finally,
we state Freedman’s theorems.

1. Kirby diagrams

A handle decomposition of a smooth 4-manifold can be encoded via a combi-
natorial object, called Kirby diagram. We introduce it here.

1.1. One-handles. Let M be a connected compact smooth 4-manifold, possi-
bly with boundary. The manifold M has a handle decomposition with one 0-handle
and at most one 4-handle. The boundary of the 0-handle is S3. Every 1-handle
is attached to S3, more specifically it glues D3 × D1 to two 3-discs in S3 along
D3 × S0. We can therefore encode each 1-handle by drawing couples of 3-discs in
S3.

Using 0- and 1-handles we can actually construct only few manifolds. These
manifolds are the generalizations of the 3-dimensional handlebodies. We denote by
#kM

n the connected sum of k copies of Mn: when k = 0 we set #0M
n = Sn.

Analogously, let \kMn be the ∂-connected sum of k copies of Mn; when k = 0 we
set #0M

n = Dn.1

Proposition 1.1. Let a connected M4 decompose into 0-handle and 1-handles.
Then M = \k(D3 × S1) and ∂M = #k(S2 × S1) for some k.

Proof. First, we can suppose there is one 0-handle only.2 Now we claim that if
Mn has connected boundary and Nn is obtained from Mn by attaching a 1-handle,
then Nn = Mn\(Dn−1 × S1). This assertion proves the proposition.3

We prove the assertion. The 1-handle is attached along two (n − 1)-discs
D1, D2 ⊂ ∂Mn. By Cerf’s Lemma4 these two discs are contained in a bigger

1See Section 5.6 on page 14.
2See Proposition 4.2 on page 10.
3Together with Exercise 5.12 on page 14.
4See Lemma 5.8 on page 13.

25
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(n − 1)-disc D ⊂ ∂Mn. If we cut Nn along D we get Mn and Dn−1 × S1, as
required. �

1.2. Two-handles. A 2-handle is a product D2×D2 attached along the solid
torus S1 × D2. Different 2-handles are attached along disjoint solid tori. The
attaching sphere is a circle S1 × 0. It can be drawn as a circle in S3, which may
sometimes pass over some 1-handle: it disappears in one 3-disc and reappear on
the corresponding 3-disc of the 1-handle.

The gluing of the solid torus D2×S1 is not determined solely by the gluing of its
attaching circle. Gluing such a solid torus corresponds to fixing a trivialization of
the normal bundle of the attaching circle S1. A trivialization of the normal bundle
is sometimes called a frame. Fixing a frame means fixing two independent sections
of the normal bundle. Actually, one suffices: the other one is then determined up
to homotopy and up to sign, but homotopy and sign do not change the way the
2-handle is attached.Dire di più in dimensione

qualsiasi? Framings may be encoded by drawing ribbons instead of knots. If there are
no 1-handles, a framing can be encoded as an integer: orient each knot, and take
the algebraic intersection of the section with any (transverse) Seifert surface of
the knot oriented coherently. The resulting integer is actually independent of the
chosen orientation for the knot. In particular, a 0-framing corresponds to the
framing induced by any Seifert surface. It is also possible to extend this convention
and use integers to encode framings when 1-handles are present.

A diagram as described, which contains pairs of 3-discs and disjoint knots
(jumping occasionally over the discs) decorated with integers, is a Kirby diagram.
A Kirby diagram encodes a decomposition with 0-, 1-, and 2-handles of a manifold
N . Note that ∂N is always connected.

1.3. Handles of index 3 and 4. To know whether we can attach 3- and
4-handles to close up a manifold N , we use the following.

Lemma 1.2. Let N decompose into 0-, 1-, and 2-handles. It is possible to get a
closed manifold by attaching 3- and 4-handles to N if and only if ∂N ∼= #k(S2×S1)
for some k > 0.

Proof. Handles of index 3 and 4 may be turned upside down. They become
1- and 0-handles. Therefore, together they form a manifold as in Proposition 1.1,
whose boundary is diffeomorphic to #k(S2 × S1). �

If ∂N is homeomorphic to #k(S2×S1), we can close the 4-manifolds by adding
3- and 4-handles. There are many ways to attach them, but they luckily all lead
to the same closed manifold, thanks to the following.

Proposition 1.3 (Laudenbach-Poenaru). If M and M ′ are two closed mani-
folds obtained by attaching 3- and 4-handles to the same manifold N with boundary,
then M ∼= M ′.

Sketch. They prove that every self-homeomorphism of #k(S2 × S1) extends
to a self-homeomorphism of \k(D3 × S1). �

We can therefore forget about 3- and 4-handles. Note that a random Kirby
diagram does not describe a closed 4-manifold: it describes a random 4-manifold
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N made of 0-, 1-, 2-handles, whose boundary ∂N is a random 3-manifold5, which
is unlikely to be #k(S2 × S1).

1.4. Only 0- and 2-handles. Many interesting manifolds admit a decompo-
sition without 1- and 3-handles. That is, we have one 0-handle, some 2-handles,
and maybe one 4-handle to close the manifold up. A manifold having a decompo-
sition of this type is necessarily simply connected; conversely, we still do not know
if every closed simply connected 4-manifold may be described in this way.

Question 1.4 (open). Does every simply connected compact 4-manifold have
a decomposition without 1-handles?

Let N be a manifold made of one 0-handle and n 2-handles. The corresponding
Kirby diagram is a link L = K1∪. . .∪Kn in S3, each component Ki being decorated
by an integer. Orient each Ki arbitrarily. This defines an intersection matrix M
as follows. The diagonal element Mii is the integer decorating Ki. When i 6= j, the
element Mij is the intersection number of the knots Ki and Kj . This number is
defined as the sum of all intersections (with signs) between Ki and a Seifert surface
spanning Kj and transverse to Ki (knots are oriented, and their Seifert surfaces
are also oriented coherently). Cambiare lettera M?

Proposition 1.5. The matrix M describes the intersection form QN of H2(N,Z).

Proof. For each i take a Seifert surface Σi ⊂ S3 for Ki, oriented coherently
with Ki. By attaching to Σi the core disc of the handle attached to Ki we get
a closed oriented surface Σi ⊂ N . We show that the classes [Σ1], . . . , [Σn] form a
basis for H2(N,Z), and that the intersection form with respect to this basis is M .

By shrinking every 2-handle to its core disc, and then the 0-handle to its core
point, we can build a deformation retract of N onto a wedge S2 ∨ . . . ∨ S2 of n
spheres contained in N . These spheres generate H2(S2 ∨ . . . ∨ S2,Z) ∼= H2(N,Z).
In the deformation retraction, the surface Σi is shrinked to a point. Therefore Σ is
sent to the i-th sphere generating H2(N,Z). This shows that the classes [Σi] form
a basis.

It remains to show that Mij = Q([Σi], [Σj ]). In order to take two transverse
representatives, we push both Σi and Σj towards the center of D4. We push Σi
more than Σj . The transverse intersections between the new surfaces correspond
to the one between Ki and Σj , with the same signs. Therefore we are done. � Figura.

