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Abstract. We establish the optimal C1,1
H interior regularity of solutions to

∆Hu = fχ{u6=0},

where ∆H denotes the sub-Laplacian operator in a stratified group. We assume the
weakest regularity condition on f , namely the group convolution f ∗Γ is C1,1

H , where Γ is
the fundamental solution of ∆H . The C1,1

H regularity is understood in the sense of Folland
and Stein. In the classical Euclidean setting, the first seeds of the above problem are
already present in the 1991 paper of Sakai and are also related to quadrature domains. As
a special instance of our results, when u is nonnegative and satisfies the above equation
we recover the C1,1

H regularity of solutions to the obstacle problem in stratified groups,
that was previously established by Danielli, Garofalo and Salsa. Our regularity result is
sharp: it can be seen as the subelliptic counterpart of the C1,1 regularity result due to
Andersson, Lindgren and Shahgholian.

1. Introduction

The main question we consider in this paper is the optimal interior regularity of distri-
butional solutions to the no-sign obstacle-type problem

(1.1) ∆Hu = fχ{u6=0}

on some domain of a stratified group G, see Section 2 for notation and terminology.
In the Euclidean setting, the obstacle problem is among the most studied topics in the
field of Free Boundary Problems, see for instance the monographs by Rodrigues [Rod87],
Friedman [Fri88], and Petrosyan et al. [PSU12]. It asks which properties can be deduced
about a function with given boundary values and that minimizes the Dirichlet energy,
under the constraint of lying above a given function. This is the classical obstacle problem,
that can be studied through the theory of variational inequalities, using the Dirichlet
energy, see for instance [KS00, Fre72]. The variational approach, after subtracting the
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obstacle from the solution, leads to the following PDE formulation of the problem

(1.2)


∆u = fχ{u>0} in B1,

u ≥ 0 in B1,

u = g on ∂B1,

where B1 denotes the metric unit ball with respect to the Carnot–Carathéodory distance
(Definition 2.1). Our problem is a non-variational counterpart of (1.2), that is

(1.3)

∆u = fχ{u6=0} in B1,

u = g on ∂B1.

We point out that (1.3) — which is called a no-sign obstacle-type problem — naturally
appears also when considering the so-called quadrature domains [Sak91, GS05].

Two important questions on this problem concern the regularity of solutions to (1.3),
and the regularity of the free boundary. In Euclidean space, the analysis of both ques-
tions is essentially complete [Sak91, CKS00, PS07, ALS13]. In particular, in relation to
the regularity of solutions, Andersson et al. [ALS13] show that u has the optimal C1,1

regularity if the linear problem ∆v = f has a C1,1 solution. This is the minimal regularity
assumption on f in order to establish the C1,1 regularity of solutions.

The main result of this paper is the sharp regularity of solutions to (1.1) also in the
subelliptic setting of stratified groups.

Theorem 1.1 (C1,1
H regularity). Let u ∈ L∞(B1) be a distributional solution to (1.1) in

the unit ball B1. Let f : B1 → R be locally summable such that f ∗ Γ ∈ C1,1
H (B1). Then

there exists a universal constant C > 0 such that, after a modification on a negligible set,
we have u ∈ C1,1

H (B1/4) and

(1.4) ‖D2
hu‖L∞(B1/4) ≤ C

(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
.

In our setting, the natural counterpart of the Euclidean C1,1 regularity is the C1,1
H

regularity, where the horizontal derivatives are required to be Lipschitz continuous (Defi-
nition 2.2). The function Γ denotes the fundamental solution of ∆H (Definition 2.3). For
further notation and terminology, we address the reader to Section 2.

We wish to emphasize that u satisfies (1.1) also in the strong sense. Indeed, the distri-
butional equality ∆H(f ∗ Γ) = −f joined with the assumed C1,1

H regularity of f ∗ Γ show
that f ∈ L∞(B1). Therefore fχ{u6=0} ∈ L∞(B1) and by the regularity result of Folland,
[Fol75, Theorem 6.1], we get u ∈ W 2,p

H,loc(B1) for every 1 ≤ p < ∞. The C1,1
H regularity

of solutions to the obstacle problem in stratified groups was obtained by Danielli et al.
[DGS03], using the variational formulation of the problem. The regularity of the free
boundary was subsequently established in step two groups [DGP07]. Further results in
this area have been obtained for Kolmogorov operators and parabolic non-divergence form
operators of Hörmander type [DFPP08, FNPP10, FGN12, Fre13]. The no-sign obstacle-
type problem in terms of the equation (1.1) does not seem to have been considered before
in the subelliptic setting.
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Our arguments are remarkably different from the ones used for the obstacle problem.
For instance, in this problem without a forcing term the solution is automatically super-
harmonic with respect to ∆H , while in our setting we have no such sign condition that
would yield a superharmonic solution. We initiate our analysis observing that second or-
der horizontal derivatives of solutions to (1.1) satisfy certain BMO estimates, that have
been established by Bramanti et al. [BB05, BF13]. The subsequent step is to construct
suitable approximating polynomials, starting from the second order horizontal derivatives
of the solution. Indeed these polynomials yield a subquadratic growth estimate (4.10) at
small scales. We point out that this estimate is valid for any bounded and W 2,p regular
function, with bounded sub-Laplacian, so it might be of independent interest. As a con-
sequence, we perform a suitable rescaling of the equation and then infer the crucial decay
estimate of the measure of the coincidence set (Proposition 4.6), when the horizontal Hes-
sian of the approximating polynomial is sufficiently large. More details on this procedure
can be found at the beginning of Section 4.

Although our ideas mainly follow the path set up by Andersson et al. [ALS13], and
Figalli and Shahgholian [FS12], there are several difficulties related to the subelliptic set-
ting. The basic one is concerned with the fact that the sub-Laplacian ∆H is degenerate
elliptic. In addition, since the operator ∆H is written in terms of Hömander vector fields,
we can only consider the horizontal Hessian (2.5) of the solution, that is a nonsymmetric
matrix. Then the construction of the approximating polynomials starting from the av-
erage of the second order noncommuting derivatives XiXju becomes more delicate and
requires some preliminary algebraic work, see Section 3. Notwithstanding the technical
complications, the proof has become more streamlined: we can stay clear of the projection
operator used in [ALS13], and this simplifies several technical points. A suitable quan-
titative decay estimate of the zero-level set (4.14) can be obtained also in our setting.
Finally, we adapt Caffarelli’s polynomial iteration technique of [Caf89] to find explicit
estimates of the second order horizontal derivatives, see (1.4).

We finish the introduction by giving an overview of the paper. In Section 2 we introduce
some basic notions on stratified groups and the related function spaces. In Section 3
we construct suitable second order homogeneous polynomials (Definition 3.2), that have
an assigned horizontal Hessian (Corollary 3.3). Then some important W 2,p and BMO
estimates are presented. Finally, we provide the crucial scaling estimates of Lemma 3.8.
In Section 4 we prove a subquadratic growth estimate of the difference between a solution
and its approximating polynomial. Then we apply the subquadratic growth estimate to
get a suitable decay of the measure of the zero-level set. Finally, we establish the C1,1

H

regularity in quantitative terms, according to (1.4).
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2. Basic facts and notation

A stratified group is a simply connected, real nilpotent Lie group G, whose Lie algebra
G has a special stratification. We denote by Vi the subspaces of G, having the properties:

G = V1 ⊕ V2 ⊕ · · · ⊕ Vι and [V1, Vj] = Vj+1

for j = 1, . . . , ι and Vι+1 = 0. Let us denote by n the topological dimension of G and by m
the dimension of V1. We choose a graded basis X1, X2, . . . , Xn of G, that is characterized
by the property that

Xmj−1+1, . . . , Xmj

is a basis of Vj for all j = 1, . . . , ι, where we have set m0 = 0, m1 = m and mj =∑j
i=1 dim Vi. We notice that mι = n and with these definitions, if mk−1 < j ≤ mk, then

k ∈ N is uniquely determined and we define the positive integer
(2.1) dj := k.

Through the exponential mapping of G, one can construct a diffeomorphism from Rn

to G. Hence we have defined a graded basis e1, e2, . . . , en of Rn and graded coordinates
x1, x2, . . . , xn that define the point x = (x1, x2, . . . , xn) of G. This allows us to identify G
with Rn, as it will be understood in the sequel.

In addition, one may also verify that the Lebesgue measure of Rn through the graded co-
ordinates yields the Haar measure of the group G. The notation |A| denotes the Lebesgue
measure of a measurable set A ⊂ Rn.

