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Chapter 1

Introduction and first notions

1.1 The abstract Heisenberg group

There is a vast literature on the Heisenberg group and its relations with different areas of Math-
ematics. Fortunately, it is possible to present it as an abstract model of finite dimensional metric
space that contains all the characterizing features.

The best way to present this model is to make a comparison with the classical Euclidean space.
The Heisenberg group could be seen, broadly speaking, as a non-commutative version of the clas-
sical Euclidean space.

Let us list the classical objects that we use in the Euclidean space

1. Sum between elements

2. Mutiplication by a scalar number

3. Distance that is compatible with sum and multiplication by a scalar number

4. Partial derivatives

5. Lebesgue measure that is compatible with the previous objects

We will present the Heisenberg group following this list, since this space has an analogous list
of objects, that are still compatible with respect to each other. We will see in the sequel, in which
sense this compatibility is meant.

1.2 The underlying space

The Heisenberg group as a set can be seen just as a linear space S of odd dimension 2n + 1, where
n is a positive integer. This space is the direct sum of two fixed subspaces S 1 and S 2 of S , where

S = S 1 ⊕ S 2, dim S 1 = 2n and dim S 2 = 1 .

Recall that the direct sum S = S 1 ⊕ S 2 means that S 1 ∩ S 2 = {0}. We will denote by x an element
of S and by s and t general elements of S 1 and S 2, respectively. Writing x = s + t the fact that
s ∈ S 1 and t ∈ S 2 will be understood. This abstract decomposition will allow us to introduce the
above listed properties.
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1.3 Group operation

The group operation in S is given by a non-degenerate skew-symmetric bilinear form

ω : S 1 × S 1 −→ S 2

where the non-degeneracy condition coincides with the requirement that

ω(s, ·) is a nonvanishing linear mapping whenever s , 0.

For any two elements x, x′ ∈ S with x = s + t and x′ = s′ + t′ we define the operation

xx′ = x + x′ + ω(s, s′) .

Let us show that this formula defines a noncommutative group operation.

1.3.1 Non-commutativity

The skew-symmetry and non-degeneracy of ω implies that this operation is noncommutative. In
fact, for a fixed nonvanishing s ∈ S 1, since ω(s, ·) is a non vanishing linear map, there exists an
element s′ ∈ S 1 such that ω(s, s′) , 0. We have

ss′ = s + s′ + ω(s, s′) , s′s = s′ + s − ω(s, s′)

1.3.2 Associativity

Let us consider x, y, v ∈ S with decomposition x = s1 + t1, y = s2 + t2 and u = s3 + t3, with si ∈ S 1

and ti ∈ S 2. We consider

(xy)u =
[
x + y + ω(s1, s2)

]
u = x + y + u + ω(s1, s2) + ω(s1 + s2, s3)

and
x(yu) = x

[
y + u + ω(s2, s3)

]
= x + y + u + ω(s2, s3) + ω(s1, s2 + s3)

that coincide since ω is bilinear.

1.3.3 Unit element and inverse element.

Of course, the origin is the unit element

x 0 = x + 0 + ω(x, 0) = x = 0 x for all x ∈ S .

Since ω is skew-symmetric, for all x = s + t we have

x(−x) = x − x + ω(s,−s) = 0

then the inverse of x is the opposite element −x, hence

x−1 = −x for all x ∈ S .
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1.3.4 Comments.

We have defined a smooth analytic group operation on S , that is obviously a differentiable mani-
fold, so we have constructed a noncommutative Lie group.

1.4 Dilations

Dilations in S replace the multiplication by a positive scalar number. For any r > 0 and x = s + t,
we define

δr x = rs + r2t and δr : S −→ S .

Why we have this definition of dilation? This notion is compatible with the group operation in the
following sense

δr(x · y) = (δr x) (δry)

for all x, y ∈ S . In fact, defining x = s + t and y = w + z, we have

δr(xy) = δr(s + w + t + z + ω(s,w)) = rs + rw + r2t + r2z + r2ω(s,w)
rs + rw + r2t + r2z + ω(rs, rw) = (δr x)(δry).

In the terminology of Lie group theory, this property corresponds to say that δr is a Lie group
homomorphism of S . By a simple verification, we get the one-paramter property

δr ◦ δr′ = δrr′ for all r, r′ > 0.

This shows that δr is a Lie group isomorphism, namely, it is invertible and (δr)−1 = δ1/r .

1.5 Distance and homogeneous norm.

A good distance in S is those continuous distance d : S × S −→ [0,+∞) such that the following
additional properties hold

1. d(δr x, δry) = r d(x, y)

2. d(xy, xu) = d(y, u)

for all x, y, u ∈ S and r > 0. We say that d with these properties is a homogeneous distance.
We can construct many homogeneous distances in S . Let us see the simplest example.
We fix a scalar product 〈·, ·〉 and the corresponding norm | · | on S such that S 1 and S 2 are

orthogonal. We have the minimal constant Cω > 0 such that

|ω(s, s1)| ≤ Cω |s| |s1| for all s, s1 ∈ S 1 .

We choose any positive number α ≤ 2/Cω and define for x = s + t the following function

‖x‖ = max
{
|s|,

√
α|t|

}
.

It is clear that by definition

‖δr x‖ = max
{
|rs|,

√
α|r2t|

}
= r ‖x‖.
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A more interesting property to prove is the following triangle inequality

‖xy‖ ≤ ‖x‖ + ‖y‖ .

Let us set x = s + t and y = w + z, hence in the case ‖xy‖ = |s + w|, we trivially have

‖xy‖ ≤ |s| + |w| ≤ ‖x‖ + ‖y‖ .

In the case ‖xy ‖ =
√
α|t + z + ω(s,w)|, we have

‖xy‖2 ≤ α|t| + α|z| + αCω|s| |w| ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖

that concludes the proof of the triangle inequality.

Definition 1.5.1 We say that a continuous function ‖ · ‖ : S −→ [0,+∞) that satisfies

1. ‖x‖ = 0 iff x = 0

2. ‖δr x‖ = r ‖x‖

3. ‖xy‖ ≤ ‖x‖ + ‖y‖

is a homogeneous norm.

