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Abstract. We study the quotient of a completion of a symmetric va-

riety G/H under the action of H . We prove that this is isomorphic to

the closure of the image of an isotropic torus under the action of the re-

stricted Weyl group. In the case the completion is smooth and toroidal

we describe the set of semistable points.
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1. Introduction

Let G be a semisimple simply connected algebraic group over an algebraically
closed field of characteristic different from 2. Given an involution σ of G with fixed
subgroup Gσ, we fix a subgroup Gσ ⊂ H ⊂ NG(Gσ).

Our goal in this paper is the study of the action of H on certain completions of
G/H with the methods of geometric invariant theory.

The study of such problems starts with the famous paper [12] of Kostant and
Rallis in which the H action on the quotient LieG/LieH is studied. This can be
considered as an infinitesimal version of our study. Results similar to those in [12]
have been later obtained by Richardson in [14] in the case of the quotient G/H .

In particular Richardson has proved, among other things, that if we take the
image SH in G/H of an anisotropic maximal torus S in G and consider the action

of the restricted Weyl group W̃ on SH (see below for the definitions), the GIT

quotient H \\G/H is isomorphic to W̃\SH . Furthermore, he shows that the closed
H orbits in G/H are precisely the orbits of elements in SH .

In this paper we generalize these two results to the case of a completion Y of
G/H . In particular we reprove the results of Richardson mentioned above.

To state our result take a smooth toroidal projective G-equivariant completion

Y of G/H . In Y consider the closure YS of SH . The W̃ action on SH extends to
an action on YS . Fix an ample line bundle L on Y . Our first result is that the GIT
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quotient H \\L Y relative to L is isomorphic to W̃\YS . In particular this quotient
does not depend on the choice of L. (Theorem 4.1).

We then pass to the study of the set Y ss ⊂ Y of semistable points in Y with
respect to L. Also in this case we show that Y ss does not depend on the choice of
L (Remark 5.6) and we describe rather precisely the intersection of Y ss with any
G orbit. In particular we show that given two H orbits O1 ⊂ Ō2 in Y ss then they
both lie in the same G orbit (Proposition 6.1) and that a H orbit O in Y ss is closed
if and only if it meets YS (Theorem 6.4). These last facts allow us to give a version
of our results in the case of any G stable open subset in Y .

The proofs of our results are rather straightforward in characteristic zero and
are based on the careful analysis of sections of line bundles on Y given in [1] and
[2]. However to carry out our proofs in positive characteristic we have to deal with
a number of rather technical results which often do not appear in the literature and
which, in view of this, we have decided to explain here.

2. Preliminaries

In this section we introduce notations, recall some simple properties and describe
the spherical weights relative to a given involution.

Let us choose an algebraically closed field k whose characteristic is not equal
to 2. Usually all algebraic group schemes in this paper are going to be affine and
defined over k but, occasionally we are going to consider group schemes defined
over the ring A := Z[1/2] and flat over Spec A. Gothic letters are going to denote
Lie algebras.

Let G be a semisimple and simply connected algebraic group. Let Ḡ be the
adjoint quotient of G and Z the kernel of the projection of the isogeny G → Ḡ.
This is a possibly not reduced subgroup of G whose associated reduced subvariety
is given by the center of G.

Let σ be an involution of G and let H◦ = Gσ be the subgroup of elements fixed
by σ. We consider also the inverse image H̄ under the isogeny G → Ḡ of the
subgroup of Ḡ of elements fixed by the involution of Ḡ induced by σ. We recall
that H◦ is connected and reductive and that H̄ is a possibly not reduced subgroup
of G whose associated reduced subgroup is the normalizer NG(H◦) of H◦. It is
known that the connected component of the identity of H̄ with reduced structure
is equal to H◦ (see [4]).

Let now H◦ ⊂ H ⊂ H̄ be a possibly not reduced subgroup of G. The quotient
G/H = Spec k[G]H is called a symmetric variety.

We fix an anisotropic maximal torus S of G, that is a torus of G such that
σ(s) = s−1 for all s ∈ S, and having maximal dimension among the tori with this
property. The dimension ℓ of S is called the rank of the symmetric variety. We
choose also a σ stable maximal torus T of G containing S and a Borel subgroup
containing T with the property that the intersection B∩σ(B) has minimal possible
dimension. Occasionally we will also need to consider isotropic tori, that is tori
contained in H .