The diffeomorphism associated to graded coordinates has also the property that the
group operation on G, when read in Rn, is given by a special polynomial group operation
(2.2) xy = x+ y +BCH(x, y),
where the precise form of the vector polynomial BCH : Rn × Rn → Rn is given by the
important Baker–Campbell–Hausdorff formula, in short BCH formula, see for instance
[Var84]. The degree of xj is the integer dj defined in (2.1) and we define intrinsic dilations
as follows

δrx = (rx1, . . . , rxm, r
2xm+1, . . . , r

2xm2 , . . . , r
ιxmι−1+1, . . . , r

ιxn) =
n∑
j=1

rdjxjej

for any r > 0. The notion of degree fits the algebraic properties of dilations, since
(2.3) δr(xy) = (δrx)(δry)
for all x, y ∈ Rn. By the form of dilations, for every measurable set A ⊂ Rn we have

|δr(A)| = rQ|A|

for all r > 0, where Q = ∑n
j=1 dj can be proved to be the Hausdorff dimension of G.
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The metric structure of Rn is given by a control distance. We say that γ : [0, T ]→ Rn,
an absolutely continuous curve, is admissible if for a.e. t ∈ [0, 1] there holds

γ̇(t) =
m∑
i=1

bi(t)Xi(γ(t))

and ∑m
i=1 bi(t)2 ≤ 1.We denote by H(x, y) the family of all admissible curves whose image

contains x, y. By Chow’s theorem, H(x, y) is nonempty for every x, y ∈ Rn, hence the
following “control distance”

d(x, y) = inf
{
T > 0

∣∣∣∣γ : [0, T ]→ Rn, γ ∈ H(x, y)
}

is well defined. It is also possible to check that d is actually a distance, corresponding to
the well known Carnot–Carathéodory distance.

Since left translations preserve the “horizontal velocity”, d is also left invariant, namely
d(x, y) = d(zx, zy) for all x, y, z ∈ Rn. Furthermore, dilations are Lie group homo-
morphisms, hence the Carnot–Carathéodory distance is homogeneous in the sense that
d(δrx, δry) = rd(x, y) for every x, y ∈ Rn and r > 0.

Definition 2.1 (Metric balls). For x ∈ Rn and r > 0, we denote by Br(x) the open ball of
center x and radius r > 0 with respect to d. Precisely, this is the set {y ∈ Rn : d(x, y) < r}.
When x = 0, we use the notation Br := Br(0).

From the properties of d and δr, it is easy to observe that
Br(x) = xδr(B1).

Dilations also allow us to introduce a natural notion of homogeneity, so we may say that
a polynomial p : Rn → R is k-homogeneous if

p(δrx) = rkp(x) for all x ∈ Rn and r > 0.
The number k ∈ N is the degree of p. Moreover, any vector field Xj of the fixed graded
basis can be identified with a first order differential operator of the form

(2.4) Xj = ∂xj +
n∑

i=mdj+1
aji∂xi

for every j = 1, . . . , n. The functions aji : Rn → R are homogeneous polynomials of
degree di − dj ≥ 1 and in particular Xj(0) = ej for all j = 1, . . . , n. In the sequel Ω will
be understood as an open bounded subset of G, that can be also identified with an open
subset of Rn, if not otherwise stated.

Given a function u : Ω→ R and considering the vector fieldsXj as differential operators,
we may introduce the horizontal gradient and the horizontal Hessian

(2.5) ∇hu = (X1u, . . . , Xmu) and D2
hu =


X1X1u X1X2u · · · X1Xmu
X2X1u X2X2u · · · X2Xmu

... ... . . . ...
XmX1u · · · · · · XmXmu

 ,
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respectively, whenever they are pointwise defined. More generally, we can define higher
order differential operators considering for I = (i1, . . . , in) ∈ Nn the function

XIu := X in
1 · · ·X i1

n u.

Definition 2.2 (Folland–Stein spaces). Let Ω ⊂ Rn be an open set. We denote by C1
H(Ω)

the space of all functions u : Ω → R such that the horizontal derivatives Xju exist on
Ω for all j = 1, . . . ,m and are continuous. If 0 < α ≤ 1, then C1,α

H (Ω) is the space of
functions u in C1

H(Ω) such that there exists C > 0 with the property that
|Xjf(x)−Xjf(y)| ≤ C d(x, y)α

for every x, y ∈ Ω and j = 1, . . . ,m.

Notice that D2
hu is not symmetric, since the vector fields Xj do not commute in general.

We say that Xju are the horizontal derivatives and XiXju are the second order horizontal
derivatives. The symmetrized horizontal Hessian is defined as

D2,s
h u = 1

2
(
D2
hu+D2

hu
T
)
.

The sub-Laplacian is defined as

∆Hu =
m∑
j=1

X2
j u.

Functions satisfying ∆Hu = 0 are called as usual harmonic functions.

Definition 2.3 (Fundamental solution). We say that Γ ∈ C∞(G \{0}) is a fundamental
solution for ∆H if it is locally summable, it vanishes at infinity and satisfies ∆HΓ = −δ0,
where δ0 denotes the Dirac distribution centered at the origin.

The fundamental solution Γ defines a gauge dG = Γ1/(2−Q), that is 1-homogeneous
with respect to dilations and continuous on Rn. We can readily check that there exists a
constant c0 > 1 such that
(2.6) c−1

0 dG(x) ≤ d(x, 0) ≤ c0dG(x)
for all x ∈ Rn. Defining dG(x, y) := dG(x−1y) we also introduce the gauge ball
(2.7) BG

r (x) = {y ∈ Rn : dG(x, y) < r} .
The previous estimates clearly imply that
(2.8) BG

r (x) ⊂ Bc0r(x)
for every r > 0 and x ∈ Rn.

Proposition 2.4. Let Ω ⊂ Rn be an open set and let ϑ be harmonic in Ω. We consider
an open set Ω′ ⊂ Ω and h > 0 such that

distG(Ω′,Ωc) := inf {dG(x, y) : x ∈ Ω′, y ∈ Ωc} > h.

Then ϑ ∈ C∞(Ω) and for every multiindex I there exists a constant CI,h > 0 such that
(2.9) |XIϑ(x)| ≤ CI,h‖ϑ‖L1(Ω)
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Proof. We consider the function φ defined in [BLU07, (5.50e)], where we choose ϕ appear-
ing in the definition of φ, such that ϕ ∈ C∞c (]3−1, 1[), ϕ ≥ 0 and

�
R ϕ(t)dt = 1. It follows

that φ is smooth and bounded on Rn, along with all of its derivatives, and it is compactly
supported in BG

1 , see the definition (2.7). We also consider φr(z) := r−Qφ(δ1/rz), that is
compactly supported on BG

r . We finally set φ̂r(z) := φr(z−1) for all z ∈ Rn and r > 0.
Thus, using [BLU07, (5.50a),(5.50d)], for every x ∈ Bλ, we get

ϑ(x) =
�
BG
h

(x)
φh(x−1y)ϑ(y)dy =

�
Ω
φ̂h(y−1x)ϑ(y)dy.

We can differentiate the last integral an arbitrary number of times, due to the smoothness
of φ̂h, getting the smoothness of ϑ and the following estimate

|XIϑ(x)| =
∣∣∣∣∣
�

Ω
XI φ̂h(y−1x)ϑ(y)dy

∣∣∣∣∣ ≤ ‖XI φ̂h‖L∞(Rn)‖ϑ‖L1(Ω)

for all x ∈ Ω′. This concludes the proof. �

In our setting, we need the notion of Sobolev function adapted to the horizontal vector
fields X1, . . . , Xm, see [Fol75]. The horizontal Sobolev space W k,p

H (Ω) consists of those
functions u ∈ Lp(Ω) for which, for all js ∈ {1, . . . ,m} and s ∈ {1, . . . , k}, there exists a
function vj1,...,jk ∈ Lp(Ω) such that�

Ω
u(y)(Xj1 · · ·Xjkφ)(y) dy = (−1)k

�
Ω
vj1,...,jk(y)φ(y) dy

for any function φ ∈ C∞c (Ω). Also in the more general setting of Hörmander vector fields
some Sobolev embedding theorems hold, see [GN96, Theorem 1.11 and (3.19)], or [Lu96,
Theorem 1.1]. The next theorem specializes these embedding results for stratified groups.

Theorem 2.5. Let p > Q, where Q is the Hausdorff dimension of G and let Ω′ b Ω be
any open and relatively compact subset. Then there exists C > 0, depending on Ω′, such
that for every u ∈ W 1,p

H (Ω), up to a modification of u on a negligible set, we have

|u(x)− u(y)| ≤ C ‖u‖W 1,p
H (Ω) d(x, y)1−Q

p ,

for every x, y ∈ Ω′.

The following (1,1)-Poincaré inequality holds,

(2.10)
�
Br(x)

|u(y)− uBr(x)|dy ≤ cr

�
Br(x)

|∇hu(y)|dy

for every u ∈ C1(Br(x)). This inequality follows from [Jer86], see also [LM00].
For any measurable function u that is summable on a measurable set A ⊂ Ω, we use

the notation
uA :=

 
A

u(y) dy = 1
|A|

�
A

u(y) dy.
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Definition 2.6. For u ∈ L1(Ω), we define the BMO seminorms

[u]BMO(Ω) := sup
x0∈Ω,r>0

 
Br(x0)∩Ω

|u(y)− uBr(x0)| dy,

[u]BMOloc(Ω) := sup
Br(x0)⊂Ω

 
Br(x0)

|u(y)− uBr(x0)| dy

and for 1 ≤ p <∞ the corresponding BMOp norms
‖u‖BMOp(Ω) := [u]BMO(Ω) + ‖u‖Lp(Ω),

‖u‖BMOploc(Ω) := [u]BMOloc(Ω) + ‖u‖Lp(Ω).