We have constructed an infinite family of homogeneous norms parametrized by α. The point is
that any homogeneous norm defines a homogeneous distance as follows

d(x, y) := ‖x−1y‖ for all x, y ∈ S .

Conversely, if I have given a homogeneous distance d on S , then setting

‖x‖ := d(x, 0)

a homogeneous norm is also defined. This is a simple verification. It is important to compare this
distance with the Euclidean distance on S that arises from the fixed scalar product.

1.5.1 Comparison with the Euclidean distance.

Let us consider |x|, |y| < ν for a fixed ν > 0, where x = s + t and y = w + z and consider

|t − z| ≤ | − t + z − ω(s,w)| + Cω ν|s − w| ≤
‖x−1y‖2

α
+ Cω ν‖x−1y‖

We denote by BE(x, r) the Euclidean ball in S of center x and radius r > 0, hence we define

sup
x,y∈BE(0,ν)

‖x−1y‖ = Mν < +∞.

It follows that

|x − y| ≤ |s − w| + |t − z| ≤
(
1 +

Mν

α
+ Cω ν

)
‖x−1y‖ whenever x, y ∈ BE(0, ν) .

Conversely, we have

| − t + z − ω(s,w)| ≤ |t − z| + Cω ν |s − w| ≤ (1 + Cω ν)|x − y|,
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so it follows that

‖x−1y‖ = max
{
|s − w|,

√
α| − t + z − ω(s,w)|

}
≤

(√
2ν +

√
α(1 + Cω ν)

) √
|x − y|

for all x, y ∈ BE(0, ν). We have shown that for any bounded set K of S , there exists a geometric
constant CK > 0 depending on K and on ‖ · ‖ such that

C−1
K |x − y| ≤ ‖x−1y‖ ≤ CK

√
|x − y| for any x, y ∈ BE(0, ν). (1.1)

Remark 1.5.1 As a consequence of (1.1), the topology induced by d coincides with the topology
of S as a linear space.

Definition 1.5.2 When the linear space S is equipped with the group operation and the homoge-
neous distance described above, we denoted it by Hn.

Definition 1.5.3 The open unit ball of Hn with respect to ‖ · ‖ and centered at 0 will be denoted
by B. The open ball of center x and radius r with respect to the same distance will be denoted by
B(x, r).
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Chapter 2

Partial derivatives and geometric measures
in the Heisenberg group

2.1 Bases on the Heisenberg group

A graded basis (e1, . . . , e2n+1) of Hn seen as a linear space, has the propery that (e1, . . . , e2n) spans
S 1 and e2n+1 spans S 2. When we consider an element x ∈ S and the decomposition x =

∑2n+1
j=1 x je j

with respect to the graded basis (e j), we say that (x1, . . . , x2n+1) are graded coordinates.

Once we have fixed e2n+1 spanning S 2, the mapping ω(s,w) ∈ S 2 becomes a scalar-valued,
ω(s,w) = ω̄(s,w)e2n+1. The mapping ω̄ : S 1 × S 1 −→ R is exactly a symplectic form on S 1 since it
is nondegenerate.

As an exercise of linear algebra, one can show that there always exist a special basis (e1, . . . , e2n)
of S 1, called symplectic basis, such that

ω̄(ei, en+ j) = δi j for all i, j = 1, . . . , n
ω̄(ei, e j) = 0 for all 1 ≤ i, j ≤ 2n such that |i − j| , n

The group operation with respect to the graded coordinates associated to the symplectic basis takes
a simple explicit form, since

ω(x, y) = ω

∑
j

x je j,
∑

j

y je j

 =

n∑
i=1

(xiyn+i − xn+iyi)

then we have

xy = x + y +

n∑
i=1

(xiyn+i − xn+iyi)e2n+1.

We use the terminology symplectic basis also for the full basis (e1, . . . , e2n+1), since e2n+1 is fixed
once for all.
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2.1.1 Different isomorphic group operations

If we consider the group operation associated to ωβ = βω, where β , 0, with respect to the same
symplectic basis, we get the new group operation

xy = x + y + β

n∑
i=1

(xiyn+i − xn+iyi)e2n+1 where β , 0

that gives rise to the same group, so we have freedom, if necessary, in the choice of β.

2.2 Partial derivatives and left translations

Definition 2.2.1 Any basis of this vector space equips it with a global differentiable structure that
makes it an analytic smooth manifold. Then we can consider C∞ smooth functions on this space,
namely, those functions that are C∞ smooth in R2n+1 when read in any fixed basis of Hn. We denote
this space by C∞(Hn).

Of course, one already has the standard partial derivatives on S as a linear space, but we want to
have a differentiation that respect to group operation and also dilations. To find the right partial
derivative, we have to consider the large space of first order differential operators on S , that in
particular contains the partial derivatives. A linear differential operator L : C∞(Hn) −→ C∞(Hn)
with respect to an understood graded basis is represented as L =

∑2n+1
j=1 a j(x) ∂ j where a j are smooth

function on Hn. The operator L acts on a smooth function u as follows. With respect to the graded
basis (e1, . . . , e2n+1) we have

u(x) = u(x1e1 + · · · + x2n+1e2n+1) and
d
dt

u
(
(x j + t)e j +

∑
i, j

xiei

)
|t=0

= (∂x ju)(x)

hence

Lu(x) =

2n+1∑
j=1

a j(x) ∂x ju(x) .

Partial derivatives are invariant with respect to sum of vectors of S in the following sense

(∂x ju)(y + x) = ∂x j

(
u(y + ·)

)
(x) for all x, y ∈ Hn. (2.1)

Let us introduce translations in S with respect to the sum of vectors

Tx : C∞(Hn) −→ C∞(Hn), (Txu)(y) = u(x + y)

Then we read formula (2.1) as follows

Ty ∂x j = ∂x j Ty .

This suggests to introduce the operators L j replacing traslations with left translations. For every
x ∈ Hn, we define the left translation with respet to x as follows

lx : Hn −→ Hn, y −→ xy.
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Notice that lx is invertible for all x and

(lx)−1 = lx−1 .

Left translations define the mappings

l∗x : C∞(Hn) −→ C∞(Hn), u −→ u ◦ lx .