2.1. Ring of definition. It will be important for us that the classification of
involutions is independent of the characteristic (see [16]). So we can use Kac
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classification or Satake classification to construct the involutions. If we use Kac
classification, we see that we can assume that G, σ and hence H◦ are all defined
over A and that there is a maximally isotropic maximal torus (this means a max-
imal torus of G containing a maximal torus of H◦) defined over A and a σ stable
Borel subgroup containing this torus also defined over A. On the other hand if we
use Satake classification, we see that we can assume that G, σ, H◦, the maximal
torus T , the torus S and the Borel subgroup B are all defined over A. However,
occasionally, we will need to work with an A form of G, where both maximally
isotropic and maximally anisotropic maximal tori are defined and split over A.

We start with a flat A form G of G, and with a σ defined over A constructed
using Kac diagrams. So H◦ is defined over A and there exists an A split maximal
torus N of H◦ defined over A and an A split maximal torus M of G defined
over A containing N . The characters of M, N are defined over A and the root
decomposition of the Lie algebra of G is also defined over A. In particular all Borel
subgroups containing M are defined over A. Let BM be a σ stable Borel subgroups
of G containing M . Let Ψ and Ψ+ ⊂ Ψ be the corresponding sets of roots and
positive roots of the Lie algebra of G with respect to BM . Finally notice that also
H̄ , hence H , can be assumed to be defined over A.

We want to show that in G there is a maximally anisotropic maximal torus
defined and split over A. This slightly strength a result in [6].

Lemma 2.1. There is a torus S in G defined and split over A such that σ(s) = s−1

for all s ∈ S and S has maximal dimension among the tori with this property.

Moreover there is a maximal torus T of G containing S defined and split over A.

Finally the root decomposition of g with respect to the action of the torus T is

defined over A and there is a Borel B subgroup containing T and defined and flat

over A such that the dimension of σ(B)∩B is the minimal possible. The two Borel

subgroups B and BM are conjugated by an element of G(A).

Proof. For each root β ∈ Ψ denote by uβ(t) the corresponding one parameter
subgroup. This subgroup can be defined over A. We construct (see [11, Section
VI.7]) the torus T as follows. Let B ⊂ Ψ+ be a set of roots maximal among the
subsets with the following properties:

(i) β ∈ B implies σ(β) = β and σ(uβ(t)) = uβ(−t);
(ii) β, β′ ∈ B implies β + β′, β − β′ /∈ Ψ.

For each β ∈ B set

gβ = uβ(1)u−β(−1/2) and gB =
∏

β∈B

gβ .

Notice that since by ii) the roots in B are orthogonal to each other, the elements
gβ as β runs in B commute and gB is well defined and lies in G(A).

We then set T = gBMg−1
B and S = gBMBg

−1
B , where MB is the subtorus of

T corresponding to the coroots in B. By [11, Section VI.7] T and S have all the
required properties.

Our claims about the root decomposition now follows from the analogous proper-
ties for the torus M , and under this hypothesis it is clear that each Borel containing
T is defined and flat over A. Also notice that gBBMg

−1
B is a Borel containing T
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so it must be conjugated to B by an element in NG(T ). Now by Lemma 2.7 in
[6] every element of the Weyl group has a representative in G(A) proving the last
claim. �

We finish this section with a simple Lemma regarding invariants. Since we are
going to deal with not necessarily reduced algebraic groups, let us recall that if L
is a not necessarily reduced algebraic group and V is a representation of L, a L
invariant vector v ∈ V is a vector whose image under the coaction V → V ⊗ k[L]
is v ⊗ 1.

Lemma 2.2. Let L be an algebraic group scheme defined and flat over A (we do

not assume that L is either connected or reduced in general) and let V be a finite di-

mensional representation of L defined and flat over A. Assume that V (C)L(C) 6= 0.
Then there is an L invariant vector defined over A whose reduction modulo p is

different from 0 for all odd primes p. In particular V (k)L(k) 6= 0.

Proof. Let VA be an A lattice compatible with the action. The action of L on V is

given by the coaction map a♯ : VA → A[L] ⊗A VA. If B is an A algebra, set a♯B =

idB ⊗A a♯. Thus an element v in V (B) := B ⊗A VA is fixed by L if a♯B(v) = 1⊗ v.