The spaces BMOp(Ω) and BMOp
loc(Ω) consist of all Lp functions on Ω with finite BMOp

and BMOp
loc norm, respectively. See [BF13] for more information on BMO functions in

the subelliptic setting.

3. Preparatory results

We first study the relationship between the coefficients of a 2-homogeneous polynomial
and its second order horizontal derivatives. Then, by some W 2,p

H and BMO estimates,
we show how to control the horizontal Hessian of a Sobolev function by the horizontal
Hessian of a suitable 2-homogeneous harmonic polynomial (Corollary 3.7). Finally, in
Lemma 3.8 we establish a quantitative control on the growth of these polynomials at
small scales.

We need first to find 2-homogeneous polynomials with assigned second order horizontal
derivatives. To do this, we first observe that (2.2), combined with (2.3) and (2.1), setting

BCH(x, y) =
n∑

j=m+1
qj(x, y)ej,

imply that any qj is a homogeneous polynomial of degree dj. Due to the BCH formula,
one can also prove that ql is a 2-homogeneous polynomial with respect to the variables
x1, . . . , xm, y1, . . . , ym for all l = m+ 1, . . . ,m2 and

ql(x, y) = −ql(y, x).
From the definition of left invariant vector field, we get

ajl(x) = ∂ql
∂yj

(x, 0),

for all j = 1, . . . ,m and l = m+ 1, . . . ,m2. As a consequence, we get

(3.1) ∂ajl
∂xi

= ∂2ql
∂xi∂yj

= − ∂2ql
∂xj∂yi

= −∂ail
∂xj

for all i, j = 1, . . . ,m and l = m + 1, . . . ,m2. Notice that the partial derivatives in the
previous equalities are all constant functions. Equalities (3.1) will be important in the
proof of Proposition 3.1.
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Every polynomial on Rn, thought of as equipped with dilations δr, is the sum of homoge-
neous polynomials and the maximum among these degrees is the degree of the polynomial.
Polynomials of degree one are just affine functions ` of the form

`(x) = α + 〈β, π(x)〉
with β = (β1, β2, . . . , βm) ∈ Rn, α ∈ R and we have used the projection
(3.2) π : Rn → Rm, π(x) = (x1, . . . , xm).
A homogeneous polynomial of degree two must have the form

(3.3) p(x) = 1
2

m∑
i,j=1

cijxixj +
m2∑

l=m+1
clxl,

where cij and cl are real numbers, with cij = cji for all i, j = 1, . . . ,m.

Proposition 3.1. Let p : Rn → R be a 2-homogeneous polynomial of the form (3.3) and
let us consider the basis Xm+1, . . . , Xm2 of V2. Then we have

cij = 1
2(XiXjp+XjXip) and XiXjp = cij +

m2∑
l=m+1

γlijcl,

where γlij are proportional to the structure constants of the Lie algebra, namely

(3.4) [Xi, Xj] =
m2∑

l=m+1
2γlijXl

and i, j = 1, . . . ,m.

Proof. We first define the symmetrized second order derivative

(XiXj)s := XiXj +XjXi

2 ,

so that we can write

(3.5) XiXj = (XiXj)s + 1
2[Xi, Xj],

for every i, j = 1, . . . ,m. Since XiXj and Xl are homogeneous differential operators of
order −2 and p has degree 2, the horizontal derivatives XiXjp and Xlp are constants.

By (3.3) and (2.4), we get

Xjp =
m∑
i=1

cjixi +
n∑

i=m+1
aji∂xi

 m2∑
l=m+1

clxl

 =
m∑
i=1

cjixi +
m2∑

i=m+1
ajici,

for j = 1, . . . ,m. As a consequence, taking into account the form of the vector fields (2.4)
and of the polynomial (3.3), for any i, j = 1, . . . ,m and l = m+ 1, . . . ,m2, we get

(3.6) XiXjp = cij +
m2∑

s=m+1
∂xiajscs.
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To establish the previous equality, we have also observed that the polynomials aji are
homogeneous of degree di − dj = 1, therefore they are only depending on their first
m variables. In particular, all the partial derivatives ∂xlaji are vanishing whenever the
integers l and i take values from m + 1 to m2 and j = 1, . . . ,m. Combining (3.6) and
(3.1), we also obtain the first of the following equalities

XiXjp+XjXip = 2cij and Xlp = cl,

with 1 ≤ i, j ≤ m and m+ 1 ≤ l ≤ m2. The latter directly follows from the form of (3.3).
In conclusion, by virtue of (3.4), (3.5) and (3.6), we have obtained that

XiXjp = (XiXj)sp+
m2∑

l=m+1
γlijXlp = cij +

m2∑
l=m+1

γlijcl,

hence concluding the proof. �

Definition 3.2. For Br(x0) b Ω and u ∈ W 2,1
H,loc(Ω), we define the matrix

P x0
r := (D2

hu)Br(x0) −
1
m

(∆Hu)Br(x0)Im ∈ Rn×n,

where Im stands for the identity matrix and the (i, j) entry of (D2
hu)Br(x0) is the average

(XiXju)Br(x0). Associated to the ball Br(x0), we also define the coefficients

cr,x0
ij :=

(
XiXju+XjXiu

2

)
Br(x0)

− 1
m
δij (∆Hu)Br(x0) and cr,x0

l = (Xlu)Br(x0).

These numbers define the 2-homogeneous polynomial

px0
r (x) = 1

2

m∑
i,j=1

cr,x0
ij xixj +

m2∑
l=m+1

cr,x0
l xl,

that we will show to be related to P x0
r .

Corollary 3.3. In the assumptions of Definition 3.2, the 2-homogeneous polynomial px0
r

is harmonic and
D2
hp

x0
r = P x0

r .

Proof. By Proposition 3.1, we have

XiXjp
x0
r = cr,x0

ij +
m2∑

l=m+1
γlijc

r,x0
l ,

where γlii = 0 and by definition of cr,x0
ii we get

∆Hp
x0
r =

m∑
i=1

cr,x0
ii =

m∑
i=1

[
(XiXiu)Br(x0) −

1
m

(∆Hu)Br(x0)

]
= 0.
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Finally, we observe that

XiXjp
x0
r =

(
XiXju+XjXiu

2

)
Br(x0)

− 1
m
δij (∆Hu)Br(x0) +

 m2∑
l=m+1

γlijXlu


Br(x0)

=
(
XiXju+XjXiu

2

)
Br(x0)

− 1
m
δij (∆Hu)Br(x0) +

(
[Xi, Xj]u

2

)
Br(x0)

= (XiXju)Br(x0) −
1
m
δij (∆Hu)Br(x0),

having taken into account that [Xi, Xj] = ∑m2
l=m+1 2γlijXl from Proposition 3.1. �

The following W 2,p
H estimates go back to the work of Folland [Fol75], see also the work

by Bramanti and Brandolini [BB00] for more general hypoelliptic operators.

Theorem 3.4 ([BB00]). Let 1 < p < ∞ and consider two bounded open sets Ω and Ω′
with Ω′ b Ω. Then there exists a constant C > 0 such that for every u ∈ W 2,p

H (Ω) it holds

‖XiXju‖Lp(Ω′) ≤ C
(
‖∆Hu‖Lp(Ω) + ‖u‖Lp(Ω)

)
.(3.7)

It is well known that even for the classical Laplacian operator ∆, it is not true that L∞
bounds on ∆u imply the boundedness of second order horizontal derivatives. Indeed our
starting point is that bounds on the BMO norm of the sub-Laplacian ∆Hu show that
the BMO norm of the horizontal Hessian of u is bounded, according to the results of
Bramanti et al. [BB05], [BF13].

Theorem 3.5 ([BF13, Theorem 2.10]). Let 1 < p <∞, 0 < σ < 1, u ∈ BMOp
loc(B1) and

let ∆Hu ∈ BMOp
loc(B1). Then XiXju ∈ BMOp(Bσ) for i, j = 1, . . . ,m and there exists

a universal constant C(σ, p) > 0 such that

‖XiXju‖BMOp(Bσ) ≤ C(σ, p)
(
‖∆Hu‖BMOploc(B1) + ‖u‖BMOploc(B1)

)
.(3.8)

Remark 3.6. Note that the nonvariational form of the operator in [BF13, Theorem 2.10]
needs a priori that the solution u and its horizontal derivatives are BMO. For our
purposes, it is very important that the BMO regularity of u is established with no a priori
assumptions. This can be obtained for the sub-Laplacian operator, since its distributional
form allows us to apply a mollification argument.

In the sequel, we will also use the Frobenius norm |M | for a matrix M of coefficients
mij, setting

|M | =
√∑

ij

|mij|2.

With this definition we easily notice that |∆Hu| ≤ |D2
hu|.