Remark 1.6. The proof of Proposition 1.5 shows that (if N has a decom-
position without 1-handles) there is a basis H2(N,Z) of elements represented by
topologically embedded spheres. Note however that such spheres cannot in general
be perturbed to smooth embedded ones.

Corollary 1.7. Every symmetric bilinear (not necessarily unimodular) form
is the intersection form of some compact simply connected 4-manifold N with bound-
ary.

Proof. It suffices to prove that every symmetric integer matrix M is the
intersection matrix of some link. Let n be the rank of M . Take n discs in S3.
Connect each pair of discs with an arc (which connects their boundaries and does

5Every connected closed 3-manifold can be constructed in this way, as we will see later.
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not intersect any other disc). For every pair i 6= j, slide Kj along the arc and make
it wind Mij times around Kj . Decorate each Ki with the integer Mii.

The manifold N described by the resulting Kirby diagram has intersection form
M and is simply connected, because it is made of 0- and 2-handles. �

Remark 1.8. In the proof of Corollary 1.7, the manifold N is constructed via
a Kirby diagram in which every knot is trivial. With a manifold N constructed
in this way, the homology H2(N,Z) has a basis whose elements are represented by
smoothly embedded spheres.

2. Topological manifolds

This section is devoted to topological manifolds. We wil also introduce the
fundamental form E8, which is even more important in the smooth category.

2.1. The E8 form. There are finitely many isomorphism types of unimodular
forms on each rank r. Every form of rank r 6 8 is constructed by summing the
elementary forms [1], [−1], H, except the following form of rank r = 8.

E8 =



2 1
1 2 1

1 2 1
1 2 1

1 2 1 1
1 2 1

1 2
1 2


.

We see immediately that E8 is even (there are only even numbers on the diagonal).
It is also quite easy to see that E8 is positive definite: the top-left sub-matrices
of rank 1, 2, . . . , 8 have positive determinants 2, 3, 4, 5, 6, 7, 8, 1. Actually, the only
non-immediate thing to prove is that the determinant of the whole matrix is 1.
This is done by calculating the determinant on the last row and then on the last
column.Cerca inglese per sviluppo

per riga

detE8 = 2 · 8−


2 1
1 2 1

1 2 1
1 2

2 1
1 2

 = 2 · 8− 5 · 3 = 1.

The form E8 is thus even and has signature σ(E8) = 8. We let nQ denote the
n-times sum Q ⊕ . . . ⊕ Q if n > 0, the empty (zero rank) form if n = 0, and the
(−n)-times sum (−Q)⊕ . . .⊕ (−Q) if n < 0.

The only even forms we may obtain with [1], [−1], and H are nH, and they
all have signature zero. Therefore E8 is a new form. By using E8 and H, we
may construct more even forms, with signature σ(mE8 ⊕ nH) = 8m any number
divisible by 8.

Exercise 2.1. Some exercises on intersection forms.
(1) Show that H = −H, but E8 6= −E8.
(2) Show that H ⊕ [1] ∼= 2[1]⊕ [−1].
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(3) Show that E8 ⊕ (−E8) ∼= 8H.
(4) Let Q = [−1] ⊕ 8[1]. Sia W ⊂ Z9 be the submodule orthogonal (with

respect to Q) to the vector v = (3, 1, . . . , 1).
• Show that Q|W is even and has signature 8.
• Show that Q|W ∼= E8.
• Deduce that E8 ⊕ [−1] ∼= 8[1]⊕ [−1]. On the other hand, show that
E8 ⊕ [1] 6∼= 9[1]. (Hint: count the number of elements with norm 1 in
both forms.)

2.2. Plumbing. Proposition 1.7 indicates that there are 4-manifolds with
boundary having intersection form Q = E8. We now introduce another technique
for building such manifold.

Take two oriented disc bundles E1, E2 with Euler numbers e1, e2 over two ori-
ented surfaces Σ1,Σ2. A plumbing consists in the following operation. Take two
discs D1 ⊂ Σ1 and D2 ⊂ Σ2, and identify each (orientation-preservingly) with
D2. The bundles trivialize as D1 ×D2 and D2 ×D2. We glue together the two 4-
manifolds E1, E2 by identifying D1×D2 with D2×D2 along the map (x, y) 7→ (y, x)
which switches the factors.

The result is a new manifold N . The surfaces Σ1 and Σ2 still live in N and
have the same Euler number as before. They intersect transversely in one point,

with positive sign. The intersection matrix of N is therefore
(
e1 1
1 e2

)
.

Consider a connected graph, with an integer labeling each vertex. This defines
a manifold, obtained by taking a disc bundle over S2 for each vertex (with Euler
number determined by the label), and performing a plumbing for each edge.

A manifold with intersection form E8 can be constructed from the following
plumbing. We denote it by PE8 . Figura piombaggio

2.3. Homology 3-spheres. We can construct compact 4-manifolds M with
arbitrary intersection pairing. It turns out that unimodularity is strictly linked
with the absence of homology on ∂M .

Proposition 2.2. Let M be an oriented compact simply connected 4-manifold
with boundary. Let ∂M be connected. The intersection form Q on H2(M,Z) is
unimodular if and only if ∂M is a homology sphere.

Proof. Consider the exact sequence (over the integers)

H3(M,∂M) ∂−−−−→ H2(∂M) i−−−−→ H2(M)
j−−−−→ H2(M,∂M) ∂−−−−→ H1(∂M) i−−−−→ H1(M)

Since M is simply connected, the first and last modules are trivial.6 Therefore we
have

0 ∂−−−−→ H2(∂M) i−−−−→ H2(M)
j−−−−→ H2(M,∂M) ∂−−−−→ H1(∂M) i−−−−→ 0

The module H2(M,∂M) is canonically identified with H2(M), which can in turn
be identified with the dual module H2(M)∗ since there is no torsion (because M is
simply connected). The map j can therefore be interpreted as a map

j : H2(M)→ H2(M)∗

6Actually, triviality of H1(M) suffices.
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and this map is in fact the adjunction of the intersection form on H2(M). By
definition, the intersection form is unimodular if and only if j is an isomorphism.
This holds if and only if both H2(∂M) and H1(∂M) vanish, as required. �

In particular, the 3-manifold ∂PE8 is a homology sphere.Descrivere qui meglio la
sfera di Poincaré?

2.4. Contractible 4-manifolds. A 4-manifoldM with boundary is contractible
if it is homotopically equivalent to a point. Note that ∂M does not need to be a
sphere. The following result is a particular case of Proposition 2.2.

Proposition 2.3. The boundary ∂M of a contractible 4-manifold M is a ho-
mology sphere.

There are actually plenty of contractible smooth 4-manifolds. Note that we
need 1-handles to construct them: by using 0- and 2-handles we only get D4 (be-
cause there cannot be any 2-handles, since the Euler characteristic must be 1).

The following proposition shows a technique to construct them, by taking a
0-handle, a 1-handle, and a 2-handle which cancels algebraically the 1-handle.

Proposition 2.4. Let M = H0 ∪ H1 ∪ H2 be a manifold decomposed into
handles such that i(H1, H2) = 1. It is a contractible manifold.