To discover the form of the partial derivative L j on Hn that respect the left translations of S , we
impose the relationship

L jl∗xu = l∗xL j (2.2)

under the condition that L j(0) = ∂x j . We have

L ju(x) = l∗x(L ju)(0) = L j(l∗xu)(0) = ∂x j(u ◦ lx)(0)

It follows that
L ju(x) = du ◦ dlxe j .

This suggests us to define the vector field X j associated to L j as follows

X j(x) = dlx(0)e j for all x ∈ Hn. (2.3)

We have
L ju(x) = 〈du(x), X j(x)〉

We can concretely compute the formula for X j with respect to the understood graded coordinates.
Let us consider 1 ≤ j ≤ n, then

X j(x) =
d
dt

x(te j)|t=0 =
d
dt

(
x + te j − txn+ je2n+1)|t=0 = e j − xn+ j e2n+1

and the analogous computation yields

X j+n(x) = en+ j + x j e2n+1

We can identify the vector fields X j with L j replacing e j with ∂x j . Then we will use the notation X j

also to denote the partial derivative

X j = ∂x j − x j+n∂2n+1 and X ju(x) = ∂x ju(x) − x j+n∂x2n+1u(x) .

One can easily observe that x(te2n+1) = x + te2n+1, hence the same computations yield

X2n+1 = ∂2n+1.

We have found the natural frame of left invariant differential operators on Hn

(X1, . . . , X2n+1), X j = ∂x j − x j+n∂x2n+1 , Xn+ j = ∂x j+n + x j∂x j

1 ≤ j ≤ n and X2n+1 = ∂x2n+1 . The left invariance follows by their construction, namely,

X ju(x) = X j(u ◦ lx)(0) .

This transformation can be equivalently translated in terms push-forward of vector fields.
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Definition 2.2.2 Let f : Hn −→ Hn be any diffeomorphism and let Z = a1e1 + · · · + a2n+1e2n+1 be
any vector field on Hn. We define the “image vector field”, or push-forward as the new vector field

f∗Z(y) = d f ( f −1y)Z( f −1(y)) for all y ∈ Hn.

The geometric meaning of the push-forward vector field f∗Z is the following. Let γ be any solution
of the equation γ′ = Z(γ), then the curve f ◦ γ is the solution of ( f ◦ γ)′ = ( f∗Z)( f ◦ γ). In other
words, the images of the orbits of Z through f are the orbits of f∗Z.

This notion allows us to better clarify the notion of left invariance of X j. In fact, we have

(lx)∗(X j) = X j for all x ∈ Hn and j = 1, . . . , 2n + 1.

This property rigorously defines the notion of left invariance. By (2.3), for all z ∈ Hn we have

(lx)∗(X j)(z) = dlx(lx−1z)X j(lx−1z) = dlx ◦ dlx−1z(0)e j = dlz(0)e j = X j(z) .

2.2.1 Derivatives and dilations

We have seen that the differential operators X j and dilations δr respect the group operation. To see
their compatibility, we consider the transformation of X j by δr, namely, the push-forward vector
field (δr)∗X j. We have

(δr)∗X j(z) = dδr(δ1/rz)X j(δ1/rz) = dδr ◦ dlδ1/rz(0)e j =
d
dt

(δr ◦ lδ1/rz)(te j)|t=0 .

The last composition can be written as follows

δr ◦ lδ1/rz(te j) = δr((δ1/rz)(te j)) = z(tδre j) .

If 1 ≤ j ≤ 2n, then δre j = re j and we have

(δr)∗X j(z) =
d
dt

(z(tre j)|t=0 = r
d
dt

(z(te j)|t=0 = r X j(z) .

Since δre2n+1 = r2e2n+1, with the same argument we get

(δr)∗X2n+1(z) = r2 X2n+1(z) .

The exponent of r is called the degree of the vector field, so that X1, . . . , X2n have degree one and
X2n+1 has degree two. Let us define d1 = · · · = d2n = 1 and d2n+1 = 2. Thus, we have proved that

(δr)∗X j = rd j X j. (2.4)

The previous formulae can be tested on smooth functions u ∈ C∞(Hn) as follows

X j(u ◦ δr) = du ◦ dδr(X j) = du ◦ (δr)∗X j ◦ δr = rd j du ◦ X j ◦ δr = rd j(X ju) ◦ δr .

As a consequence, defining δ∗ru(x) = u(δr x), we have proved that X jδ
∗
r = rd jδ∗r X j as linear operators

on C∞(Hn). The vector fields X1, . . . , X2n are called horizontal vector fields.
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2.3 Haar measure

A measure µ in S that is compatible with the group operation in S has to satisfy

µ(xA) = µ(A)

for every measurable set A and every x ∈ S . These measures are called Haar measures.

Remark 2.3.1 Any locally compact Lie group has a unique Haar measure up to multiplication by
a positive number.

In the Heisenberg group equipped with any graded basis (e1, . . . , e2n+1) the mapping y −→ xy has
Jacobian equal to one with respect to graded coordinates. In fact, we have

lx(y) =


x1 + y1

x2 + y2
...

x2n + y2n

x2n+1 + y2n+1 + ω
(∑2n

j=1 x je j,
∑2n

j=1 y je j
)


and Dlx =



1 0 · · · 0

0 1 . . . 0
...

...
0 · · ·

∗ ∗ · · · 1


where the ∗ denotes the places where the entries are the partial derivatives of ω

(∑2n
i=1 xiei, te j

)
with

respect to t at t = 0 and j = 1, . . . , 2n + 1. Thus, the Lebesgue measure L2n+1 yields the Haar
measure

L2n+1(lx(A)) =

∫
A

Jlx(y) dL2n+1(y) = L2n+1(A) .

Exercise 2.3.1 Show that the right translations rx(z) = zx preserve the Lebesgue measure in Hn.

The Haar measure of Hn behaves well also with respect to dilations. In fact, when the graded basis
is fixed, dilations read as follows

δr

( 2n+1∑
j=1

x je j

)
=

2n+1∑
j=1

rd je j .

The Jacobian determinant of δr is r
∑2n+1

j=1 d j = r2n+2, hence

L2n+1(δrA) = r2n+2L2n+1(A) (2.5)

for every measurable set A ⊂ Hn.
The number 2n + 2 is the intrinsic dimension of the Heisenberg group, that is greater than its

topological dimension. In Subsection 2.4.3, we will see that this number is actually the Hausdorff
dimension of the group with respect to its distance d.