Corollary 3.7. Let 1 < p < ∞ and 0 < σ < 1 be fixed. There exists C(σ, p) > 0
such that for all u ∈ BMOp

loc(B1) that satisfy the condition ∆Hu ∈ L∞(B1), we have
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XiXju ∈ BMOp(Bσ) for i, j = 1, . . . ,m and whenever x0 ∈ Bσ, 0 < r < 1− σ, it holds

(3.9)
 
Br(x0)∩Bσ

|D2
hu(y)− P x0

r |dy ≤ C(σ, p)
(
‖∆Hu‖L∞(B1) + ‖u‖BMOploc(B1)

)
,

where the matrix P x0
r is introduced in Definition 3.2.

Proof. Theorem 3.5 immediately implies thatXiXju ∈ BMOp(Bσ) and (3.8) holds. Thus,
we obtain the following estimates

 
Br(x0)∩Bσ

|D2
hu(y)− P x0

r |dy

≤
 
Br(x0)∩Bσ

|D2
hu(y)− (D2

hu)Br(x0)|dy + 1
m
|(∆Hu)Br(x0)Im|

≤ [D2
hu]BMO(Bσ) + 1√

m
‖∆Hu‖L∞(B1)

≤ C̃(σ, p)
(
‖∆Hu‖BMOploc(B1) + ‖u‖BMOploc(B1)

)
+ ‖∆Hu‖L∞(B1)

≤ C(σ, p)
(
‖∆Hu‖L∞(B1) + ‖u‖BMOploc(B1)

)
.

This completes the proof. �

Heuristically, if D2
hu is not bounded around x0, since the difference of D2

hu and P x0
r

is controlled, the BMO estimate tells us that also P x0
r becomes unbounded as r → 0+.

Hence we will turn our attention to P x0
r . In the following lemma, we will derive a general

“scaling estimate” for the difference |P x0
r1 − P

x0
r2 |. In particular, when r2 = 2r1 we get a

uniform bound on the growth of |P x0
r | on dyadic scales.

Lemma 3.8 (Scaling estimates). Let 1 < p < ∞ and 0 < λ1 < 1 be fixed. Then there
exists a universal constant C(λ1, p) > 0 such that for all u ∈ BMOp

loc(B1) that satisfy
the condition ∆Hu ∈ L∞(B1) the following holds. We have XiXju ∈ L1

loc(B1), where
i, j = 1, . . . ,m and for x0 ∈ Bλ1/3 the matrices of the form

P x0
r := (D2

hu)Br(x0) −
1
m

(∆Hu)Br(x0)Im,

with 0 < r1 < min{2λ1/3, 1− λ1} and r1 < r2 < 1− λ1, satisfy the following inequality

|P x0
r1 − P

x0
r2 | ≤

(
r2

r1

)Q
C(λ1, p)

(
‖∆Hu‖L∞(B1) + ‖u‖BMOploc(B1)

)
.
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Proof. Due to the BMO estimate (3.9) with σ = λ1, we can estimate |P x0
r1 − P x0

r2 | as
follows  

Br1 (x0)∩Bλ1

|P x0
r1 − P

x0
r2 |dx

≤
 
Br1 (x0)∩Bλ1

|D2
hu(y)− P x0

r1 |dy +
 
Br1 (x0)∩Bλ1

|D2
hu(y)− P x0

r2 |dy

≤
 
Br1 (x0)∩Bλ1

|D2
hu(y)− P x0

r1 |dy + |Br2(x0) ∩Bλ1|
|Br1(x0) ∩Bλ1|

 
Br2 (x0)∩Bλ1

|D2
hu(y)− P x0

r2 |dy

≤ C(λ1, p)
(

1 +
(
r2

r1

)Q ) (
‖∆Hu‖L∞(B1) + ‖u‖BMOploc(B1)

)
.

The last inequality follows by taking into account our conditions on the radii r1 and r2.
Indeed, we have

|Br2(x0) ∩Bλ1 |
|Br1(x0) ∩Bλ1 |

≤ |Br2(x0)|
|Br1(x0)| =

(
r2

r1

)Q
.

Finally, with a slight abuse of notation, we denote the constant 2C(λ1, p) again by C(λ1, p)
in the inequality of the lemma, concluding the proof. �

4. Proof of C1,1
H regularity

This section represents the core of the paper. We establish the sub-quadratic growth
of the difference

u(y)− u(x0)− 〈∇hu(x0), π(x−1
0 y)〉 − px0

r (x−1
0 y)

on the ball Br(x0), where px0
r is the harmonic polynomial introduced in Definition 3.2. We

show that when the norm ofD2
hp

x0
r is sufficiently large, then the measure of the coincidence

set {u = 0} decays in a quantitative way. This is one of the central facts, that leads us
to the dichotomy argument of [ALS13] to reach the C1,1

H regularity. There are indeed
two cases: (i) when |D2

hp
x0
r | is uniformly bounded as r → 0+, we immediately infer the

regularity from the subquadratic growth, (ii) if otherwise |D2
hp

x0
r | grows without bound

as r → 0+, then the coincidence set is “small” and we show that a suitable adaptation of
Caffarelli’s polynomial iteration technique can lead us to the C1,1

H regularity.
In the sequel, whenever we consider a function u with essentially bounded sub-Laplacian

∆Hu, then it is understood that u is chosen to be of class C1
H . The following remark

rigorously justifies this convention.

Remark 4.1. Let Ω ⊂ Rn be an open set and let u : Ω → R be a locally summable
function such that ∆Hu ∈ L∞(Ω). From [Fol75, Theorem 6.1], we have u ∈ W 2,p′

H,loc(Ω)
for every p′ > 1. In view of Theorem 2.5, by standard arguments, we can modify u on a
negligible set such that u ∈ C1,α

H (Ω′) for any relatively compact open set Ω′ b Ω, where
we have fixed some p′ > Q and α = 1 − Q

p′
. In particular, we have shown that, after the

modification, u ∈ C1
H(Ω).
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Lemma 4.2 (Sub-quadratic growth). Assume u ∈ BMOp
loc(B1) such that ∆Hu ∈ L∞(B1).

Let λ, σ ∈ (0, 1) and fix p > 1. Then there exist r0 > 0 and a universal constant
C(λ, σ, p) > 0, such that for any x0 ∈ Bλ and 0 < r ≤ r0, assuming that

u(x0) = Xiu(x0) = 0, 1 ≤ i ≤ m

and considering px0
r , as given in Definition 3.2, the following estimate holds

sup
y∈Bσr(x0)

|u(y)− px0
r (x−1

0 y)| ≤ C(λ, σ, p)
(
‖∆Hu‖L∞(B1) + ‖u‖BMOploc(B1)

)
r2.

Proof. We fix x0 ∈ Bλ and λ′ = (1+λ)/2, so that for 0 < r ≤ λ′−λ, we have the inclusion
(4.1) Br(x0) ⊂ Bλ′ .

Let us introduce the translated and rescaled function

ur,x0(x) := u(x0δrx)− px0
r (δrx)

r2 ,

observing that it is well defined in B1. Taking into account that u ∈ W 2,p
H,loc(B1) and

Br(x0) ⊂ Bλ′ ⊂ B1, then ur,x0 ∈ W
2,p
H (B1). We are in the position to apply Corollary 3.7

to u with σ = λ′. As a consequence of both Corollary 3.3 and (3.9), taking into account
(4.1), it follows that

‖D2
hur,x0‖L1(B1) = |B1|

 
B1

|D2
hur,x0(x)| dx

= |B1|
 
Br(x0)

|D2
hu(y)− P x0

r |dy(4.2)

≤ C(λ, p)
(
‖∆Hu‖L∞(B1) + ‖u‖BMOploc(B1)

)
.

Now we wish to apply the Poincaré inequality (2.10) to ur,x0−`r,x0 , where `r,x0 is an affine
function to be properly defined. If we let

`r,x0(x) := (ur,x0)B1 + 〈(∇hur,x0)B1 , π(x)〉,
where π(x) = (x1, . . . , xm), it follows that

‖ur,x0 − `r,x0‖L1(B1) ≤ c

 
B1

∣∣∣∣∇hur,x0 − (∇hur,x0)B1

∣∣∣∣dx,
since the average over B1 of the linear part of `r,x0 is zero. Again, from the Poincaré
inequality, using (4.2), we get

‖ur,x0 − `r,x0‖L1(B1) ≤ C‖D2
hur,x0‖L1(B1)

≤ C(λ, p)
(
‖∆Hu‖L∞(B1) + ‖u‖BMOploc(B1)

)
.