Let now F : VA → A[L]⊗A VA be given by F (v) = a♯(v)−1⊗v and FB = idB⊗F .
V (B)L = kerFB . In particular notice that when B is a field of characteristic zero
we have, since VA is a free A-module, that kerFB = B ⊗A kerF . In particular
V (C)L(C) = C⊗A kerF is defined over A. Moreover since also A[L]⊗A VA has no
torsion, we have that if n ∈ Z r {0}, v ∈ VA and nv ∈ kerF then v ∈ kerF . So
kerF is a direct summand of VA.

It follows that k ⊗A kerF injects into a non-zero subspace of V (k)L(k) proving
our claim. �

2.2. Spherical weights and the restricted root system. We want to describe
now the Weyl modules of G which have a non-zero H invariant vector.

If A is a torus, we denote with ΛA its character lattice Hom(A, k∗). Given a
surjective homomorphism A → B between tori, we are going to consider ΛB as a
sublattice of ΛA.

Let Λ = ΛT and let r : Λ → ΛS be the surjective homomorphism induced by the
inclusion S ⊂ T . Let also Φ be the root system of g with respect to T , Φ+ (resp. ∆)
be the choice of positive roots (resp. the simple roots) corresponding to the Borel
B and Λ+ be the dominant weights with respect to B.

Every character λ of T extends uniquely to a one dimensional character of B
and we define Lλ as the line bundle G ×B k−λ on G/B. Every line bundle on
G/B is isomorphic to a line bundle of this form. For λ ∈ Λ+ the Weyl module

Vλ is defined as the dual of the space of sections Γ(G/B, Lλ). With the choices
of the previous section, all these objects are defined over A. Furthermore, it is
well known [10] that Γ(G/B, Lλ) and hence Vλ is flat over A. Occasionally we
will have to consider also line bundles on a partial flag variety G/P , where P is a
parabolic subgroup containing B. The natural projection G/B → G/P induces an
inclusion of Pic(G/P ) in Pic(G/B) = Λ and allows us to identify Pic(G/P ) with
the sublattice ΛP of Λ consisting of those characters λ of B which extend to P . For
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λ ∈ Pic(G/P ) we are going, by abuse of notation, to denote by Lλ the line bundle
G×P k−λ on G/P .

We define the monoid of dominant H spherical weights as

Ω+
H =

{
λ ∈ Λ+ : Γ(G/B, Lλ)

H 6= 0
}

and the lattice of spherical weights ΩH as the lattice generated by Ω+
H . We set also

Ω = ΩH◦ and Ω+ = Ω+
H◦ .

Recall that, since H has an open orbit in G/B, if λ ∈ Λ+ then the space of H
invariant sections Γ(G/B, Lλ)

H is at most one dimensional. A non-zero vector in
Γ(G/B, Lλ)

H will be called a spherical vector.
Let us now give a description of Ω. In characteristic zero Ω has been described

by Helgason [9] using analytic methods. An algebraic proof of these results has
been given by Vust [19]. The Theorem of Vust is stated in characteristic zero but
its proof can be used verbatim in any characteristic different from 2 once we replace
Vλ with V ∗

λ . Moreover Vust’s proof can also be easily adapted to describe the lattice
ΩH . Let SH = S/S ∩H then we have the following Theorem.

Theorem 2.3 (Vust [19, Théorème 3]). Let λ ∈ Λ+ then λ ∈ Ω+
H if and only if

σ(λ) = −λ and r(λ) ∈ ΛSH
.

We will need also to study quasi invariants under the action of H̄ , so we define
a dominant weight λ to be quasi spherical if the representation Γ(G/B, Lλ) has a
line fixed by H̄ . We denote the monoid of quasi spherical dominant weights by Π+

and we set Π equal to the sublattice spanned by Π+ and call it the lattice of quasi
spherical weights.

Quasi spherical weights have been described in terms of spherical weights and
exceptional roots by De Concini and Springer in [6].