2.4 Hausdorff measure

The Hausdorff measure in an important notion of “measure with dimension” that can be used to
study lower dimensional objects in the space. Furthermore, it can be introduced in a general metric
space.
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2.4.1 Hausdorff measure in metric spaces

Let (X, d) be a metric space and denote

diamS = sup
x,y∈S

d(x, y) .

Fix α > 0 and cα > 0 and for every t > 0 and E ⊂ X define

Hα
d,t(E) = cα inf

 ∞∑
j=0

diam(E j)α : E ⊂
⋃
j∈N

E j , diam(E j) ≤ t


we notice that here cα plays the role of the geometric constant, to be properly chosen, depending
on the metric space we consider. We define

Hα
d (E) = sup

t>0
Hα

d,t(E) = lim
t→0+
Hα

d,t(E)

As a consequence of the well known Carathéodory criterion, we have the following theorem.

Theorem 2.4.1 The set functionHα
d is a Borel regular outer measure in X.

In particular,Hα
d is countably additive on disjoint unions of Borel sets.

Exercise 2.4.1 Show that Hα
d (E) < ∞ implies Hβ

d (E) = 0 for all β > α and Hα
d (E) > 0 implies

H
β
d (E) = +∞ for all β < α.

The previous exercise allows us to introduce the Hausdorff dimension of E ⊂ X as follows

H- dim(E) = inf{α > 0 : Hα(E) = 0} = sup{α > 0 : Hα(E) = +∞}

with the convention inf ∅ = +∞ and sup ∅ = 0.

2.4.2 Hausdorff measure in Euclidean spaces

We consider the metric space Rn equipped with the Euclidean distance d(x, y) = |x− y| and for any
positive integer k we set ck = 2−kLk(Bk) where Bk is the Euclidean unit ball in Rk. In this setting,
we define the standard Hausdorff measure

H k(E) = lim
t→0+
H k

t (E) with H k
t (E) = ck inf

 ∞∑
j=0

diam(E j)α : E ⊂
⋃
j∈N

E j , diam(E j) ≤ t

 .

Exploiting the isodiametric inequality we have the following fact.

Theorem 2.4.2 Under the previous assumptions, the Lebesgue measure Ln coincides with the
Hausdorff measureHn in Rn.
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2.4.3 Hausdorff measure in Heisenberg groups

If we consider the Heisenberg group Hn as a metric space equipped with homogeneous distance
d(x, y) = ‖x−1y‖, it is natural to look for its Hausdorff dimension with repsect to d. Let us consider
the open unit ball B of Hn with respect to d and fix ε ∈ (0, 1). By the properties of the Lebesgue
measure, we have seen that

L2n+1(B(x j, ε)) = L2n+1(lx jδεB) = εQL2n+1(B) = ωQ ε
Q. (2.6)

Then we can consider a maximal family of disjoint balls F = {B(x j, ε) : j = 1, . . . ,N} contained
in B, that has to be finite, due to (2.6). The maximality means that there exists no collection of
disjoint balls of radius ε and contained in B that strictly contains F . The existence of this set can
be proved by the classical Zorn’s lemma. By the maximality of this family, we have

N⋃
j=1

B(x j, ε) ⊂ B ⊂
n⋃

j=1

B(x j, 2ε) .

Let us denote by Q the number 2n+2 and by ωQ the volume of the unit ballL2n+1(B). The previous
inclusions yield

ωQ

N∑
j=1

εQ ≤ ωQ ≤ 2QωQ

N∑
j=1

εQ

that yields
2−Qε−Q ≤ N ≤ ε−Q .

This immediately leads to

H
Q
d,4ε(B) ≤ cQ NωQ(2ε)Q ≤ 2Q ωQ cQ

hence HQ(B) < +∞. This implies that for an arbitrary ε > 0 there exist a family {E j} that covers
B with diam(E j) ≤ ε for all j and such that

cQ

∞∑
j=0

diam(E j)Q < ε +HQ
ε (B)

We pick x j ∈ E j for all j, observing that E j ⊂ B
(
x j, 2diam(E j)

)
, hence

ωQ ≤

∞∑
j=0

L2n+1(E j) ≤ ωQ2Q
∞∑
j=0

diam(E j)Q

that implies

2−QcQ ≤ cQ

∞∑
j=0

diam(E j)Q < ε +HQ
ε (B)

and letting ε→ 0+, we have finally establiahed that

0 < HQ(B) < +∞ .

This precisely shows that H-dimHn = Q = 2n + 2. In fact, whenever α > Q any B(0, k) = δkB has
vanishingHα

d -measure, hence Hn =
⋃

k≥1 B(0, k) satisfiesHα
d (Hn) = 0.

13



Remark 2.4.1 It is certainly a natural question to find the Hausdorff dimension of sumanifolds in
the Heisenberg group. Here we meet at the same time the problem of establishing who are the
“good submanifolfds” that respect the geometry of the Heisenberg group.

Exercise 2.4.2 Let us consider the Heisenberg group Hn equipped with its homogeneous distance
d and a graded basis (e1, . . . , e2n+1) is fixed. Consider any linear subspace Z of the form V ⊕ S 2,
where V is a linear subspace of S 1. Show that the Hausdorff dimension of Z is dim V + 2.

It can be shown that any C1 smooth hypersurface in the Heisenberg group has Hausdorff dimension
2n + 1, where 2n is the topological dimension of the hypersurface in Hn.

14



Chapter 3

Heisenberg algebra, connectivity and
sub-Riemannian distance

3.1 Lie algebra.

Any vector field X =
∑n

j=1 a j(x)e j on a linear space U of dimension n can be identified with a first
order differential operator X =

∑n
j=1 a j(x)∂x j , where a basis (e1, . . . , en) of U is understood. Then

looking at the vector fields X =
∑

j a j(x)∂x j and Y =
∑

j b j(x)∂x j as differential operators, we can
consider their composition

XY − YX

that is a priori a second order differential operator. On the other hand, an easy computation shows
that all second order terms vanish, getting

XY − YX =

n∑
j,l=1

(
a j(x)∂x jbl(x) − b j(x)∂x jal(x)

)
∂xl (3.1)

so we still have a vector field, that is called the commutator of X and Y . The commutator, or Lie
product, of X and Y is denoted by

[X,Y] := XY − YX.