(4.3)

For the sequel, we set ûr,x0 := ur,x0 − `r,x0 . Since both px0
r and `r,x0 are harmonic, we

observe that
∆H ûr,x0(x) = (∆Hu)(x0δrx) = f(x0δrx)
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for a.e. x ∈ B1, where we have set f := ∆Hu ∈ L∞(B1). We set gr,x0(x) = f(x0δrx)χB1

and we consider the decomposition ûr,x0 = v̂r,x0 + ŵr,x0 , where

v̂r,x0 = −gr,x0 ∗ Γ and ŵr,x0 = ûr,x0 + gr,x0 ∗ Γ

and Γ is the fundamental solution for ∆H , introduced in Definition 2.3. The explicit form
of v̂r,x0 allows us to get the estimate

|v̂r,x0(x)| =
∣∣∣∣∣
�
Rn

Γ(z−1x)gr,x0(z)dz
∣∣∣∣∣ =

∣∣∣∣∣
�
B1

Γ(z−1x)gr,x0(z)dz
∣∣∣∣∣ ≤ C‖gr,x0‖LQ0 (B1)

for every x ∈ B1, where Q0 = Q+ 1 and C > 0 can be seen as a universal constant. The
previous estimate follows from the Hölder inequality, setting q = Q0/Q and taking into
account the (2−Q)-homogeneity of Γ. Indeed, it holds

(4.4)
∣∣∣∣∣
�
B1

Γ(z−1x)gr,x0(z)dz
∣∣∣∣∣ ≤

(�
B2

|Γ|q
)1/q

‖gr,x0‖LQ0 (B1)

for every x ∈ B1. As a consequence, we have proved that

(4.5) ‖v̂r,x0‖L∞(B1) ≤ C‖∆H ûr,x0‖LQ0 (B1).

Since ŵr,x0 is harmonic, from [BLU07, (5.52)] we have the mean value type formula

ŵr,x0(x) =
 
BG(1−σ)/c0

(x)
Ψ(x−1z)ŵr,x0(z) dz

for any x ∈ Bσ, whenever 0 < σ < 1 and with c0 > 1 defined in (2.6). We point out
that the function Ψ is 0-homogeneous with respect to dilations and smooth on Rn \ {0},
see [BLU07, Definition 5.5.1] for more information. Notice that with our assumptions we
have the inclusion BG

(1−σ)/c0
(x) ⊂ B1. For every x ∈ Bσ, it holds

|ŵr,x0(x)| =

∣∣∣∣∣∣
 
BG(1−σ)/c0

(x)
Ψ(x−1z)ŵr,x0(z) dz

∣∣∣∣∣∣
≤ ‖Ψ‖L∞(B1)

 
BG(1−σ)/c0

(x)
|ŵr,x0(z)| dz

≤ ‖Ψ‖L∞(B1)
‖ŵr,x0‖L1(B1)

|BG
(1−σ)/c0

(x)| ≤ C(σ)‖ŵr,x0‖L1(B1).

The constant C(σ) only depends on σ and it blows up as σ → 1−. By the triangle
inequality and (4.5) we obtain that

‖ŵr,x0‖L∞(Bσ) ≤ C(σ)‖ŵr,x0‖L1(B1)

≤ C(σ)
(
‖ûr,x0‖L1(B1) + ‖v̂r,x0‖L1(B1)

)
≤ C1(σ)

(
‖ûr,x0‖L1(B1) + ‖∆H ûr,x0‖LQ0 (B1)

)
.

(4.6)
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We conclude from both (4.5) and (4.6) that
‖ûr,x0‖L∞(Bσ) ≤ ‖v̂r,x0‖L∞(Bσ) + ‖ŵr,x0‖L∞(Bσ)

≤ C2(σ)
(
‖ûr,x0‖L1(B1) + ‖∆H ûr,x0‖LQ0 (B1)

)
.

(4.7)

Differentiating v̂r,x0 , seen as an integral, it turns out that v̂r,x0 ∈ C1
H(B1). Again arguing

as in the proof of (4.4), from the Hölder inequality and the (1−Q)-homogeneity of XjΓ,
we get the estimate

(4.8) |Xj v̂r,x0(x)| =
∣∣∣∣
�
B1

XjΓ(y−1x) gr,x0(y)dy
∣∣∣∣ ≤ C‖gr,x0‖LQ0 (B1)

for every j = 1, . . . ,m, x ∈ B1 and a fixed geometric constant C > 0. By Proposition 2.4,
we get a constant C3(σ) > 0, such that
(4.9) ‖∇hŵr,x0‖L∞(Bσ) ≤ C3(σ)‖ŵr,x0‖L1(B1).

Combining (4.7), (4.8) and (4.9), along with the third inequality of (4.6), we establish the
first of the following inequalities:

‖ûr,x0‖C1
H(Bσ) ≤ C4(σ)

(
‖ûr,x0‖L1(B1) + ‖∆H ûr,x0‖LQ0 (B1)

)
≤ C5(σ, p, λ)

(
‖∆Hu‖L∞(B1) + ‖u‖BMOploc(B1)

)
.

The second inequality is a consequence of (4.3). Since ur,x0(0) = Xjur,x0(0) = 0, by our
assumptions on u, and taking into account that px0

r (0) = Xjp
x0
r (0) = 0, we immediately

infer from the C1
H estimate above that

|`r,x0(0)|+
m∑
i=1
|Xi`r,x0(0)|

= |`r,x0(0)− ur,x0(0)|+
m∑
i=1
|Xi`r,x0(0)−Xiur,x0(0)|

≤ ‖ûr,x0‖C1(Bσ) ≤ C5(σ, p, λ)
(
‖∆Hu‖L∞(B1) + ‖u‖BMOploc(B1)

)
.

It follows that
‖`r,x0‖L∞(Bσ) ≤ C6(σ, p, λ)

(
‖∆Hu‖L∞(B1) + ‖u‖BMOploc(B1)

)
.

As a consequence, it follows that
1
r2 sup

y∈Bσr(x0)
|u(y)− px0

r (x−1
0 y)| = sup

x∈Bσ

∣∣∣∣∣u(x0δrx)− px0
r (δrx)

r2

∣∣∣∣∣
= sup

x∈Bσ
|ur,x0(x)|

≤ sup
x∈Bσ
|ûr,x0(x)|+ sup

x∈Bσ
|`r,x0(x)|

≤ C(σ, p, λ)
(
‖∆Hu‖L∞(B1) + ‖u‖BMOploc(B1)

)
.

This finishes the proof. �
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Corollary 4.3. Assume u ∈ L∞(B1) such that ∆Hu ∈ L∞(B1) and fix 0 < λ, σ < 1. If
we consider π as in (3.2), then there exists r0 > 0 such that the affine function

`x0(z) := u(x0) + 〈∇hu(x0), π(z)〉, x0 ∈ Bλ

satisfies the following properties. There exists a universal constant C(λ, σ) > 0 such that
for every r ∈ (0, r0] the following estimate holds

(4.10) sup
y∈Bσr(x0)

|u(y)− `x0(x−1
0 y)− px0

r (x−1
0 y)| ≤ C(λ, σ)

(
‖∆Hu‖L∞(B1) + ‖u‖L∞(B1)

)
r2,

where px0
r is as in Definition 3.2.

Proof. Our assumptions allow us to apply Lemma 4.2 to y → u(y)−`x0(x−1
0 y) with p = 2.

Then there exist r0, C(λ, σ) > 0 such that

sup
y∈Bσr(x0)

|u(y)− `x0(x−1
0 y)− px0

r (x−1
0 y)| ≤ C(λ, σ)

(
‖∆Hu‖L∞(B1) + ‖u− `x0‖BMO2

loc(B1)

)
r2

for every r ∈ (0, r0]. In addition, we have
‖u− `x0‖BMO2

loc(B1) ≤ C‖u− `x0‖L∞(B1) ≤ C ′(‖u‖L∞(B1) + |∇hu(x0)|).
We set f = ∆Hu ∈ L∞(B1) and write v = f ∗ Γ, getting

|∇hu(x0)| ≤ |∇h(u+ v)(x0)|+ |∇h(f ∗ Γ)(x0)|.
Arguing as in [GT01, Lemma 4.1], we establish

|∇hv(x0)| = |∇h(f ∗ Γ)(x0)| ≤ ‖∆Hu‖L∞(B1)‖∇hΓ‖L1(B2),

therefore we have
|∇hu(x0)| ≤ |∇h(u+ v)(x0)|+ ‖∆Hu‖L∞(B1)‖∇hΓ‖L1(B2).

Since u+ v is harmonic in B1, by (2.9), it follows that
|∇h(u+ v)(x0)| ≤ C0(‖u‖L∞(B1) + ‖v‖L∞(B1))

≤ C0(‖u‖L∞(B1) + ‖∆Hu‖L∞(B1)‖Γ‖L1(B2)).
This immediately leads us to our claim. �

Remark 4.4. Notice that under the same assumptions of Corollary 4.3, we can assume
that for every λ, σ ∈ (0, 1) and any x0 ∈ Bλ, there exist r̃0 > 0 and C > 0, only depending
on λ and σ, such that for all r ∈ (0, r̃0] the following estimate holds

sup
y∈BGσ0r(x0)

|u(y)− `x0(x−1
0 y)− px0

r (x−1
0 y)| ≤ C(λ, σ)

(
‖∆Hu‖L∞(B1) + ‖u‖L∞(B1)

)
r2,

for σ0 = σ/c0 ∈ (0, 1/c0) and additionally we have the inclusion BG
r0(x0) ⊂ B1. This is a

consequence of the definition of c0 in (2.8). If we set r0 := r̃0/c0, replacing r by c0r, we
may rephrase the previous estimate as follows
(4.11) sup

y∈BGσr(x0)
|u(y)−`x0(x−1

0 y)−px0
c0r(x

−1
0 y)| ≤ C(λ, σ)c2

0

(
‖∆Hu‖L∞(B1) + ‖u‖L∞(B1)

)
r2

for every 0 < r ≤ r0.
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We introduce now the important definition of coincidence set:

Λ := {x ∈ B1 : u(x) = 0}.