Let Φ0 (resp. ∆0) be the set of roots (resp. simple roots) fixed by σ and let Φ1

(resp. ∆1) be the complement of Φ0 in Φ (resp. of ∆0 in ∆). With our choices
of the Borel subgroup B we have σ(α) ∈ Φ− for all α ∈ Φ+

1 = Φ1 ∩ Φ+ (see [4]).
Moreover the involution σ induces an involution σ̄ of ∆1, where σ̄(α) is the unique
simple root such that σ(α) + σ̄(α) lies in the span of ∆0. A simple root α ∈ ∆1

is said to be exceptional if σ̄(α) 6= α and κ(σ(α), α) 6= 0, κ being a nondegenerate
bilinear form on Λ invariant under the action of the Weyl group. We denote by
{ωα}α∈∆, the fundamental weights with respect to the simple basis ∆. We have,

Theorem 2.4 (De Concini and Springer [6, Lemma 4.6 and Theorem 4.8]).

(i) For each λ ∈ Π+ the line fixed by H̄ is unique.

(ii) Π+ is generated as a monoid by Ω+ and the fundamental weights ωα cor-

responding to the exceptional roots.

The set of spherical weights is related to the restricted root system as follows.
Let us quickly recall how restricted roots are defined. If α ∈ Φ is not fixed by σ,
we define the restricted root α̃ as α−σ(α) and the restricted root system Φ̃ ⊂ Λ as
the set of all restricted roots. This is a (not necessarily reduced) root system (see

[14]) of rank ℓ and the subset Φ̃+ (resp. ∆̃) of restricted roots α̃ with α positive

(resp. α simple) is a choice of positive roots (resp. a simple basis) for Φ̃.
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We collect in the following lemma some known and easy consequences of the
previous theorems.

Lemma 2.5.

(i) Π ∩ Λ+ = Π+ and ΩH ∩ Λ+ = Ω+
H ;

(ii) In the adjoint case we have ΩH̄ = Z[Φ̃];
(iii) In the simply connected case we have

Ω = {λ ∈ Λ: σ(λ) = −λ and
2κ(λ,α̃)
κ(α̃,α̃) ∈ Z for all α̃ ∈ Φ̃};

(iv) If λ ∈ Λ and nλ ∈ Ω for some positive natural number n, then σ(λ) = −λ;
(v) The restriction of r to ΩH is injective and r(ΩH) = ΛSH

.

In particular, by (iii), Ω+ is the set of dominant weights of the root system Φ̃,
so it is a free monoid of rank ℓ and a basis of it is given by fundamental weights
ω̃α̃ with respect to ∆̃. Notice that if α is exceptional also β = σ̄(α) is exceptional.

If this is the case, we shall call α̃ ∈ ∆̃ an exceptional restricted simple root and we
recall that ω̃α̃ = ωα + ωβ.

Finally we apply Lemma 2.2 to our situation.

Corollary 2.6. If λ ∈ Ω+
H , then Vλ has a nonzero vector fixed by H and if λ ∈ Π+

then Vλ has a line fixed by H̄. More precisely there is a vector of Vλ defined

over A whose reduction modulo any odd prime is different from 0 and fixed by H
(respectively spans a line fixed by H̄).

Proof. Let G, σ, Vλ be defined over A as explained above. Let M , N , BM be as in
Section 2.1. In particular any character of the group H◦ is a character of N hence
it is defined over A.

Let now λ ∈ Ω+
H . Since Vλ(C) contains a non-zero vector fixed by H , the claim

follows from Lemma 2.2.
In general notice that since H◦ is a spherical subgroup (it has an open orbit

in G/B) it acts on two different lines in Vλ(C) stabilized by H◦ with different
characters. In particular any line in Vλ(C) which is stabilized by H◦(C) must be
defined over A: indeed let R be such a line and consider the character χ of H◦

given by the action of H◦ on R. Recall that with our choices all characters of H◦

are defined over A. Applying Lemma 2.2 to Vλ ⊗ χ−1 we see that the line R must
be defined over A. In particular the line stabilized by H̄(C) in Vλ(C) is stabilized
by H◦ so it is defined over A and it is H̄ stable. �

2.3. Line bundles on G/H. In this section we want to study some properties of
the line bundles on G/H . We begin with a remark on H̄/H .

Lemma 2.7. The coordinate ring of H̄/H is isomorphic to the group algebra

k[ΩH/ΩH̄ ].