This operation satisfies the so-called Jacobi identity

[X, [Y,Z]] + [Y, [Z, X]] + [Z, [X,Y]] = 0 (3.2)

for all X,Y,Z vector fields (or linear differential operators) on U. This is just a direct algebraic
verification. The commutator [X,Y] is obviously skew-symmetric

[X,Y] = −[Y, X]

so it defines a Lie algebra structure on the space of all vector fields on U.

Definition 3.1.1 A vector space g (real and finite dimensional) is a Lie algebra if it is equipped
with a skew-symmetric mappings [·, ·] : g × g −→ g that satisfies (3.2).

A Lie algebra is not an associative algebra. The Jacobi identity somehow replaces the associativity.
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3.2 Heisenberg algebra.

We have previously found a basis of left invariant vector fields in Hn. For all 1 ≤ j ≤ n, we have

X j = ∂x j − x j+n∂x2n+1 , Xn+ j = ∂x j+n + x j∂x j and X2n+1 = ∂2n+1. (3.3)

We have {
[Xi, Xn+ j] = 2δi j X2n+1 for all i, j = 1, . . . , n
[Xi, X j] = 0 for all 1 ≤ i, j ≤ 2n such that |i − j| , n . (3.4)

Definition 3.2.1 Let hn to be the linear space of vector fields X1, . . . , X2n+1. Relations (3.4) show
that any couple of elements X,Y ∈ hn satisfy [X,Y] ∈ hn. We say that hn equipped with this product
is the Heisenberg algebra.

In fact, the Jacobi identity for elements of hn holds, since this property holds for any triple of vector
fields. This shows that hn is indeed a Lie algebra.

Notice that we can define relations (3.4) for any basis of a 2n + 1 dimensional linear space and
this will define an abstract Heisenberg algebra.

Definition 3.2.2 For any X ∈ hn there exist a unique solution t → γ(t) of the Cauchy problem{
γ̇(t) = X(γ(t))
γ(0) = 0

that we denote by exp(tX), called the “exponential of X”.

Remark 3.2.1 One can check that the solutions t → exp(tX) extend to R for any choice of X.

3.3 Horizontal structure and connectivity in the Heisenberg group

The vector fields X1, . . . , X2n of (3.3) span at any point of Hn the space of horizontal directions.
Precisely, at any x ∈ Hn we define the horizontal subspace as follows

HxH
n =

{ 2n∑
j=1

λ j X j(x) : λ j ∈ R
}
.

This “horizontal structure” allows us to select those curves that move only along these directions.

Definition 3.3.1 A horizontal curve in Hn is an absolutely continuous curve γ : [a, b] −→ Hn, with
respect to the underlying Euclidean metric of Hn, such that for a.e. t ∈ [a, b], we have

γ̇(t) =

2n∑
j=1

λ j(t) X j(γ(t)) (3.5)

where all λ j are integrable on (a, b).

Condition (3.5) can be written in the following equivalent way

γ̇(t) ∈ Hγ(t)H
n.
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Remark 3.3.1 Obvious examples of horizontal curves are the exponentials exp(tX), whenever X
is a linear combinations of X1, . . . , X2n.

Can we define horizontal curves through a differential constraint?

The answer is positive. It suffices to write (3.5) explicitly as follows
γ̇ j(t) = λ j(t) 1 ≤ j ≤ n
γ̇n+ j(t) = λn+ j(t) 1 ≤ j ≤ n
γ̇2n+1(t) =

∑n
j=1

(
− λ j(t)γn+ j(t) + λn+ j(t)γ j(t)

) .

Joining these equations we get a unique condition

γ̇2n+1(t) =

n∑
j=1

(
− γ̇ j(t)γn+ j(t) + γ̇n+ j(t)γ j(t)

)
. (3.6)

This is a “contact condition” or contact equation for the curve γ.

Remark 3.3.2 The contact condition (3.6) tells us that we can “lift” any curve c : [a, b] −→ Hn

taking values in the hyperplane {x ∈ Hn : x2n+1 = 0} to a horizontal curve in Hn as follows

γ(t) =

c(t), τ0 +

n∑
j=1

∫ t

a

(
− ċ j(τ)cn+ j(τ) + ċn+ j(τ)c j(τ)

)
dτ

 (3.7)

where τ0 ∈ R can be arbitrarily chosen.

Can we claim to connect any couple of points of Hn by a horizontal curve?

The answer to this question is yes. To prove this fact, we start with the following proposition.

Proposition 3.3.1 If γ is a horizontal curve and x ∈ Hn, then the left translated γx = lx ◦ γ is also
horizontal.

Proof. It suffices to differentiate, getting

d
dt
γx(t) = dlx ◦ γ̇ =

2n∑
j=1

λ j(t) dlx ◦ X j(γ(t)) =

2n∑
j=1

λ j(t) X j(lx ◦ γ(t))

where the last equality follows from the left invariance of X j. �

Remark 3.3.3 By Proposition 3.3.1, for X =
∑2n

j=1 α j X j and x ∈ Hn, the curve t → x exp(tX) is
horizontal. We call these curves horizontal lines through x. Next, we also see that not all horizontal
curves are necessarily horizontal lines.

Proposition 3.3.2 For each y ∈ Hn \ {0}, there exists a horizontal curve that connects the origing
with y.

Proof. We preliminary observe that for every h = (h1, . . . , h2n, 0) ∈ Hn, with respect to a symplectic
basis, the curve γ(t) = τe2n+1 + th is horizontal for any τ ∈ R. In fact, we have

2n∑
j=1

h jX j(τe2n+1 + th) =

n∑
j=1

[
h j(e j − thn+ je2n+1) + hn+ j(en+ j + th je2n+1)

]
=

2n∑
j=1

h je j = γ̇.
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For τ = 0, the previous fact allows us to connect any point y = (y1, . . . , y2n, 0) with the origin
through the horizontal curve γ(t) = ty. Let us now consider a point y = (y1, . . . , y2n+1) with
y2n+1 > 0. We first choose an arbitrary r > 0 and consider

cr(t) = r (cos t, 0, . . . , 0, 1 + sin t, 0, . . . , 0) ∈ Hn .