We will perform a blow-up of Λ around a fixed point x0 ∈ B1/2, considering the rescaled
and translated coincidence sets

Λr(x0) := {x ∈ BG
1 : u(x0δrx) = 0},

for 0 < r ≤ r0 and some r0 > 0 such that BG
r (x0) ⊂ B1. Notice that in the previous

definition the gauge distance is used for technical reasons, related to the existence of
solutions to the Dirichlet problem with respect to the sub-Laplacian.

The next result is a technical lemma, that will be used both to get the decay estimates
in Proposition 4.6 and to establish the regularity in Theorem 4.8.

Lemma 4.5. Let f be such that f ∗ Γ ∈ C1,1
H (B1) and let u solve (1.1) in B1. Then for

every 0 < λ, σ < 1, there exists r0 > 0 such that for every x0 ∈ Bλ we have BG
r0(x0) ⊂ B1

and the following holds. Let us consider the translated and rescaled function

(4.12) ur,x0(x) :=
u(x0δrx)− `x0(δrx)− px0

c0r(δrx)
r2 ,

where px0
c0r is introduced in Definition 3.2 and `x0(z) = u(x0) + 〈∇hu(x0), π(z)〉. For each

r ∈ (0, r0] we also define vr,x0 as the solution to

(4.13)

∆Hvr,x0 = fr,x0 , in BG
σ ,

vr,x0 = ur,x0 , on ∂BG
σ ,

where fr,x0(x) = f(x0δrx)χBGσ . Then there exists a universal constant C(λ, σ) > 0, de-
pending on λ and σ, such that

‖D2
hvr,x0‖L∞(BG

σ2 ) ≤ C(λ, σ)(‖D2
h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)).

Proof. Due to Remark 4.4, there exists r0 > 0 such that for every x0 ∈ Bλ we have
BG
r0(x0) ⊂ B1 and (4.11) holds for every r ∈ (0, r0]. We write the solution to the Dirichlet

problem (4.13) in the form
vr,x0 = ηr,x0 + ζr,x0 ,

where ζr,x0 solves ∆Hζr,x0 = 0, in BG
σ ,

ζr,x0 = ur,x0 − ηr,x0 , on ∂BG
σ

and we have defined
ηr,x0 = −fr,x0 ∗ Γ.

Indeed, the open set BG
σ is regular with respect to ∆H , see [BLU07, Proposition 7.2.8].

From the identity
D2
hvr,x0 = −D2

h(fr,x0 ∗ Γ) +D2
hζr,x0 ,
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taking into account the equality D2
h(f ∗Γ)(x0δrx) = D2

h(fr,x0 ∗Γ)(x) for a.e. x ∈ BG
σ2 and

the estimate (2.9) we obtain that
‖D2

hvr,x0‖L∞(BG
σ2 ) ≤ ‖D2

h(fr,x0 ∗ Γ)‖L∞(BG
σ2 ) + ‖D2

hζr,x0‖L∞(BG
σ2 )

≤ ‖D2
h(f ∗ Γ)‖L∞(BG

σ2r
(x0)) + C(σ)‖ζr,x0‖L∞(BGσ ).

Now we combine the maximum principle and the Dirichlet problem (4.13) to get
‖D2

hvr,x0‖L∞(BG
σ2 ) ≤ ‖D2

h(f ∗ Γ)‖L∞(B1) + C(σ)‖ur,x0 + fr,x0 ∗ Γ‖L∞(∂BGσ ).

Due to the version of the sub-quadratic growth in (4.11), taking into account the definition
(4.12) and the immediate estimate

‖fr,x0 ∗ Γ‖L∞(BGσ ) ≤ C‖f‖L∞(B1),

where C > 0 only depends on Γ, it follows that
‖D2

hvr,x0‖L∞(BG
σ2 ) ≤ ‖D2

h(f ∗ Γ)‖L∞(B1) + C(λ, σ)(‖u‖L∞(B1) + ‖f‖L∞(B1)).

In conclusion, we have established the following estimate
‖D2

hvr,x0‖L∞(BG
σ2 ) ≤ C(λ, σ)(‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)),

concluding the proof. �

Proposition 4.6 (Decay of the coincidence set). Let f be such that f ∗ Γ ∈ C1,1
H (B1)

and let u solve (1.1). Then for every β > 0, there exist Cβ > 0 and r0 > 0 so that if
0 < r ≤ r0, x0 ∈ B1/2, and the estimate

|P x0
r | ≥ Cβ

(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)

holds, we have

(4.14) |Λr/2(x0)| ≤ |Λr(x0)|
2βQ .

Proof. Our assumptions allow us to apply Lemma 4.5 with λ = 1/2, where we choose
σ ∈ [1/

√
2, 1). Let r0 > 0, vr,x0 and ur,x0 be as in the same lemma and define

wr,x0 := vr,x0 − ur,x0 .

Lemma 4.5 yields a constant C(σ) > 0 such that
‖D2

hvr,x0‖L∞(BG
σ2 ) ≤ C(σ)(‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1))

for every r ∈ (0, r0]. In addition, from the definition of wr,x0 we observe that∆Hwr,x0 = fr,x0χΛr(x0) in BG
σ ,

wr,x0 = 0 on ∂BG
σ .

By uniqueness, it follows that

wr,x0 = −
(
fr,x0χΛr(x0)

)
∗GBGσ
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where GBGσ
is the Green function of BG

σ , according to [BLU07, Definition 9.2.1]. From the
definition of Green function, we have GBGσ

≥ 0. In addition, taking into account [BLU07,
Proposition 9.2.12(iv)], we also notice that the maximum principle gives

GBGσ
(x, y) ≤ Γ(x−1y)

for every x, y ∈ BG
σ with x 6= y. Then a standard convolution estimate yields

(4.15) ‖wr,x0‖L∞(BGσ ) ≤ C‖f‖L∞(BGrσ(x0))‖χΛr(x0)‖LQ(B1) ≤ C‖f‖L∞(B1)|Λr(x0)|1/Q

for some geometric constant C > 0. The W 2,p
H estimates (3.7) give a universal constant

C1, depending on σ, such that
�
BG
σ2

|D2
hwr,x0(x)|2Q dx ≤ C1

(
‖fr,x0χΛr(x0)‖L2Q(BGσ ) + ‖wr,x0‖L2Q(BGσ )

)2Q

≤ C2‖f‖2Q
L∞(B1)(|Λr(x0)|+ |Λr(x0)|2)

≤ C3‖f‖2Q
L∞(B1)|Λr(x0)|.

The second inequality is again a consequence of a convolution estimate, joined with (4.15).
Since |Λr(x0)| ≤ |BG

1 |, the third inequality is also established. Furthermore, taking the
second order horizontal derivatives in the definition (4.12), we get the equality

P x0
c0r = (D2

hu)(x0δrx) +D2
hwr,x0(x)−D2

hvr,x0(x).

and also Λrσ2(x0) = δσ−2(Λr(x0) ∩ BG
σ2). In addition, arguing as in [GT01, Lemma 7.7],

we can establish that (D2
hu)(x0δrx) = 0 a.e. on the coincidence set Λr(x0). Taking into

account all previous facts, we get

σ2Q|Λrσ2(x0)||P x0
c0r|

2Q

= |Λr(x0) ∩BG
σ2||P x0

c0r|
2Q

=
�

Λr(x0)∩BG
σ2

|P x0
c0r|

2Q dx

=
�

Λr(x0)∩BG
σ2

|(D2
hu)(x0δrx) +D2

hwr,x0(x)−D2
hvr,x0(x)|2Q dx

=
�

Λr(x0)∩BG
σ2

|D2
hwr,x0(x)−D2

hvr,x0(x)|2Q dx

≤ 4Q
�

Λr(x0)∩BG
σ2

|D2
hwr,x0(x)|2Q + |D2

hvr,x0(x)|2Q dx

≤ C2(σ)
(
‖f‖2Q

L∞(B1)|Λr(x0)|+ |Λrσ2(x0)|
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)2Q

)
.
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Consequently,

σ2Q|P x0
c0r|

2Q − C2(σ)
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)2Q

C2(σ)‖f‖2Q
L∞(B1)

|Λrσ2(x0)| ≤ |Λr(x0)|.

We see that the coefficient in front of |Λrσ2(x0)| is bigger than 2βQ if

(4.16) σ2Q|P x0
c0r|

2Q ≥ C2(σ)2βQ‖f‖2Q
L∞(B1) + C2(σ)

(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)2Q

.

By the simple inequality ‖D2
h(f ∗ Γ)‖L∞(B1) ≥ ‖f‖L∞(B1), a few more computations lead

us to the following sufficient condition

|P x0
c0r| ≥

[
C2(σ)σ−2Q(2βQ + 22Q−1)

]1/2Q (
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
,

to get (4.16) to hold. Finally, we choose σ = 1/
√

2, then the proof follows by choosing
the constant Cβ in our statement equal to 2Q

√
C2(1/

√
2)2Q(2βQ + 22Q−1) and replacing c0r

by r. �

To carry out the proof of the C1,1
H regularity, we need a Calderón type second order

differentiability, according to the next definition.