Proof. Let H ∩ S = H ×G S be the scheme theoretic intersection of H and S. By
Proposition 7 in [19] we have H = H◦ · (H ∩ S). Thus,

H̄/H ≃ H̄ ∩ S/H ∩ S ≃ ker{SH ։ SH̄},

where the kernel has to be considered scheme theoretically. Now by Lemma 2.5 v)
we have SH̄ ≃ Spec k[ΩH̄ ] and SH ≃ Spec k[ΩH ].
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It follows that, if we denote by eχ the function on SH corresponding to χ ∈ ΩH ,
the coordinate ring of the kernel is then given by k[SH ]/〈eχ − 1: χ ∈ ΩH̄〉 ≃
k[ΩH/ΩH̄ ], proving the claim. �

We denote by xH the point of G/H corresponding to the coset eH and by
qH : G/H → G/H̄ the projection induced by inclusion H ⊂ H̄.

The line bundles on G/H are parametrized by the set of one dimensional char-
acters ΛH of H by associating to a line bundle L the character by which H acts on
the fiber of L over xH .

If λ ∈ Π+ by Theorem 2.4, the line fixed by H̄ in V ∗
λ is unique and we can consider

the character−χH(λ) given by the action ofH on this line. The map χH : Π+ → ΛH
extends to a group homomorphism χH : Π → ΛH and by Lemma 2.5(i) the kernel
of this homomorphism is given by ΩH . In particular for any ξ ∈ Π/ΩH̄ we can
consider a line bundle Lξ on G/H̄ whose associated isomorphism class is given by
χH̄(ξ).

Proposition 2.8. The vector bundles (qH)∗(OG/H) and
⊕

ξ∈ΩH/ΩH̄
Lξ on G/H̄

are G-equivariantly isomorphic.

Proof. Set ΞH = ΩH/ΩH̄ . Notice first that by Lemma 2.7 the map qH is a covering
of degree equal to the cardinality of ΞH . So the two vector bundles (qH)∗(OG/H)
and

⊕
ξ∈ΞH

Lξ have the same rank.

If ξ ∈ ΞH , then q∗H(Lξ) is trivial for all ξ as a G-linearized line bundle. So by
adjunction we have a G-equivariant monomorphism of sheaves Lξ → (qH)∗(OG/H).
Thus, for any subset R ⊂ ΞH there exists a G-equivariant map γR :

⊕
ξ∈R Lξ →

(qH)∗(OG/H). Since γR is equivariant, the induced map at the level of the total
spaces of vector bundles has constant rank.

We claim that γR is of rank |R|. If |R| = 1, this is clear by the above considera-
tions. We proceed by induction. Write R = R′∪{ξ}. γ′R is of rank |R|−1. Assume
γR is not of maximal rank. We clearly get an inclusion j : Lξ →

⊕
ξ′∈R′ Lξ′ . In

particular there exists ξ′ ∈ R′ such that the composition of j with the projection
onto Lξ′ is a non-zero G-equivariant morphism and thus an isomorphism of line
bundles. Since ξ 6= ξ′, this is a contradiction.

If we apply this to R = ΞH and use the fact that (qH)∗(OG/H) and
⊕

ξ∈ΞH
Lξ

have the same rank, we get that γΞH
is a isomorphism as desired. �

3. Completions of Symmetric Varieties

An embedding of a symmetric variety G/H is a normal connected G-variety Y
together with an open G-equivariant inclusion Y : G/H ⊂ Y . We set y0 equal to
the image of xH under this embedding and call it the basepoint of Y . We are also
going to consider the finite covering πY : G/H◦ → Y of Y given by πY (gH◦) = g·y0.
We denote by Y0 the image of Y and set ∂Y = Y r Y0 and ∆Y equal to the set of
irreducible components of ∂Y of codimension 1 in Y .

A line bundle L on Y is said to be spherical if π∗
Y (L) is isomorphic to the trivial

line bundle on G/H◦. We denote SPic(Y ) the subgroup of the Picard group Pic(Y )
of Y of spherical line bundles. We also say that a line bundle is strictly spherical
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if restricted to the open orbit G/H it is isomorphic to the trivial line bundle and
we denote by SPic0(Y ) the subgroup of Pic(Y ) of classes of strictly spherical line
bundles.