Proof. The manifold M is easily seen to be simply connected. It has theEsercizio su presentazioni?

homology type of a point because H1 and H2 cancel. Use Whitehead Theorem.7 �

If H1 and H2 have geometric intersection 1, then they cancel and we get D3.
To get other manifolds, we can take a (sufficiently knotted) core sphere of H2 which
crosses the belt sphere of H1 three times (with signs +,+,−). To be certain that
the result is not D3, it suffices to check somehow that the boundary is a homology
sphere distinct from S3.

The only smooth contractible manifold currently known bounded by S3 is D4:
whether this is the only one or not, the question is equivalent to the (still open)
smooth 4-dimensional Poincaré conjecture.

Question 2.5 (Smooth Poincaré Conjecture in dimension 4). Let M4 be
smooth and homotopy equivalent to S4. Is M4 diffeomorphic to S4?

2.5. Freedman’s theorems. A converse of Proposition 2.3 holds in the topo-
logical setting.

Theorem 2.6 (Freedman). Every homology sphere bounds a contractible 4-
manifold.

Super-sketch. Let Σ be a homology 3-sphere. Take Σ× [0, 1]. Two steps:
(1) By doing some topological surgery, transform Σ× [0, 1] into a manifold S

with the same boundary and homology, but simply connected.
(2) Take countably many copies S1, S2, . . . , Sk, . . . of S, glue them altogether,

and compactify with one point. The resulting object is clearly con-
tractible. Much less clearly, it is a topological manifold: the cone point
has indeed a neighborhood homeomorphic to a 4-ball.

�

7Theorem 3.3 on page 6.
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Theorem 2.6 is not valid in the smooth category. For instance, as we will
see below, Poincaré homology sphere does not bound any smooth contractible 4-
manifold.

Corollary 2.7 (Freedman). Every symmetric unimodular bilinear form is the
intersection form of a simply connected closed topological 4-manifold.

Proof. By Corollary 1.7 every symmetric unimodular bilinear form Q is the
intersection form of a simply connected 4-manifold M with boundary. By Proposi-
tion 2.2 the boundary ∂M is a homology sphere. It therefore bounds a contractible
topological manifold N . Glue M and N together. Since N is contractible, the
resulting manifold has the same fundamental group and 2-homology as M . �

This result is far from being true in the smooth setting, as we will see below.
This leads to plenty of topological 4-manifolds having no smooth structure. This
existence result is actually strengthened by an (almost) uniqueness theorem.

Theorem 2.8 (Freedman). Every even (odd) symmetric unimodular bilinear
form is the intersection form of precisely one (two) simply connected topological
closed 4-manifold, up to homeomorphism.

The two manifolds in the even case are distinguished by the Kirby-Siebenmann
invariant, an obstruction to admitting smooth structures which is also defined in
higher dimensions. Indeed, one of the two manifolds sharing the same form does
not admit a smooth structure (and in many cases, both do not). In particular, we
get the following.

Corollary 2.9. Two smooth closed oriented simply connected 4-manifolds are
homeomorphic if and only if they have isomorphic fundamental form.

Since the empty form is even, we have the following.

Corollary 2.10 (Poincaré conjecture in dimension 4). A closed topological
manifold homotopically equivalent to S4 is homeomorphic to S4.

Some examples follow.
2.5.1. [1]. The form [1] is odd. There are therefore two topological manifolds

with this form. One is of course CP2, while the other one is denoted by ∗CP2. Both
such manifolds can be constructed as follows: take a knot K ⊂ S3 and label it with
1. This is a Kirby diagram of a manifold with one 0-handle and one 2-handle, with
intersection form 1. Its boundary is a homology sphere, which can be closed up via
a contractible topological manifold.

Depending upon the knot K, the resulting manifold is homeomorphic to either
CP2 or ∗CP2. The trivial knot yields CP2, the trefoil knot gives ∗CP2.

2.5.2. H. The forms H is even. The only topological manifold with form H is
S2 × S2, which of course is also smooth.

2.5.3. E8. The form E8 is even. There is only one topological (closed, simply
connected) manifold with form E8, and is just named “the E8-manifold”. As we
will see below, the E8-manifold does not admit any smooth structure.





CHAPTER 4

Classic theorems on smooth 4-manifolds

We turn back to the smooth 4-dimensional category. We state and prove
here some important “classic” theorems about 4-manifolds, which were stated and
proved before 1970. They include:

• Whitehead theorem, which says that the homotopy type of a closed simply
connected 4-manifold is determined by its intersection form only,

• Wall’s theorem, which says that two homotopic simply-connected smooth
manifolds become diffeomorphic after summing with some copies of S2 ×
S2,

• Rohlin theorem, which says that an oriented 4-manifold with zero signa-
ture bounds a 5-manifold.

1. Whitehead theorem

We prove in this section Whitehead’s theorem, which says that the fundamental
form determines the homotopy type of a closed simply connected 4-manifold. This
result was proved in 1940. Much later, Freedman proved in 1980 that it also
determines the homeomorphism type of the manifold1.

A nice geometric way to prove this theorem mimics a famous construction of
Thom-Pontryagin, which allowed in 1950 to determine various homotopy groups of
spheres.

1.1. The Thom-Pontryagin construction. A framed submanifold Y k ⊂
Xm+k of a smooth closed manifold X is a smooth submanifold equipped with a
trivialization of the normal bundle, i.e. an identification of NY with Y × Rm.

A cobordism of two framed k-manifolds Y0, Y1 ⊂ X is a properly embedded
framed (k + 1)-manifold Z ⊂ X × [0, 1], whose intersection with X × 0 and X × 1
coincides with Y0 × 0 and Y1 × 1 as framed manifolds (that is, framings match). Scrivere qualcosa su

transversalitá di mappe, o
mettere valore regolare.Fix a point p ∈ Sm. Let f be a smooth map

f : Xm+k −→ Sm

which is transverse to p. Its counterimage f−1(p) is a smooth submanifold Y k ⊂ X.
Take a small disc Dm around p. Over this disc the map looks like a projection
Y k ×Dm → Dm, and this equips the manifold Y with a framing.

Proposition 1.1 (Thom-Pontrjagin construction). This operation defines a
bijection

[Xm+k, Sm] −→ Ωframed
k (Xm+k)

1This is actually true only for smooth manifolds. For topological ones, we also need the
Kirby-Siebenman invariant, see Theorem 2.8 on page 31. Whitehead theorem holds for topological

manifolds, but we prove it only in the smooth category for simplicity.
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between the set [Xm+k, Sm] of maps from Xm+k to Sm seen up to homotopy, and
the set Ωframed

k (Xm+k) of k-dimensional framed submanifolds in Xm+k seen up to
cobordism.