Definition 4.7. We say that u ∈ L1
loc(Ω) is twice L1 differentiable at x0 if there exists a

polynomial t of degree less than or equal to two, such that
1
r2

 
Br(x0)

|u(z)− t(z)|dz → 0 as r → 0+.

The polynomial t has the following form

t(x) = c0 +
m∑
l=1

vl(xl − x0l) + 1
2

m∑
i,j=1

cij(xi − x0i)(xj − x0j) +
m2∑

l=m+1
cl(xl − x0l),

x = (x1, . . . , xn), x0 = (x01, . . . , x0n) and c0, cij, cl ∈ R.

It is possible to show that any u ∈ W 2,1
H,loc(Ω) is twice L1 differentiable a.e. in Ω.

Furthermore, if the function is twice L1 differentiable at a Lebesgue point x0 ∈ Ω of all
functions XiXju, Xju and u, then the corresponding polynomial is unique and it has the
following form

u(x0) +
m∑
j=1

Xju(x0) (xj − x0j) + 1
2

m∑
i,j=1

((XiXj +XjXi)u)(x0) (xi − x0i)(xj − x0j)

+
m2∑

l=m+1
Xlu(x0) (xl − x0l),

see [Mag05] for more information. We are now in the position to prove the optimal interior
regularity of solutions to the no-sign obstacle-type problem (1.1).



OPTIMAL REGULARITY FOR SUBELLIPTIC NO-SIGN OBSTACLE-TYPE PROBLEMS 22

Theorem 4.8 (C1,1 regularity). Let u ∈ L∞(B1) be a distributional solution to (1.1) in
the unit ball B1. Let f : B1 → R be locally summable such that f ∗ Γ ∈ C1,1

H (B1). Then
there exists a universal constant C > 0 such that, after a modification on a negligible set,
we have u ∈ C1,1

H (B1/4) and

‖D2
hu‖L∞(B1/4) ≤ C

(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
.

Proof. We consider Cβ as in Proposition 4.6 and fix β = 4. We consider a priori the
following constant

K = C4
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
.

Combining the Hölder inequality and Theorem 3.4, taking into account that the constant
Cβ in Proposition 4.6 is bounded from below by a universal positive constant independent
of β, we can find a universal constant C ′1 > 0 such that

(4.17) ‖D2
hu‖L1(B1/2) ≤ C ′1K.

Let r0 > 0 be the minimum among the r0’s of Remark 4.4, Lemma 4.5 with λ = 1/4 and
Proposition 4.6 with β = 4. We fix an integer i0 such that

(4.18) i0 ≥ 3 + log2 c0,

such that 2−i0 ≤ r0, where c0 is the geometric constant appearing in (2.6). Then (4.17)
provides us with a universal constant C1 ≥ 1 such that

(4.19) |P y
2−i0 | ≤ C1K

for all y ∈ B1/4. Notice that C1 actually depends on i0. However, this integer is fixed
throughout the proof. We have chosen i0 to satisfy also (4.18) in view of the subsequent
application of Lemma 3.8 with λ1 = 3/4. We can fix x0 ∈ B1/4 such that u is twice L1

differentiable at x0. Using [Mag05, Theorem 3.8] for p = 1 and k = 2, the set of these
differentiability points has full measure in B1. We can further write u = v−w, such that

∆Hv = f and ∆Hw = fχΛ

on B1, where v = −f ∗ Γ. By assumption v ∈ C1,1
H (B1), hence it is also a.e. twice L1

differentiable, therefore we can further assume v is twice L1 differentiable at x0, having
the set of these points full measure in B1. Now, only two cases may occur.
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Case 1: lim inf
k→∞

|P x0
2−k| ≤ C1K. At our point x0, we have

|D2
hu(x0)| =

∣∣∣∣ lim
k→∞

 
B2−k (x0)

D2
hu(y) dy

∣∣∣∣
= lim

k→∞

∣∣∣∣(P x0
2−k +

(∆Hu)B2−k (x0)

m
Im

)∣∣∣∣
≤ lim inf

k→∞

(
|P x0

2−k |+
1√
m
|(∆Hu)B2−k (x0)|

)
= 1√

m
|∆Hu(x0)|+ lim inf

k→∞
|P x0

2−k |

≤ 1√
m
‖f‖L∞(B1) + C1K

≤ ‖D2
h(f ∗ Γ)‖L∞(B1) + C1K.

Therefore
|D2

hu(x0)| ≤ (C1C4 + 1)(‖D2
h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)).

Case 2: lim inf
k→∞

|P x0
2−k| > C1K. Then the following integer is well defined

k0 := min{k ∈ N : k ≥ i0, |P x0
2−j | > C1K, for all j ≥ k}.

The positive integer k0 possibly depends on x0. We notice that from the definition of k0,
we have |P x0

2−k0+1| ≤ C1K. The strict inequality k0 > i0 follows by (4.19). In view of our
choice of i0, that satisfies (4.18) and then i0 > 3, we can apply Lemma 3.8 with λ1 = 3/4.
Indeed, we have B1/4 = Bλ1/3 and

2−k0+1 < min
{2

3λ1, 1− λ1

}
= 2−2,

so Lemma 3.8 with r1 = 2−k0 and r2 = 2−k0+1 yields
|P x0

2−k0 | ≤ |P
x0
2−k0+1|+ C

(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
,

≤ (C1C4 + C)
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
.

(4.20)

We consider the “rescaled function” defined in Lemma 4.5:

(4.21) u0(x) :=
u(x0δ2−k0x)− `x0(δ2−k0x)− px0

c02−k0 (δ2−k0x)
4−k0

.

This function coincides with u2−k0 ,x0 of the same lemma. Now we set f0(x) := f(x0δ2−k0x),
that is also defined on BG

1 . We can find a harmonic function h0 such that
v0 = 22k0v(x0δ2−k0x) + h0

and v0 satisfies the Dirichlet problem

(4.22)

∆Hv0 = f0 in BG
σ ,

v0 = u0, on ∂BG
σ ,
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with 0 < σ < 1. Notice that v0 is also twice L1 differentiable at 0, being a consequence of
the twice L1 differentiability of v at x0. For the same reason, the twice L1 differentiability
of u at x0 gives the twice L1 differentiability of u0 at 0. From Lemma 4.5 with λ = 1/4,
there exists Cσ > 0 such that

(4.23) ‖D2
hv0‖L∞(BG

σ2 ) ≤ Cσ
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
.

For the sequel, it is now important to remark that the difference

(4.24) w0 := v0 − u0

is twice L1 differentiable at the origin. Then we know the existence of a polynomial

R(x) = w0(0) +
m∑
j=1

Xjw0(0)xj + 1
2

m∑
i,j=1

(
(XiXj +XjXi)w0

)
(0)xixj +

m2∑
l=m+1

Xlw0(0)xl

such that we get

(4.25) 1
r2

 
Bκr

|w0(z)−R(z)|dz → 0

as r → 0+ and for an arbitrary κ > 0. The definition of w0 immediately gives∆Hw0 = f0χΛ2−k0 (x0) in BG
σ ,

w0 = 0 on ∂BG
σ .

Claim: for a fixed 0 < α < 1, there exist l0 ≥ 1 and C > 0, depending on α and on
universal constants, such that for τ = 2−l0 and for every k ∈ N \ {0}, there exist harmonic
polynomials qk with the property that

(4.26) ‖w0 − qk‖L∞(BG
τk

) ≤ C
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
τ (2+α)(k−1)

where the constants are independent of x0.
To prove (4.26) by induction, we need first to establish the case k = 1. Here we choose

the null harmonic polynomial q1 = 0. We consider the decomposition (4.24) and observe
that standard L∞ estimates for v0 are available, since it solves (4.22). Indeed, we may
further decompose v0 into the sum of z0 = −f0∗Γ and of a harmonic function h0 such that
h0|∂BGσ = u0− z0. Then we apply the sub-quadratic growth estimate (4.11) of Remark 4.4
where we fix λ = 1/4. This leads us to the following estimate

‖v0‖L∞(Bσ) ≤ C1σ
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
.

Then using again estimate (4.11), we obtain

‖w0‖L∞(BGσ ) ≤ ‖v0‖L∞(BGr1 ) + ‖u0‖L∞(BGr1 )

≤ C2σ
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
.
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Taking σ = τ = 2−l0 , the estimate (4.26) is established for k = 1. We may take l0 ∈ N
possibly larger, such that

(4.27) τ = 2−l0 ≤ 1
2|BG

1 |1/Q
.

In view of Proposition 2.4, there exists a universal constant c > 0 such that

(4.28) ‖D3
hH‖L∞(BG1/2) ≤ c‖H‖L∞(BG1 )

for any harmonic function H on BG
1 . Now we assume the statement (4.26) is true for any

fixed k ≥ 1 and define

wk(x) := w0(δτkx)− qk(δτkx)
τ (2+α)(k−1)

on BG
1 . We choose the harmonic function hk such that∆Hhk = 0 in BG

1 ,

hk = wk on ∂BG
1 .