Using (3.7), we have the horizontal curve

γr(t) =

(
r cos t, 0, . . . , 0, r + r sin t, 0, . . . , r2

∫ t

−π/2
(1 + sin τ)dτ

)
.

Therefore, choosing r0 =

√
y2n+1/

∫ 3π/2

−π/2
(1 + sin τ)dτ, we have γr0 : [−π/2, 3π/2] −→ Hn horizontal

and such that γr0(0) = 0 and γr0(2π) = (0, . . . , 0, y2n+1). Exploiting our first observation, we know
that the curve

γ̃(t) = y2n+1e2n+1 + t(y1, . . . , y2n, 0)

is also horizontal and connects (0, . . . , 0, y2n+1) to (y1, . . . , y2n+1). Joining γr0 and γ̃, we get a hor-
izontal curve joining the origin with y with y2n+1 > 0. The case y2n+1 < 0 can be obtained in
analogous way. Here the main observation is that setting

r1 =

√
|y2n+1|/

∫ 3π/2

−π/2
(1 + sin τ)dτ

the curve γr1 : [−π/2, 3π/2] −→ Hn previously defined is horizontal and connects the origin with
(0, . . . , 0, |y2n+1|). Reparametrizing the curve in the opposite direction, we get γ̄ : [−π/2, 3π/2] −→
Hn, γ̄(t) = γr1(π − t) starts from (0, . . . , 0, |y2n+1|) and finaly reaches the origin. Thus, we consider

(y2n+1e2n+1)γ̄(t) = y2n+1e2n+1 + γ̄(t)

that is horizontal by Proposition 3.3.1. This curves connects the origin with (0, . . . , 0, y2n+1). �

Theorem 3.3.1 (Connectivity) Any x, y ∈ Hn can be connected by a horizontal curve.

Proof. Let γ be a horizontal curve connecting the origin with x−1y. This curves exists by the
previous proposition. Finally, Proposition 3.3.1 shows that lx ◦ γ, connecting x with y, is also
horizontal. �

Remark 3.3.4 This connectivity theorem is a very special instance of a more general connectiv-
ity theorem on manifolds. The famous sufficient condition on a set of vector fields X1, . . . , Xm

to get this connectivity is the so-called Lie bracket generating condition: the linear span of all
commutators of Xi has to yield all of the tangent space at every point.

3.4 Sub-Riemannian distance

Definition 3.4.1 For any horizontal curve γ : [a, b] −→ Hn, with velocity γ̇ =
∑2n

j=1 λ j X j, we
define the length

l(γ) =

∫ b

a

( 2n∑
j=1

λ j(τ)2
)1/2

dτ .
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Exercise 3.4.1 Show that l(γ) = l(γ̃) whenever γ̃ is a reparametrization of γ.

In view of the previous connectivity, we can introduce the following definition.

Definition 3.4.2 For any x, y ∈ Hn, we define Hx,y to be the set of horizontal curves connecting x
with y. By Theorem 3.3.1,Hx,y , ∅ and we can define

ρ(x, y) = inf{l(γ) : γ ∈ Hx,y}

that is called the sub-Riemannian distance between x and y, in short SR-distance.

One can check by standard methods the validity of the following result.

Theorem 3.4.1 The SR-distance ρ is actually a distance on Hn and it is continuous with respect to
the topology of Hn as a linear space.

Theorem 3.4.2 The SR-distance is a homogeneous distance.

Proof. In view of the previous theorem, we have to check the left invariance and the homogeneity.
Let x, y,w ∈ Hn and consider any γ ∈ Hx,y. In view of Proposition 3.3.1, it follows that lw ◦ γ ∈
Hwx,wy and converse holds using lw−1 . By definition of ρ, this proves that ρ(wx,wy) = ρ(x, y). Let
us consider γr = δr ◦ γ and a differentiability point t for γ, with γ̇(t) =

∑2n
j=1 λ j X j(γ(t)). We have

γ̇r(t) = dδr ◦ γ̇(t) =

2n∑
j=1

λ j(t) dδrX j(γ(t)) =

2n∑
j=1

λ j(t)
(
(δr)∗X j

)
(γr(t)) .

In view of (2.4), we have

γ̇r(t) = r
2n∑
j=1

λ j(t) X j(γr(t)) . (3.8)

This shows that γr ∈ Hδr x,δry and clearly l(γr) = r l(γ). An analogous argument can be carried out
for a curve inHδr x,δry and using δ1/r, eventually getting ρ(δr x, δry) = r ρ(x, y) for any x, y ∈ Hn. �

Since d and ρ are two homogeneous distances, there exists C > 0 such that

C−1d(x, y) ≤ ρ(x, y) ≤ Cd(x, y) for all x, y ∈ Hn .

This follows by homogeneity and the fact that

max
ρ(x,0)=1

d(x, 0) and max
d(x,0)=1

ρ(x, 0)

are positive numbers.
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Chapter 4

Homogeneous differentiability and
Lipschitz functions

4.1 Horizontal gradient and Pansu differentiability

Given a smooth function u ∈ C∞(Hn) and the frame (3.3) of left invariant vector fields X1, . . . , X2n+1

spanning hn. We define the horizontal gradient of u at x as

∇hu(x) =
(
X1u(x), . . . , X2nu(x)

)
.

This is a gradient along the horizontal directions, so the vertical direction e2n+1 is missing. We have
somehow a “degenerate gradient”.

Can we associate to this gradient a notion of differentiability?

The answer is yes: we have first to introduce a notion of “linear mapping” from Hn to R and then
to use any homogeneous distance in Hn.

4.1.1 Homogeneous homomorphisms

Definition 4.1.1 A mapping L : Hn −→ R is an h-homomorphism if we have

1. L(xy) = L(x) + L(y)

2. L(δr x) = r L(x)

for all x, y ∈ Hn and r > 0.

The analogy between h-homomorphisms of Hn and linear functions of Rn is evident.

Exercise 4.1.1 Let L be an h-homomorphism. Show that for all x, y ∈ Hn we have

L(x−1) = −L(x) and L(y) − L(x) = L(x−1y) = L(yx−1) .