Proof. We prove that the function

Ψ : [Xm+k, Sm] −→ Ωframed
k (Xm+k)

introduced above is well-defined. Given f , the trivialization on Y = Ψ(f) is well-
defined only up to homotopy; however, homotopic trivializations are easily seen
to be cobordant, so this is not a problem. Let f0 and f1 be two functions, both
transverse to p, linked by a homotopy F : X × I → Sm. They define two framed
manifolds Y1 and Y2. We can perturb F so that it is also transverse to p. The
pre-image F−1(p) is thus a framed manifold Z ⊂ X × I which connects Y1 and Y2:
these are thus cobordant, as required.

We define an inverse

Φ : Ωframed
k (Xm+k) −→ [Xm+k, Sm]

as follows. Let Y k ⊂ Xm+k be a framed manifold. A tubolar neighborhood is
identified with Y k ×Dm. Let Dm → Sm be the surjective map which sends 0 to
p and collapses ∂Dm to the antipodal point q. By projecting Y k × Dm onto its
second factor we get

Y k ×Dm −→ Dm −→ Sm.

Extend this map to the whole of X by sending every point in Xk+m \ (Y k×Dm) to
q. We get a map X → Sm, as required. If Y k changes by cobordism, the resulting
map changes by homotopy. This defines Φ.

The map Ψ ◦ Φ is clearly the identity. We prove that Φ ◦ Ψ also is. A map
f0 induces a framed Y = Ψ(f0), which in turn induces another map f1 = Φ(Y ).
The maps f0 and f1 coincide (up to homotopy) on a fixed tubolar neighborhood
Y ×Dm, which is sent to a disc D in Sm, and may differ a lot on the complement
X \ (Y × Dm). However, such a complement is sent by both f0 and f1 into the
complementary disc Sm \ int(D). Two maps with values in a disc are homotopic
(relative to their boundary), and hence we are done. �

The set Ωframed
k (Sm+k) has a natural group structure. Define the sum of two

framed manifolds as the disjoint union of such, embedded in two disjoint n-discs in
Sm+k.

Corollary 1.2. The bijection above induces an isomorphism of groups

πm+k(Sm) −→ Ωframed
k (Sm+k).

Pontrjagin used this isomorphism to calculate the homotopy groups of spheres
for k = 1, 2.

Proposition 1.3. We have πm(Sm) = Z.

Proof. A framing of a connected 0-manifold, i.e. a point, is the choice of a
basis in the tangent bundle. It has a sign ±1 depending on the orientation of the
basis (compared with the orientation of Sn). The sign of a framed 0-manifold is the
sum of the signs of its components. Sign gives an isomorphism between Ωframed

0 (Sm)
and Z. �

Proposition 1.4. We have π3(S2) = Z and πm+1(Sm) = Z2 for all m > 3.
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Proof. Fix a framing on a connected 1-manifold in Sm. Every other framing
is determined by a curve in O(m− 2). � Finire dimo.

Proposition 1.5. We have πm+2(Sm) = Z2 for all m > 3. Check!

Later, Rohlin attempted to extend these techniques to k = 3. The following
result is misteriously related to another theorem of Rohlin on 4-manifolds which
we will explore in the next sections.

Proposition 1.6. We have πm+3(Sm) = Z24 for all m > 5.

Later on, Serre introduced more powerful techniques to calculate the homotopy
groups of spheres, and the Pontjagin-Thom construction was then used the other
way round, to get more informations on cobordisms. We mention some results
obtained with Serre’s techniques.

Proposition 1.7. We have πm+4(Sm) = 0, πm+5(Sm) = 0, πm+6(Sm) = Z2

when m is sufficiently big.

1.2. Wedge product of spheres. The following generalization of Pontryagin-
Thom construction will be needed in the proof of Whitehead’s theorem below. Let
∨hS2 be a wedge product of h spheres. Fix points p1, . . . , ph in distinct spheres,
disjoint from the vertex v of the wedge. Let f be a continuous map

f : Xm+k −→ ∨hS2

which is everywhere smooth except at f−1(v), and is transverse to p1, . . . , ph. The
counterimages f−1(p1), . . . , f−1(ph) define h disjoint (not necessarily connected)
framed k-submanifolds of X.

If X ∼= S3, the h framed 1-submanifolds define an intersection matrix Q as
described in Section 1.4. Vedere caso sconnesso. Cer-

care dimostrazione decente.

Proposition 1.8. This operation defines an isomorphism of groups

π3(∨hS2) −→ S(h,Z) ∼= Z
(h+1)h

2

where S(h,Z) is the group of all symmetric integer matrices of rank h.

1.3. Whitehead theorem. We prove here the following.

Theorem 1.9 (Whitehead). Let M1 and M2 be two closed smooth oriented
simply connected 4-manifolds. They are homotopically equivalent if and only if
their intersection forms QM1 and QM2 are isomorphic.

Proof. Two homotopically equivalent manifolds have the same cohomology
ring and thus the same intersection form. Conversely, let M1 and M2 have isomor-
phic intersection forms. Take M = M1. Let Ṁ be M with the interior of a n-disc
removed. The only non-trivial homologies of Ṁ are H0 = Z and H2 = Zh. Since
M is simply connected, Hurewicz theorem guarantees that every element in H2 is
represented by an immersed sphere.2

In particular, a basis α1, . . . , αh is represented by immersions fi : S2 → M
with i = 1, . . . , h. We can form a bouquet of these immersions (we homotope them
so that they all touch a fixed point in M) and get a map

f : ∨hS2 −→ Ṁ.

2See Proposition 3.4 on page 21.
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This map induces isomorphisms on homologies H0 and H2, and is thus a homotopy
equivalence by Whitehead’s Homology Theorem 3.3. The manifold M is obtained
from Ṁ by attaching a 4-cell. The attaching map translates via the homotopy
equivalence to an attaching map ψ : ∂D4 → ∨hS2, well-defined up to homotopy.
The homotopy equivalence extends to an equivalence between M and the CW-
complex ∨hS2 ∪ψ D4.

The map ψ defines an element in π3(∨hS2). By Proposition 1.8, the map ψ is
determined up to homotopy by the corresponding matrix Q. It remains to show that
Q represents the intersection form QM . Following Thom-Pontryagin construction,
take a point pi in each 2-sphere. This defines a framed link Yi ⊂ S3.

Let Fi be an oriented surface properly embedded in D4 bounding Yi. By
collapsing ∂Fi to a point we get an oriented surface F̄i in ∨hS2 ∪ϕD4 and hence a
homology element in H2(∨hS2 ∪ϕ D4) ∼= H2(M). The homology elements we get
are dual to α1, . . . , αh, thus they form a basis. The way they intersect (transversely)
in D4 transports to M : therefore Q represents QM . �Sistemare connessione Fi

2. Cobordism groups

2.1. Definitions. Two oriented closed smooth manifolds Mn and Nn are
cobordant if there is an oriented manifold Wn+1 such that ∂Wn+1 = Mn tNn

.

Proposition 2.1. Cobordism is an equivalence relation on the set of all closed
oriented n-manifolds.