From the definition of wk, we get

∆Hwk = τ 2−α(k−1)f(x0δ2−k0τk ·)χΛ2−k0τk (x0)

on BG
1 , and the induction assumption yields

(4.29) ‖wk‖L∞(BG1 ) ≤ C
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
.

Clearly wk−hk vanishes on ∂BG
1 . Taking into account our choice of i0 such that 2−i0 ≤ r0,

the decay estimate of the coincidence set (4.14) applies in particular for β = 4 and for
every r ∈ (0, 2−k0 ], that is

(4.30) |Λr/2(x0)| ≤ |Λr(x0)|
24Q .

Arguing as before for v0, we can decompose wk − hk into the sum of a harmonic function
and a convolution with the fundamental solution, therefore standard convolution estimates
yield the first of the following inequalities

‖wk − hk‖L∞(BG1 ) ≤ C‖τ 2−α(k−1)f(x0δ2−k0−l0k)χΛ2−k0−l0k (x0)‖LQ(BG1 )

≤ Cτ−α(k−1)‖f‖L∞(B1)|Λ2−k0−l0k(x0)|1/Q

≤ C2αl0(k−1)‖f‖L∞(B1)2−4l0k|Λ2−k0 (x0)|1/Q

≤ C|BG
1 |1/Q‖f‖L∞(B1)τ

k(4−α)+α

≤ C

2 ‖f‖L
∞(B1)τ

2+α,

where the third inequality is a consequence of (4.30) and the last inequality follows from
(4.27). Combining the estimate (4.28) for harmonic functions, the maximum principle
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and our induction assumption as stated in (4.29), we get
‖D3

hhk‖L∞(BG1/2) ≤ c‖hk‖L∞(BG1 ) ≤ c‖wk‖L∞(BG1 )

≤ cC
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
.

Define qk(x) as the second order Taylor polynomial of hk at the origin. In particular, qk
is harmonic. The previous estimates joined with the application of the stratified Taylor
inequality stated in [FS82, Corollary 1.44 with k = 2 and x = 0] give

‖hk − qk‖L∞(BGτ ) ≤ C ′2cC
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
τ 3

≤ C

2
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
τ 2+α,

where we have chosen l0 possibly larger, such that the following conditions

b3τ = b32−l0 < 1/2 and τ = 2−l0 ≤
(

1
2cC ′2

)1/(1−α)

also hold. The constants b and C ′2 are from [FS82, Corollary 1.44 with k = 2 and x = 0]
and this corollary is applied with the gauge distance dG. We stress that l0 does not
depend on either k0 or x0. This is very important for the final estimate of D2

hu(x0). As a
consequence, we obtain
‖wk − qk‖L∞(BGτ ) ≤ ‖wk − hk‖L∞(BGτ ) + ‖hk − qk‖L∞(BGτ )

≤ C

2 ‖f‖L
∞(B1)τ

2+α + C

2
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
τ 2+α

≤ C
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
τ 2+α.

Taking into account the definition of wk, we have proved that∥∥∥∥∥w0(δτk ·)− qk(δτk ·)
τ (2+α)(k−1) − qk

∥∥∥∥∥
L∞(BGτ )

≤ C
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
τ 2+α,

from which we infer that
‖w0 − qk − τ (2+α)(k−1)qk(δτ−k ·)‖L∞(BG

τk+1 ) ≤ C
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
τ (2+α)k.

If we define the new polynomial
qk+1(x) := qk(x) + τ (2+α)(k−1)qk(δτ−kx),

then the induction step is proved and this concludes the proof of our claim. By the same
previous argument, we have another universal constant c′ > 0 such that

max
{
‖hk‖L∞(BG1/2), ‖∇hhk‖L∞(BG1/2), ‖D2

hhk‖L∞(BG1/2)

}
≤ c′‖wk‖L∞(BG1 )(4.31)

≤ c′C
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
.
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We introduce the following notation:

qk(x) = ak +
m∑
i=1

bki xi + 1
2

m∑
i,j=1

ckijxixj +
m2∑

l=m+1
ckl xl,

qk(x) = ak +
m∑
i=1

b
k

i xi + 1
2

m∑
i,j=1

ckijxixj +
m2∑

l=m+1
ckl xl.

From the definition of q̄k and taking into account the estimates (4.31), we get

(4.32) max
i,j,l
{ak, bki , ckij, ckl } ≤ c′C

(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
.

Consequently, differentiating the equality

qk+1(x)− qk(x) = τ (2+α)(k−1)qk(δτ−kx),

with the differential operators Xi, XiXj for i, j = 1, . . . ,m and Xl for l = m+ 1, . . . ,m2,
and evaluating all the equalities at the origin, we get

|ak+1 − ak| ≤ c′C
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
τ (2+α)(k−1),

max
1≤i≤m

|bk+1
i − bki | ≤ c′Cτ−1

(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
τ (1+α)(k−1),

max
1≤i,j≤m

|ck+1
ij − ckij| ≤ c′Cτ−2

(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
τα(k−1),

max
m+1≤l≤m2

|ck+1
l − ckl | ≤ c′Cτ−2

(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
τα(k−1).

Representing any of these coefficients as γk, we notice that they are Cauchy sequences
converging to some γ. In addition, for any of them we have

(4.33) |γk − γ| ≤ c′Cτ−2

1− τα
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
τ (α+l)(k−1).

In these estimates, we have set l = 0 when γk = ckl , c
k
ij, l = 1 for γk = bki and l = 2 for

γk = aki . As a consequence, the polynomials qk uniformly converge on compact sets to a
polynomial q̃, that has the form

q̃(x) = ã+
m∑
i=1

b̃ixi + 1
2

m∑
i,j=1

c̃ijxixj +
m2∑

l=m+1
c̃lxl.

Any coefficient γ of q̃, can be written for instance as γ2 + γ − γ2. By (4.33), we can find
a universal estimate for γ − γ2, that depends on α. We also observe that the coefficients
of q2 are given by the formula q2 = q1 ◦ δτ−1 . The estimate (4.32) for k = 2 and the fact
that τ = 2−l0 can be universally fixed, independently of x0, finally lead us to the estimate

(4.34) |D2
hq̃| ≤ Cτ,α

(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
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for a suitable geometric constant Cτ,α > 0 depending on the constants of (4.33) and (4.32).
From (4.33), defining

Cτ,α,f,u =
c′Cτ−2

(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)

1− τα ,

we can establish the following quantitative estimate on small balls:

‖qk − q̃‖L∞(BG
τk+1 ) ≤Cτ,α,f,u

τ (α+2)(k−1) + τ (α+1)(k−1)
m∑
i=1
‖xi‖L∞(BG

τk+1 )

+τα(k−1)
m∑

i,j=1
‖xixj‖L∞(BG

τk+1 ) + τα(k−1)
m2∑

l=m+1
‖xl‖L∞(BG

τk+1 )


≤C̃ Cτ,α,f,u τ

(2+α)(k−1),

where we have used the proper intrinsic homogeneity of all the monomials xi, xixj and
xl, with i, j = 1, . . . ,m and l = m+ 1, . . . ,m2. We would like to prove that

lim
r→0

1
r2

 
BGτr

|w0(z)− q̃(z)|dz = 0.

Let us consider r = τ k and then
1
r2

 
BGτr

|w0(z)− q̃(z)|dz ≤ 1
r2

 
BGτr

|w0(z)− qk(z)|dz + 1
r2

 
BGτr

|q̃(z)− qk(z)|dz

=τ−2k
 
BG
τk+1

|w0(z)− qk(z)|dz + τ−2k
 
BG
τk+1

|q̃(z)− qk(z)|dz

≤C
(
‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)
)
ταk + τ−2k‖q̃ − qk‖L∞(BG

τk
)

goes to zero as k →∞. If we choose κ0 > 0 sufficiently small, then we have proved that
1
τ 2k

 
B
κ0τ2k

|w0(z)−R(z)|dz ≤ 1
τ 2k

 
BG
τk

|w0(z)−R(z)|dz → 0.

By the uniqueness of the second order polynomial R satisfying (4.25) with κ = κ0, we get
q̃ = R. Taking into account (4.23) with σ = τ and (4.34) with α = 1/2, we obtain a new
constant C > 0, such that

|D2
hu0(0)| ≤ |D2

hv0(0)|+ |D2
hw0(0)| ≤ C(‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)).
As a consequence, since k0 > i0 and i0 satisfies (4.18) we can apply Lemma 3.8 with
r1 = 2−k0 and r2 = c02−k0 , so that taking into account the estimate (4.20) and the
definition (4.21) of u0, we finally obtain a possibly larger constant, that we still denote
by C > 0, such that

|D2
hu(x0)| ≤ |D2

hu0(0)|+ |P x0
c02−k0 | ≤ C(‖D2

h(f ∗ Γ)‖L∞(B1) + ‖u‖L∞(B1)),
concluding the proof. �
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