Many of the properties of Y can be deduced from corresponding properties of
the associated toric variety YS . This is defined as the closure of the orbit S · y0
in Y . Notice that since S · y0 is isomorphic to SH , YS is a toric variety for the
torus SH . The normalizer NH◦(S) of S in H◦ acts on YS and the action of the
centralizer ZH◦(S) of S is trivial. It follows that we have an action of the restricted

Weyl group W̃ = NH◦(S)/ZH◦(S) on YS .
We are now going to describe an open subvariety Y +

S of YS with the property

the W̃ translates of Y +
S cover YS . Let Λ∨

S be the lattice of one parameter subgroups
of S. If η ∈ Λ∨

S and there exists the limit limt→∞ η(t) · y0, we denote this limit
by yη. We say that η ∈ Λ∨

S is positive if α̃(η(t)) is a nonnegative power of t for

all α̃ ∈ ∆̃ and let Y +
S the union of the S orbits of the elements {yη : η ∈ Λ∨

S is

positive}. It is then immediate to verify that YS = W̃Y +
S . Indeed if y ∈ YS there

is a η ∈ Λ∨
S and a s ∈ S such that y = s(limt→∞ η(t) · y0). Since η is W̃ conjugate

to a positive one parameter subgroup, we deduce y is W̃ conjugate to an element
in Y +

S .

3.1. The wonderful compactification of a symmetric variety. The so called
wonderful compactification X of the symmetric variety G/H̄ has been introduced
in characteristic zero in [4] and in arbitrary characteristic in [6]. We want to very
briefly recall some of the basic properties of X and introduce some notations.

Recall that by Lemma 2.5 and Theorem 2.3 a basis of the character lattice ΛSH̄

is given by the set ∆̃ = {α̃1, . . . , α̃ℓ} of simple restricted roots (with an arbitrarily
chosen numbering). Thus we get an action, defined over A, of SH̄ on the affine
space Aℓ given by s(a1, . . . , aℓ) = (α̃1(s)a1, . . . , α̃ℓ(s)aℓ). The following theorem
(Theorem 3.1 in [4], Proposition 3.10, Theorem 3.10 and Theorem 3.13 in [6]) can
be taken implicitly as the defnition of the wonderful compactification.

Theorem 3.1. The wonderful compactification X of G/H̄ is the unique G/H̄ em-

bedding such that

(i) X is a smooth projective G-variety and the closure of every G orbit in X
is smooth;

(ii) ∂X is a divisor with normal crossing and smooth irreducible components ;
(iii) given a G orbit O ⊂ X, Ō is the transversal intersection of the irreducible

divisors in ∆X containing it ;
(iv) The intersection of any number of divisors in ∆X is a G orbit closure. In

particular the intersection of all divisors in ∆X is the unique closed G orbit

in X ;
(v) There exists a scheme X defined and flat over A whose specialization to k

is isomorphic to X. Moreover the point x0 = X(xH̄) is defined over A;
(vi) Let G be as in Section 2.1. There is an action of G on X that specializes

over k to the action of G on X ;
(vii) We have an isomorphism X+

S ≃ Aℓ as SH◦ toric varieties defined over A.h
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Since any projective G-variety is isomorphic to a variety G/P with P a parabolic
subgroup containing B, we have already remarked that its Picard group can be
identified with a sublattice of Λ. Thus composing with the homomorphism induced
by the inclusion of the unique closed orbit, we get a homomorphism j : Pic(X) → Λ.
One has the following result (Theorems 4.2 and 4.8 in [6]).

Theorem 3.2.

(i) The homomorphism j is injective and its image is the sublattice Π of Λ.

(ii) The map D → j(O(D)) is a bijection between ∆X and ∆̃.

Notice that combining these two results we easily see that we get a bijection
between the subsets Γ ⊂ ∆̃ and the set of G orbit closures defined by associating
to Γ the intersection

XΓ :=
⋂

{D : j(O(D))∈Γ}

D.