Proof. A manifold Mn is cobordant to itself: take Wn+1 = Mn × [0, 1]. If
Mn is cobordant to Nn via Wn+1, then Nn is cobordant to Mn via W

n+1
. To

prove transitivity, simply glue two cobordisms. �

We denote the set of cobordism classes of closed oriented smooth n-manifolds by
Ωn. Two cobordant manifolds are denoted as Mn ∼ Nn. We denote the cobordism
class of Mn by [Mn]. Given two oriented closed manifolds Mn and Nn, we define
the sum [Mn] + [Nn] via the disjoint union [Mn tNn].

Proposition 2.2. The sum is well-defined and makes Ωn an abelian group.

Proof. The sum is well-defined since cobordisms of Mn and Nn trivially yield
cobordisms of Mn tNn. Disjoint union is an abelian operation. �

Note that [Mn] = 0 if and only if there is an oriented Wn+1 with ∂Wn+1 = Mn.

Exercise 2.3. We have [Mn tNn] = [Mn#Nn].

The cobordism groups Ωn form in fact a graded ring Ω∗ with the product
[Mm] · [Nn] = [Mm ×Nn]. The unit is the point in Ω0, with sign +1.

2.2. General results. An oriented point is a point with a sign ±1.

Exercise 2.4. The map which associates to an oriented 0-manifold the sum
of the signs of its components gives an isomorphism Ω0 → Z.

Every 1-manifold and 2-manifold is easily shown to bound a 2- and 3-manifold.
Therefore Ω1 = Ω2 = 0. The same result holds for 3-manifolds and is proved below.
Concerning 4-manifolds, we already know3 that the signature induces a surjective

3See Theorem 1.14 on page 18.
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map σ : Ω4 → Z. We prove below that such a map is in fact an isomorphism. The
first cobordism groups are shown below.

n 0 1 2 3 4 5 6 7 8 9 10 11

Ωn Z 0 0 0 Z Z2 0 0 Z⊕ Z Z2 ⊕ Z2 Z2 Z2

A generator for Ω4 is [CP2]. Generators for Ω8 are [CP4] and [CP2 × CP2]. This
kind of picture extends to higher dimensions and fully describe the free part of Ωn.
Let Ω∗/torsion denote the quotient of Ω∗ by the subring consisting of all torsion
elements.

Theorem 2.5 (Thom). The ring Ω∗/torsion is freely generated by complex spaces
of even dimension.

Proiettivi di dimensione dis-
pari bordano? Si vede
facile?2.3. Surgery. A simple way to relate two cobordant oriented manifolds Mn

and Nn is to construct one from the other via surgery. In its most general meaning,
a surgery consists of removing some n-dimensional submanifold with boundary
Pn ⊂ int(Mn) and substituting it with an oriented manifold Qn. The substitution
is made by fixing an orientation-preserving diffeomorphism ϕ : ∂Pn → ∂Qn and
taking

Nn = (Mn \ int(Pn)) ∪ϕ Qn.
We can also define the manifold Pn ∪ϕ Qn by identifying the two boundaries ∂Pn

and ∂Qn along the same ϕ. It is a closed n-manifold. We assign it an arbitrary
orientation (coinciding with either Pn or Qn).

Proposition 2.6. If [Pn ∪ϕ Qn] = 0 then Mn and Nn are cobordant.

Proof. By hypothesis there is an oriented manifold Wn+1 with ∂Wn+1 =
Pn∪ϕQn. A cobordism between Mn and Nn is constructed by taking Mn× [−1, 1]
and attaching Wn+1 to Mn×1 along the map which sends Pn to Pn×1 identically.

� Semplice figura.

Example 2.7 (Handles). We have already encountered the simplest example
of surgery when adding a k-handle Wn+1 = Dk × Dn−k+1. The level manifold
changes by substituting a Pn = Sk−1 ×Dn−k+1 with Qn = Dk × Sn−k. We have
Pn ∪Qn = ∂Wn+1 ∼= Dn+1.

Example 2.8 (Round handles). Let Mn be an oriented manifold containing a
copy of Sn−2 × S1. Since Mn is oriented, this submanifold has a product tubolar
neighborhood Pn = Sn−2 × S1 ×D1. A round handle on Mn consists of attaching
Wn+1 = Dn−1×S1×D1 to this tubolar neighborhood. The manifold Mn changes
by surgery, and Pn is replaced by Qn = Dn−1 × S1 × S0.

Example 2.9 (Twisted round handles). Suppose n > 3. We takeWn+1 = Dn×
S1 as in the previous example, but we choose a slightly more elaborate subdivision
of ∂Wn+1 = Sn−1 × S1 as Pn ∪Qn. Subdivide Sn−1 as Sn−1 = A ∪B where B is
the union of two small discs centered at the poles and A is the closure of Sn−1 \B,
i.e. a tubolar neighborhood of the equator Sn−2.

If we take Pn = A× S1 and Qn = B × S1 we get the previous example. Here,
when traveling along S1, we rotate A and B so that the two components of B
get interchanged after one complete turn. That is, we fix an axis intersecting the
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equator and define Rθ as the counterclockwise rotation of Sn−1 along this axis of
angle θ. Then we take

Pn =
⋃

θ∈[0,π]

(Rθ(A), 2θ)

and define Qn similarly. The manifold Pn is diffeomorphic to Dn−2 × S1. The
manifold Qn is the orientable D1-bundle over a non-orientable Sn−2-bundle over
S1!4

2.4. Smooth cycles. We want to prove that every closed 3-manifold bounds a
4-manifold, and that every closed 4-manifold of zero signature bounds a 5-manifold.
We do this by mimicking the construction of a Seifert surface for a knot in S3. These
are the steps:

(1) Embed Mn in Rn+k, or equivalently in Sn+k.
(2) Let T be the tubolar neighborhood of Mn in Sn+k. Find a section of M

in ∂T which is homologically trivial in the complement Sn+k \ Ṫ .
(3) The section bounds a cycle: try to represent this cycle by a manifold.

Step (3) works if k 6 3. As a general rule, cycles of codimension at most 2 can
always be smoothen.

Lemma 2.10. Let Zn+k be a compact smooth manifold and Mn ⊂ ∂Zn+k be a
closed oriented connected submanifold which is homologically trivial, i.e. [Mn] = 0
in Hn(Zn+k,Z). If k 6 3 there is a properly embedded smooth oriented submanifold
Wn+1 ⊂ Zn+k such that ∂Wn+1 = Mn.

Proof. The long exact sequence (over the integers)

. . . −−−−→ Hn+1(Z, ∂Z) ∂−−−−→ Hn(∂Z) i∗−−−−→ Hn(Z) −−−−→ . . .

says that [M ] = ∂α for some cycle α ∈ Hn+1(Z, ∂Z). This group is canonically
isomorphic to Hk−1(Z). If k = 1 this implies that ∂Z = M and we are done.

Suppose k ∈ {2, 3}. Recall that there is a canonical bijection

[Z,K(Z, k − 1)] −→ Hk−1(Z,Z),

and since k − 1 ∈ {1, 2} we can either take K(Z, 1) = S1 or K(Z, 2) = CP∞.5 The
Eilenberg-MacLane space has a preferred class u ∈ Hk−1 and the bijection sends a
map f to the class f∗(u).