Proposition 4.1.1 Any h-homomorphism vanishes on S 2 and it is also a linear mapping.
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Proof. Let β ∈ R \ {0}. Since the product (βe2n+1) · · · (βe2n+1) iterated k times yields kβe2n+1, due to
the skew-symmetry of ω in the expression of the group operation, we have

kL(βe2n+1) = L(βe2n+1 · · · βe2n+1) = L(kβe2n+1) .

On the other hand, by homogeneity of L, we also have
√

k L(βe2n+1) = L(kβe2n+1) = kL(βe2n+1) .

For instance k = 4 in the preceding equality implies that L(βe2n+1) = 0. We consider x = s1 + t1, y =

s2 + t2 with s1, s2 ∈ S 1 and t1, t2 ∈ S 2. Since L(ω(s1, s2)) = 0 and (x+y)ω(s1, s2) = x+y+ω(s1, s2),
we have

L(x + y) = L(x + y) + L(ω(s1, s2)) = L(x + y + ω(s1, s2)) = L(xy) = L(x) + L(y) .

We also have L(rx) = L(rs1 + rt1) = L((rs1)(rt1)) = L(rs1) = L((rs1)(r2t1)) = L(rs1 + r2t1) = rL(x)
for all r > 0. If λ < 0, then L(λx) = L(|λ|x−1) = |λ|L(x−1) = −|λ|L(x) = λL(x). This ends the proof.
�

Corollary 4.1.1 Let (e1, . . . , e2n+1) be a graded basis and let L : Hn −→ R be an h-homomorphism.
Then there exist β j ∈ R for j = 1, . . . , 2n such that

L
( 2n+1∑

j=1

x je j

)
=

2n∑
j=1

β j x j . (4.1)

Remark 4.1.1 Clearly, L is also continuous, due to its linearity. In addition, since it is Lipschitz
continuous with respect to the Euclidean distance, it is also locally Lipschitz continuous with
respect to d, due to the estimates (1.1).

Next, we will show that L is Lipschitz on Hn with respect to d. To see this fact, we have to use
more intrinsic arguments, namely group operation and dilations.

Definition 4.1.2 We define the mapping

F(a1, . . . , a2n+2) = (a1e1) · · · (a2ne2n)
(
(a2n+1e1)(a2n+2en+1)(a2n+1e−1

1 )(a2n+2e−1
n+1)

)
from R2n+2 to Hn. By direct computation one observes that

F(a1, . . . , a2n+2) = (a1e1) · · · (a2ne2n)
(
2a2n+1a2n+2e2n+1

)
.

Exercise 4.1.2 Show that F is surjective and homogeneous, namely, F(ra) = δrF(a) for all r > 0.

Proposition 4.1.2 Every h-linear mapping L : Hn −→ R is Lipschitz continuous on Hn.

Proof. There exists a bounded set B̃ of R2n+2 such that F(B̃) ⊃ B̄, hence for all F(a) with a ∈ B̃, by
the properties of h-homomorphisms, we have

|L(F(a))| ≤
( 2n∑

j=1

|a j|L(e j)|
)

+ 2|a2n+1L(e1)| + 2|a2n+2L(en+1)| ≤ sup
a∈B̃
|a| max

1≤ j≤2n+1
|L(e j)| = C0 < +∞ .

For any distinct elements x, y ∈ Hn, setting λ = d(x, y) > 0, we have

|L(x) − L(y)| = |L(y−1x)| = d(x, y)|L
(
δ1/λ(y−1x)

)
| ≤ C0 d(x, y) ,

concluding the proof. �
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4.1.2 Homogeneous differentiability

In the sequel, Ω will dentoe an open set of Hn.

Definition 4.1.3 Let f : Ω −→ R and let x ∈ Ω. We say that f is h-differentiable at x if there exists
an h-linear mapping L : Hn −→ R such that

f (xv) = f (x) + L(v) + o(‖v‖) as v→ 0.

L is the h-differential and it is denoted by dh f (x), since it is uniquely defined.

This notion of differentiability does not require differentiability in the sense of smooth manifolds,
although one can easily show that all horizontal partial derivatives X ju exist in the pointwise sense

X ju(x) = lim
t→0

u
(
x exp(tX j)

)
− u(x)

t
. (4.2)

Remark 4.1.2 Notice that the existence of the limit (4.2) for some j might hold also for a nons-
mooth function in the standard sense. in the standard sense.

Exercise 4.1.3 Let X =
∑2n+1

j=1 α jX j and x ∈ Hn. Verify that

x exp(tX) = xδt(exp X) iff α2n+1 = 0 .

Definition 4.1.4 We denote by C1
h(Ω) the space of all functions f : Ω −→ R such that f is every-

where h-differentiable and the mapping x −→ dh f (x) is continuous.

Proposition 4.1.3 For every f ∈ C1(Ω), we have f ∈ C1
h(Ω) and there holds

lim
t→0

f (xδtw) − f (x)
t

= 〈∇h f (x),w〉 (4.3)

as t → 0+, uniformly with respect to both x and w that vary in compact sets.

Proof. Since f is C1 smooth, we have

f (xδtw) − f (x)
t

=
1
t

∫ 1

0

d
ds

(
f ◦ lx)(sδtw)

)
ds =

∫ 1

0
d( f ◦ lx)(sδtw)(w1 + tw2) ds

where w1 =
∑2n

j=1 βk e j and w2 = β2n+1 e2n+1. The limits of the integrals∫ 1

0
d( f ◦ lx)(sδtw)(w1) ds and

∫ 1

0
t d( f ◦ lx)(sδtw)(w2) ds

as t → 0 are d( f ◦ lx)(0)(w1) and 0 and they are uniform with respect to both x and w, varying in
compact sets. Finally, we observe that

d( f ◦ lx)(0)(w1) = d f (x) ◦ dlx(0)

 2n∑
j=1

β je j

 =

2n∑
j=1

β j X j f (x) .