In particular X∆̃ is the unique closed orbit while X = X∅. Let also Xα̃ = X{α̃}

for α̃ ∈ ∆̃.
For each λ ∈ Π we choose a line bundle Lλ on X such that j(Lλ) = λ in the

following way. First we choose a basis B of Π and for each β ∈ B we take a line
bundle with the required property. Now, for λ =

∑
β∈B cβ β ∈ Π, cβ ∈ Z, we set

Lλ :=
⊗

β∈B L
⊗cβ

β . We denote the restriction of these line bundles to X∆̃ by the
same symbol.

If L ⊂ Λ is a sublattice of Λ, then our definition allows us to consider the graded
rings

RL(X) :=
⊕

λ∈L

Γ(X, Lλ) and RL(X∆̃) :=
⊕

λ∈L

Γ(X∆̃, Lλ).

The ring R(X) = RΠ(X) it is called the Cox ring of X and it was studied in the
case of the variety X in [3], where it was called the ring of all sections. The fact
that G is simply connected implies that each line bundle on X has a canonical G
linearization. It follows G acts on RL(X) and RL(X∆̃).

The space Γ(X, Lλ) of sections of Lλ has been described as a G-module in [4]
and [6]. Let us recall here this description.

Recall that a good filtration of a G-module W is a filtration W = W0 ⊃ W1 ⊃
· · · ⊃ Wm = {0} by G submodules such that for each i = 1, . . .m, Wi−1/Wi is
isomorphic to Γ(G/B, Lλi

) for a suitable dominant weight λi.
The result in [6] implies that Γ(X, Lλ) has a good filtration. To be more precise

first of all one shows that for any λ ∈ Π the map

Γ(X, Lλ) → Γ(X∆̃, Lλ)

is surjective.
Now for any λ, µ ∈ Π set µ 6σ λ if λ− µ ∈ N[∆̃].

Notice that, for α̃ ∈ ∆̃, there is a G invariant section sα̃ of Lα̃, unique up to
multiplication by a non-zero scalar, whose divisor is Xα̃.

If ν =
∑

α̃ nα̃α̃ >σ 0, consider sν :=
∏
α̃ s

nα̃

α̃ . If λ >σ µ, the multiplication

by sλ−µ defines a G-equivariant injective map from Γ(X, Lµ) to Γ(X, Lλ) whose
image we denote by sλ−µΓ(X, Lµ).
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For any ν >σ 0 we now set

Fλ,ν =
∑

µ6σλ−ν

sλ−µΓ(X, Lµ).

The Fλ,ν form a decreasing filtration of Γ(X, Lλ) by G submodules. In [4], [6] the
associated graded is computed and we have that the division by sν and restriction
of sections to X∆̃ gives an isomorphism Fλ,ν/(

∑
ν′>σν

Fλ,ν′) ≃ V ∗
λ−ν so that

GrF Γ(X, Lλ) =
⊕

µ∈Π+, µ6σλ

sλ−µV ∗
µ . (1)

Clearly the filtration F∗,∗ respects multiplication. This implies that the associ-
ated graded

GrF R(X) :=
⊕

λ∈Π

GrF Γ(X, Lλ)

of R(X) has a ring structure. Furthermore, (1) gives a ring isomorphism

GrF R(X) ≃ RΠ(X∆̃)[sα̃1
, . . . , sα̃ℓ

]. (2)

In the previous section we have studied spherical weights. We want to prove now
that λ is spherical precisely when Lλ is spherical.

The homomorphism π∗
X : Pic(X) → Pic(G/H◦) can be identified with the ho-

momorphism χ : Π → ΛH◦ associating to λ ∈ Π, the character χ(λ) by which H◦

acts on the fiber of Lλ on the point x0.
We claim that χ(λ) = χH◦(λ) is the dual of the character by which H◦ acts on

the line fixed by H̄ in V ∗
λ introduced in the previous section. To see this we may

assume λ ∈ Π+.
We fix λ ∈ Π+ and L = Lλ. In this case L has no base points over X∆̃, so,

since X∆̃ is the unique closed orbit in X , by Theorem 3.1(iv) it also has no base
points over X . Thus by the reductivity of H̄ , there is a positive integer m and a
line L ⊂ Γ(X, Lm) stable under the action of H̄ and such that if σ ∈ L − {0}, σ
does not vanish on x0. It follows that H◦ acts on L by the character −mχ(λ).