Let f be a map such that f∗(u) is dual to α. Consider the simpler case k = 2.
Up to homotopy, we can suppose f is smooth and transverse to a point p ∈ S1.
The counterimage f−1(p) is thus a proper submanifold Wn+1 ⊂ Zn+2. The point
p is Poincaré dual to u and hence f−1(p) is dual to α. Actually, we may start with
an f such that f−1(p) ∩ ∂Zn+2 = Mn, so that ∂Wn+1 = Mn as required.Spiegare come si fa?

If k = 3, the map f has compact image and thus lie in CPN ⊂ CP∞ for some
N . We substitute p with a complex hyperplane H in CPN , which is dual to u here:
we make f smooth transverse to H and take f−1(H). �

The same proof shows in fact that all cycles of codimension at most 2 may be
represented by smooth manifolds.

4The equator is mirrored along the axis, and thus yield a non-orientable Sn−2-bundle. When

n = 3 the manifold Q3 is the orientable line bundle over the Klein bottle.
5See Section 3.3 on page 7.
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Lemma 2.11. Let M be a smooth manifold of any dimension and i ∈ {1, 2}.
The Poincaré (or Lefschetz) dual to any element in Hi(M,Z) may be represented
as a smooth codimension-i orientable submanifold.

2.5. Embedding in RN . Point (2) of our program also works if k 6 2.

Theorem 2.12. Every oriented connected smooth manifold Mn ⊂ Rn+2 bounds
a smooth oriented “Seifert” manifold Wn+1 ⊂ Rn+2

Proof. First, we prove that the normal bundle NM of Mn in Rn+2 is trivial.
The normal bundle is an oriented R2-bundle, and is hence completely determined
by its Euler number (or equivalently its Chern class, if seen as a complex line
bundle). However, the Euler number is zero because the manifold is embedded in
Rn+2. Therefore NM must be the trivial bundle.6

Let T be an open tubolar neighborhood of Mn inside Rn+2. Fix an identifica-
tion ∂T ∼= Mn × S1. Künneth formula gives an isomorphism

Hn(Mn,Z)⊕Hn−1(Mn,Z)
ϕ−−−−→ Hn(M × S1,Z).

Thanks to Lemma 2.11, every cycle α ∈ Hn−1(Mn,Z) may be represented by a
closed oriented manifold Σn−1 ⊂Mn. The isomorphism sends(

[Mn], 0
)
7−→ [Mn × {p}](

0, [Σn−1]
)
7−→ [Σn−1 × S1].

Mayer-Vietoris sequence for Rn+2 = T ∪ (Rn+2 \ Ṫ ) gives an isomorphism

0 −−−−→ Hn(∂T,Z)
i∗×j∗−−−−→ Hn(T,Z)⊕Hn(Rn+2 \ Ṫ ,Z) −−−−→ 0.

Summing up, we get an isomorphism

Ψ : Hn(Mn,Z)⊕Hn−1(Mn,Z)
(i∗×j∗)◦ϕ−−−−−−→ Hn(T,Z)⊕Hn(Rn+2 \ Ṫ ,Z).

The restriction to the first factors

Hn(Mn,Z)
i∗◦ϕ−−−−→ Hn(T,Z)

is induced by inclusion and is in fact an isomorphism. We identify these two spaces.
Let ([Mn], [Σn−1]) be the element which is sent to ([Mn], 0) by Ψ. It is represented
as

(Mn × 0) ∪ (Σn−1 × S1)
inside ∂T ∼= Mn × S1. To get a manifold, we perform the move suggested in the
picture. The surface Σn−1 is orientable and hence has a trivial normal bundle in Fare figura.

Mn. A tubolar neighborhood of Σn−1 × S1 in Mn × S1 is thus diffeomorphic to
Σn−1×S1× [−1, 1]. The cycle (Mn×0)∪ (Σn−1×S1) intersects this neighborhood
in

Σn−1 ×
((

0× [−1, 1]
)
∪
(
S1 × 0

))
.

We can substitute this portion with Σn−1×C, where C is the graphic of the function graphic?

γ : [−1, 1]→ S1, γ(t) = −eπit.
The result is another manifold in Mn × S1, still diffeomorphic to Mn: the

diffeomorphism in the surgered region is given by (t, 0) 7→ (t, γ(t)). In fact, the new
manifold is another section of the bundle, which yields a different trivialization7. �

6See Section 4.2 on page 23.
7The trivializations of a (trivial) R2-bundle over a manifold Mn are indeed in 1-1 correspon-

dence with H1(Mn,Z) ∼= Hn−1(Mn,Z).
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2.6. Embedding in RN up to cobordism. We are left with the point (1)
of our program. If we can embed Mn in Rn+2, we are done. However, Whitney’s
theorem only provides embeddings in the much larger R2n. When n = 3, we get an
embedding of a 3-manifold in R6 instead of the required R5.

Whitney’s theorem provides however an immersion of Mn in R2n−1. There are
manifolds that do not embed in R2n−1. Up to cobordism, they embed.

Theorem 2.13. Every closed oriented manifold Mn is cobordant to a closed
oriented manifold embedded in R2n−1.

Proof. If n 6 2 the assertion is trivial, so we suppose n > 3. Let f : Mn →
R2n−1 be a generic immersion. It is injective excepts at double points, which form
circles in R2n−1.8 The counterimage of one circle C is a 1-manifold double-covering
it: that is, it consists of either one or two circles in Mn.

The normal bundle on f−1(C) inside Mn is trivial because Mn is orientable.
Fix a trivialization Rn−1×f−1(C). Let NC be the normal bundle over C in R2n−1.
The trivialization induces an identification of each fiber of NC with Rn−1 × Rn−1.
Actually, this identification is well-defined only up to permuting the two factors:
in fact, when carrying the dentification along C, the factors may be preserved (if
f−1(C) is disconnected) or interchanged (if f−1(C) is connected). In the first case,
we get a global trivialization of NC as Rn−1×Rn−1×C. Since NC is in fact always
trivial (because Rn−1 is orientable), the second case may occur only if n is odd.

Project the normal bundle onto a tubolar neighborhood of f(C) in R2n−1. On
each fiber the manifold Mn self-intersects as(

Dn−1 × 0
)
∪
(
0×Dn−1

)
.

Perform at each fiber a generalization of the desingularization used to destroy nodal
points in complex curves. The desingularization for curves is elegantly described
as a perturbation from zw = 0 to zw = ε.9 In general dimension, we can describe
it as follows.

Let Rθ denote the counterclockwise rotation of angle θ on R2. Let Wi be the
plane generated by ei and en+i−1. We have Rn−1 × Rn−1 = W1 ⊕ . . . ⊕Wn. Let
Sθ = R−θ ⊕ Rθ ⊕ . . . ⊕ Rθ be the endomorphism of R2n which rotates W1 by
the angle −θ and all the other planes Wi, i > 1 by the angle θ. Note that Sπ/2
sends (x1, . . . , xn, 0, . . . , 0) to (0, . . . , 0,−x1, x2, . . . , xn) and thus interchanges the
two discs via an orientation-reversing map.