Being ∇h f (x) =
(
X1 f (x), . . . , X2n f (x)

)
identified with ∇h f (x) =

(
X1 f (x), . . . , X2n f (x), 0

)
our claim

is achieved. �

Remark 4.1.3 B. Franchi, R. Serapioni and F. Serra Cassano have shown a concrete example of
function that is C1

H(H1) but it is not locally Lipschitz in the Euclidean sense. Indeed this function is
is smooth outside a negligible set, hence a.e. differentiable in the classical sense. It is also possible
to show that there exist C1

h functions that are not differentiable in the classical sense on a set of
positive measure.
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4.1.3 Intrinsic regular hypersurfaces submanifolds

The notion of C1
h smoothness for functions has an associated notion of C1

h smoothness for sub-
sets. B. Franchi, R. Serapioni and F. Serra Cassano in their 2001 paper on rectifiability of h-finite
perimeter sets in the Heisenberg group have introduced the following notion of intrinsic regular
hypersurface, along with the associated implicit function theorem.

Definition 4.1.5 We say that Σ ⊂ Hn is an h-regular hypersurface of Hn if for every x ∈ Σ there
exists an open set U containing x and a functions f ∈ C1

h(U) such that ∇h f (z) , 0 for all z ∈ U and
f −1( f (x)) = U ∩ Σ.

The point of this definition is that we have an associated implicit function theorem analogous to
the classical one.

Theorem 4.1.1 Let f ∈ C1
h(Ω), where Ω ⊂ Hn is an open set. Assume that X1 f (x) > 0 at some

x ∈ Ω. Then there exists an open set U containing x such that

f −1( f (x)) ∩ U = {n(ϕ(n)e1) : n ∈ V}, (4.4)

where N = span{e2, . . . , e2n+1}, V is an open set of N and ϕ : V −→ R is continuous.

Sets having the form given in (4.4) are called “intrinsic graphs” since they are represented by the
group operation.

4.2 Sobolev spaces

On an open set Ω of Hn equipped with the Lebesgue measure, we define the anisotropic Sobolev
space

W1,p
h =

{
u ∈ Lp(Ω) : X ju ∈ Lp(Ω), 1 ≤ j ≤ m

}
, (4.5)

where 1 ≤ p ≤ ∞ and X ju is meant in the distributional sense, namely, as those function satisfying∫
Ω

u X jϕ = −

∫
Ω

X juϕ (4.6)

for every ϕ ∈ C∞c (Ω). Formula (4.6) can be proved in the case u is smooth. This is a consequence
of the divergence theorem and the fact that divX j = 0 for all j. The last condition can be written as
a condition for the formal adjoint X∗j ,

X∗j = −X j.

If we define
‖u‖1,p = ‖u‖Lp(Ω) + ‖∇hu‖Lp(Ω),

then we make W1,p
h (Ω) a Banach space.

4.2.1 Smooth approximation

The classical Meyers-Serrin theorem “H=W”asserts that the Sobolev space is the closure of smooth
functions in the topology of the Sobolev norm. This fact also true for the anisotropic Sobolev
spaces and holds in the more general class of Carnot-Carathèodory spaces. The main reference for
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this resul are the papers by B. Franchi, R. Serapioni and F. Serra Cassano, Houston J. Math (1996)
and by N. Garofalo and D.M. Nhieu, CPAM (1996). Precisely, for any 1 ≤ p < ∞ we have

W1,p
h (Ω) = W1,p

h -closure
(
C1(Ω) ∩W1,p

h (Ω)
)
.

The main point here is that the classical smoothing procedure still works, up to a subtle observation,
according to the classical work by Friedrichs (1944).

From the paper by N. Garofalo and D.M. Nhieu (1996), we state the key point.

Lemma 4.2.1 (Friedrichs lemma) For any first order differential operator Y =
∑n

j=1 b j(x) ∂x j in
Rn and any symmetric Euclidean mollifier φε = ε−nφ( ·

ε
) and every u ∈ W1,1

loc (Rn) we have

Y(φε ∗ u) = φε ∗ Yu + Rεu

in the distributional sense. We have defined

Rεu(x) =

∫
Rn

u(x + εh) K̃ε(x, h) dh

and K̃ε(x, h) = ε−1 ∑n
j=1 ∂h j

[
(b j(x + εh) − b j(x)) φ(h)

]
.

4.3 Lipschitz functions

The following theorem has been proved in general Carnot-Carathéodory spaces by N. Garofalo
and D. M. Nhieu, J. Analyse Math. (1998).

Theorem 4.3.1 Any Lipschitz function f : Ω −→ R belongs to W1,∞
h,loc(Ω).

Sketch. Consider ϕ ∈ C∞c (Ω) along with its support K contained in Ω and define

f (x, t,w) =
f (xδtw) − f (x)

t
,

that for any fixed w and sufficiently small t is well defined in Ω whenever x ∈ K, hence we consider
the integral

It =

∫
Ω

f (x, t,w)ϕ(x) dx .

The change of variable z = xδtw preserves the measure, hence

It =

∫
Ω

f (z)ϕ(zδtw−1)
t

dz −
∫

Ω

f (x)ϕ(x)
t

dx =

∫
Ω

f (x)
ϕ(zδtw−1) − ϕ

t
dz.

This leads to the existence of the limit

lim
t→0

It = −

∫
Ω

f (x) 〈∇hϕ(x),w〉 dx .

In the special case w = e j with j = 1, . . . , 2n, we get

〈∇hϕ(x),w〉 = X jϕ(x).
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The Lipschitz continuity yields | f (x, t, e j)| ≤ L f for any t sufficiently small. We have

‖ f (x, t, e j) 1K‖L∞(Ω) ≤ L f .

By the weak∗-compactness of bounded sequences in L∞(K), there exists an infinitesimal sequence
(tk) and g j ∈ L∞(K) such that

lim
k→∞

Itk =

∫
Ω

g j(x)ϕ(x) dx

that gives ∫
Ω

g j(x)ϕ(x) dx = −

∫
Ω

f (x) X jϕ(x) dx.

By the arbitrary choice of ϕ, we have that g j is uniquely defined in Ω up to a negligible set, hence
X j f exist for j = 1, . . . , 2n and belong to L∞loc(Ω). �

Joining Theorem 4.3.1 with Lemma 4.2.1 one reaches the following result.

Theorem 4.3.2 If f : Ω −→ R is Lipschitz continuous, then fε = f ∗Kε locally uniformly converges
to f and X j fε a.e. converges to X j f as ε → 0+ and for all j = 1, . . . , 2n, where X j f are the
distributional horizontal derivatives of f .

The pointwise convergence of X j fε holds exactly at Lebesgue points of both X j f and f .
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