Define A ⊂ S2n−1 as the union of Sθ(Sn−1 × 0) when θ varies from 0 to π/2.
The subset A is diffeomorphic to Sn−1 × [0, π/2], a manifold. We have

∂A = ∂(Dn × 0) ∪ ∂(0×Dn).

By construction, we can give A an orientation so that the orientations on ∂A and
∂(Dn × 0) ∪ ∂(0 × Dn) also match. Note that A is symmetric with respect toFigura unidimensionale che

spiega l’orientazione interchanging the two factors in Rn−1 × Rn−1, and hence the move is really well-
defined.

If we do this operation for each component C of self-intersections, we get a
new manifold Nn embedded in R2n−1. The new manifold Nn is obtained from Mn

by surgery, i.e. by substituting a submanifold P with some other maniflold Q, see
Section 2.3. Both P and Q fiber over C ∼= S1. The fiber in P consists of two

8See Section 2.3.2 on page 5.
9See Section 3.1 on pager 20.



2. COBORDISM GROUPS 41

(n − 1)-discs D,D′. The fiber in Q is A ∼= Sn−2 × [−1, 1]. Together, they form
a (n − 1)-sphere. It is easy to conclude that P ∪ Q = Sn−2 × S1 and hence Mn

and Nn are cobordant by Proposition 2.6: in fact, the surgery corresponds to the
attaching of a round handle, which is twisted if f−1(C) is connected, see Examples
2.8 and 2.9. �

We are ready to prove the following.

Corollary 2.14. Every oriented 3-manifold bounds an oriented 4-manifold.
(That is, Ω3 = 0.)

Proof. A closed oriented 3-manifold is cobordant to a closed oriented 3-
manifold embedded in R5. Such a manifold bounds an oriented 4-manifold by
Theorem 2.12. �

2.7. 4-manifolds. We turn to the more difficult problem of determining Ω4.
We already know that if M4 bounds then it has zero signature σ(M4) = 0.10 The
signature is additive on disjoint union and thus gives a surjective homomorphism
σ : Ω4 → Z. The class [CP2] is sent to 1. We now prove that it is injective.

Theorem 2.15 (Rohlin). The signature σ : Ω4 → Z is an isomorphism.
Dimostrazione da ampliare
in alcuni punti.Proof. The main idea is that all the arguments used in the 3-dimensional

case may be adapted to the 4-dimensional one up to summing up with some copies
of CP2. Actually, we prove that every closed oriented M4 is cobordant to some
#kCP2. We necessarily get σ(M4) = kσ(CP2) = k, and hence σ is injective, as
required.

Theorem 2.13 says that M4 is cobordant to a closed oriented 4-manifold em-
bedded in R7, which we still call M4 for simplicity. Theorem 2.12 does not hold
in general for codimension-3 embeddings. We try however somehow to mimic its
proof.

The normal bundle NM4 is not necessarily trivial in codimension 3. Let however
T be a tubolar neighborhood of M4 in R7. The Euler class of NM4 is zero (because
M4 lies in R7). Since the Euler class is an element in H3(M4,Z), there is a section
of NM4 on a 3-skeleton of M4. Up to adding some CP2 to M4, we can suppose the
section extends. Mettere sezione su teoria

dell’ostruzione e spiegare
meglio.Let T be an open tubolar neighborhood of M4 in R7. Its boundary ∂T is a

S2-bundle over M . It is not necessarily trivial, but it has a section, which we denote
by s(M). A section suffices for the Künneth formula to hold. Thus, as in the proof
of Theorem 2.12 we have an isomorphism

H4(M4,Z)⊕H2(Mn,Z)
ϕ−−−−→ H4(∂T,Z).

which sends (
[Mn], 0

)
7−→ [s(Mn)](

0, [Σn−1]
)
7−→ [π−1(Σn−1)]

where π : ∂T →M is the projection. Mayer-Vietoris sequence for R7 = T ∪(R7 \ Ṫ )
gives an isomorphism

0 −−−−→ H4(∂T,Z)
i∗×j∗−−−−→ H4(T,Z)⊕H4(R7 \ Ṫ ,Z) −−−−→ 0.

10See Theorem 1.14 on page 18.
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and the same arguments used in the proof of Theorem 2.12 define a surface Σ2 ⊂M4

such that
s(M) ∪ p−1(Σ)

inside ∂T bounds a cycle in R7 \ Ṫ . We now smoothen this cycle to a manifold
M ′ and conclude using Lemma 2.10 that M ′ bounds a 5-manifold contained in R7.
To smoothen this cycle we will maybe add some other projective planes, so that
M ′ = M#k(CP2). �Ampliare qui.

3. Wall theorem

We know from Whitehead theorem that two closed simply connected smooth
oriented 4-manifolds with isomorphic intersection forms are homotopy equivalent.
Actually, we know from Freedman theorem that they are homeomorphic. A theorem
of Wall moreover shows that they become diffeomorphic after summing with some
copies of S2 × S2.

3.1. Sphere bundles. We have the following.

Proposition 3.1. The Rk-bundles over Sh up to isomorphism are in natural
1-1 correspondence with πh−1(SO(k)).

Proof. Let E be such a bundle. Fix a riemannian metric on E. Consider
the equator Sh−1 inside Sh. The bundle is trivial on each emisphere, i.e. isometric
to Dh × Rk. The bundle E is thus determined by the isometric gluing of these
two trivializations over the equator, which we may suppose orientation-preserving
up to switch the orientation of one of them. The gluing is encoded by a map
f : Sh−1 → SO(k).

Homotopic maps yield isomorphic bundles. The converse also holds. �Precisare

Since π1(SO(3)) = Z2, there are two R3-bundles over S2, which yields two
S2-bundles over S2. One is the trivial one S2 × S2, and the other is denoted by
S2 ×∼ S2. Actually, we get nothing really new.

Proposition 3.2. We have S2 ×∼ S2 ∼= CP2#CP2
.

We will need the following.

Lemma 3.3. Let N5 be obtained by adding a 2-handle to D5. Then ∂N5 is
either S2 × S2 or S2 ×∼ S2.

Proof. The attaching sphere of the 2-handle is a loop, and all loops are iso-
topic in S4. Represent D5 as D2×D3 and take S1×0 as a loop. Attach the handle
along S1×D3. The result is the attaching of two copies of D2×D3 which extends
to a D3-fibering over S2. Its boundary is a S2-fibering over S2, as required. �

3.2. Wall theorem. Wall’s theorem says the following.

Theorem 3.4. Let M4 and N4 be two closed simply connected smooth oriented
4-manifolds with isomorphic intersection forms. There is a natural number h such
that M4#h(S2 × S2) is diffeomorphic to N4#h(S2 × S2).
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Proof. Since they have the same signature, the two manifolds are cobordant.
We thus get a five-dimensional cobordism W 5 with ∂W 5 = M4 ∪ N4

. Take a
handle decomposition of this cobordism. Note that all the steps in Smale’s proof
of Poincaré Conjecture can be applied in dimension 5, except Whitney trick. In
particular, we may remove 0- and 5-handles, and we may also trade 1-handles
for 3-handles, using the fact that M4 is simply connected. Analogously, we trade
4-handles for 3-handles.

We end up with a handle decomposition of W 5 with 2- and 3-handles only. Let
Z4 be the level manifold between 2- and 3-handles. We show that the attaching
of a 2-handle changes the level manifold by a connected sum with either S2 ×
S2 or S2 ×∼ S2. Every (five-dimensional) 2-handle is attached along a loop in the
(four-dimensional) level manifold. This four-dimensional level manifold is simply
connected, and hence the loop is isotopic to the trivial one. Therefore the loop is
contained in a 4-disc, and the level manifold is changed via a connected sum with
the manifold of Lemma 3.3, which is indeed either S2 × S2 or S2 ×∼ S2. Therefore
we get

Z4 ∼= M4#h(S2 × S2)#k(S2 ×∼ S2) ∼= N4#l(S2 × S2)#m(S2 ×∼ S2).

� Decidere se mettere enunci-
ato debole o concludere.

4. Classifications of intersection forms

The classification of all forms that arise as intersection forms of smooth 4-
manifolds is not yet complete. However, much is known, thanks to three important
results:

• Serre’s classification of indefinite unimodular forms, which is a general
algebraic result,

• Rohlin’s signature theorem, which excludes “half” of even forms in all
dimensions 4k,

• Donaldson’s theorem, which deals with definite forms and is intimately
linked to dimension 4.

A form Q is definite if it is either positive or negative definite. It is indefinite
otherwise.

4.1. Indefinite forms. Quite suprisingly, indefinite forms behave in a simple
way.

Theorem 4.1 (Serre). Let Q be an indefinite unimodular form. Then either
Q ∼= m[1]⊕ n[−1] or Q ∼= ±mE8 ⊕ nH.

The heavy part of this theorem relies on the following result, which says that
null vectors exist on integers (or equivalently, on rational numbers).

Lemma 4.2 (Meyer’s lemma). Let Q be indefinite unimodular on some Z-
module A. There exists a vector v ∈ A such that Q(v, v) = 0.

We use this lemma to prove Serre’s theorem for odd forms. Given a submodule
B ⊂ A, we define its Q-orthogonal B⊥ as usual. In general, we cannot split A as
B ⊕ B⊥ as we do with vector spaces. In fact, we can split precisely when Q|B is
unimodular, as the following shows.
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Lemma 4.3. We have A = B ⊕ B⊥ if and only if Q|B is unimodular. If this
holds, we have Q = Q|B ⊕Q|B⊥ .

Proof. We always have B ∩ B⊥ = {0}. We show that B + B⊥ = A if and
only if Q|B is unimodular. Actually, if B ⊕ B⊥ = A then Q = Q|B ⊕ Q|B⊥ and
detQ = detQ|B · detQ|B⊥ , so necessarily detQ|B = ±1.

Conversely, let Q|B be unimodular. We show that B +B⊥ = A. Let x ∈ A be
any element. We show that it lies in B + B⊥. The unimodular form Q defines an
adjoint x∗ ∈ A∗ as x∗(a) = Q(x, a). The restriction x∗|B is an element of B∗. By
unimodularity of Q|B , such an element is dual to some xB ∈ B. That is, we have
Q(xB , b) = Q(x, b) for all b ∈ B. Write x = xB + (x− xB). Since Q(x− xB , b) = 0
for all b ∈ B, we have x− xB ∈ B⊥ and we are done. �

We now prove Serre’s classification (assuming Meyer’s lemma) for odd forms.

Proposition 4.4 (Odd Serre). Let Q be an odd indefinite unimodular form.
Then Q ∼= m[1]⊕ n[−1].

Proof. Let Q be defined over some free module A. We prove our assertion by
induction on dimA. By Meyer’s lemma there is an element v ∈ A with Q(v, v) = 0.
We can suppose v is primitive. There is an element w with Q(v, w) = 1: it suffices
to complete v to a basis for A and take w = v∗ in a dual basis.11

Consider the submodule B generated by v and w. We have Q|B ∼=
(

0 1
1 x

)
for

some integer x. Thus detQ|B = −1 and Lemma 4.3 gives Q = Q|B ⊕ Q|B⊥ . We
want an odd x. If x is even, then Q|B is even, and thus Q|B⊥ is odd. Therefore
there is an odd element u ∈ B⊥, and by substituting w with w + u we get an odd
integer x.

It is now easy to construct a change of basis that transforms
(

0 1
1 x

)
into

(
0 1
1 1

)
and then finally into

(
1 0
0 −1

)
. This in particular proves our assertion when dimA =

2. If dimA > 2 we argue by induction. We have Q ∼= [1] ⊕ [−1] ⊕ Q|B⊥ . Both
[1] ⊕ Q|B⊥ and [−1] ⊕ Q|B⊥ are odd. One of these is certainly indefinite. By
induction, it is isomorphic to m[1]⊕ n[−1] and we are done. �

4.2. Characteristic elements. Let Q be an unimodular form on a free mod-
ule A. An element w ∈ A is characteristic if

Q(w, z) ≡ Q(z, z) (mod 2).

That is, the parity of any element z in A is obtained by pairing z with w. In some
sense, a characteristic element controls the parity of all elements in A.

Exercise 4.5. The trivial element 0 ∈ A is characteristic if and only if Q is
even. If A = Zn+m and Q = n[1]+m[−1] then (1, . . . , 1) is a characteristic element.

A strange but easy lemma shows that Q(w,w) equals the signature of Q modulo
8.

Lemma 4.6 (Van der Blij). We have Q(w,w) ≡ σ(Q) (mod 8).

11See Proposition 1.6 o page 16.
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Proof. First, take two characteristic elements w,w′. Thus Q(w − w′, z) is
even for all z ∈ A. Since Q is unimodular, this implies that w − w′ = 2v for some
v ∈ A. Therefore

Q(w′, w′) = Q(w − 2v, w − 2v) = Q(w,w)− 4Q(v, w) + 4Q(v, v)
= Q(w,w) + 4

(
Q(v, v)−Q(v, w)

)
.

Since Q(v, v)−Q(v, w) is even, we get

Q(w,w) ≡ Q(w′, w′) (mod 8).

Every characteristic element thus yields the same number in Z8. It remains to
prove that it the same number determined by σ(Q). There are two cases.

(1) If Q is odd and indefinite, we have Q ∼= m[1]⊕ n[−1] by Serre’s theorem.
Take w = (1, . . . , 1). We get Q(w,w) = m− n = σ(Q).

(2) In all other cases, the form Q′ = Q⊕[1]⊕[−1] is odd and indefinite. If w is
a characteristic element for Q, then w′ = (w, 1, 1) is characteristic for Q′.
By the previous point the theorem holds for w′. SinceQ(w,w) = Q(w′, w′)
and σ(Q) = σ(Q′), it also holds for w.

�

Corollary 4.7. If Q is an even form, then σ(Q) is divisible by 8.

Proof. The trivial element is characteristic. �

Corollary 4.8. Every even form has the same rank and signature of some
±mE8 ⊕ nH.
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