Take the filtration {Fmλ,ν} of Γ(X, Lm). There is a unique submodule Fmλ,ν
such that L ⊂ Fmλ,ν −

∑
ν′>σν

Fmλ,ν′ . So L has non-zero image in V ∗
mλ−ν and

thus coincides with the unique H̄ stable line in V ∗
mλ−ν . We deduce that mχ(λ) =

χH◦(mλ − ν). Since ν lies in Z[Φ̃], we have χH◦(mλ − ν) = χH◦(mλ), whence
mχH◦(λ) = mχ(λ). Finally since H◦ is connected its character group has no
torsion and we get that χH◦(λ) = χ(λ) as desired. We deduce the following lemma.

Lemma 3.3. Let λ ∈ Π then π∗
X(Lλ) is trivial if and only if λ ∈ Ω. Moreover if

πH : G/H → X is defined by πH(gH) = g · x0 then π∗
H(Lλ) is trivial if and only if

λ ∈ ΩH .

Proof. The first claim has just been proved. As for the second it follows since by
Theorem 2.3 a character λ lies in ΩH ∩Π+ if and only if the line in V ∗

λ stable under
H̄ is pointwise invariant under H . �
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3.2. Toroidal compactifications and ring of definition. An embedding Y of
G/H is called toroidal if there exists a basepoint preserving G-equivariant map
φ : Y → X .

Presently we are going to explain their construction and show that they are
defined and flat over A.

Let LR = Hom(ΛS , R) and L∨
R

= ΛS ⊗Z R bet its dual. The S, or SH , toric
varieties are described by fans in LR. In particular take the cochamber C ⊂ LR of
dominant elements with respect to ∆̃ and let TH be the SH toric variety associated
to C. TH has a natural A form T H . In particular in the adjoint case T H̄ ≃ Aℓ

A
.

Choose an A form of G as in Section 2.1. Consider for any H the finite field
extension Q(G/H̄) ⊂ Q(G/H). Q(G/H̄) is the field of rational functions on X

and we take XH equal to the normalization of X in Q(G/H). Let φH : XH → X

denote the normalization map and let XH = XH(k).

Lemma 3.4. XH is a projective normal and Cohen–Macaulay embedding of G/H.

φH is a finite flat morphism. In particular XH is proper and flat over A.

Proof. The projectivity and normality of XH are clear from the definitions. Let us
show that XH is Cohen–Macaulay.

To see this, let us recall X is covered by the G translates of an open set U of the
form X+

S × U , where U is the unipotent radical of the parabolic P ⊂ B such that

X∆̃ ≃ G/P . By Theorem 3.1 we have that X+
S and U are defined over A and so

is the isomorphism X+
S = TH̄ ≃ Aℓ. In particular the open set U is defined over A

and we denote by U the associated subscheme of X and U the subgroup scheme
of G defining U .

It easily follows that XH is covered by the the G(A) translates of the preimage
UH of U and that U ≃ T H × U. Since T H is Cohen–Macaulay, also U is Cohen–
Macaulay and everything follows.

Since any finite morphism between a Cohen–Macaulay scheme and a smooth
scheme is flat, we deduce that φH is flat and all the other claims are clear. �

We are now going to follow the method of [5] to build all toroidal compact-

ifications. For each α̃ ∈ ∆̃ we have already chosen a line bundle Lα̃ on X to-
gether with a G invariant section sα̃ ∈ Γ(X, Lα̃). We can then consider the vector
bundle V :=

⊕
α̃∈∆̃ Lα̃ and the G invariant section s :=

⊕
α̃∈∆̃ sα̃ of V . Set

V∗ = {v = (vα̃) ∈ V : vα̃ 6= 0 ∀α̃ ∈ ∆̃}. By our previous identifications V∗ is
a principal SH̄ bundle. If Z is an SH̄ -variety, we can take the associate bundle
V∗ ×SH̄

Z on X with fiber Z. In particular V = V∗ ×SH̄
Aℓ, where SH̄ acts on Aℓ

via the characters α̃ ∈ ∆̃.
Now take Z to be a SH̄ embedding over Aℓ. The corresponding fan FZ is a

(partial) decomposition of the fundamental Weyl cochamber C. The map Z → Aℓ

induces a map V∗ ×SH̄
Z → V and we define XZ as the fiber product

XZ
sZ

V∗ ×SH̄
Z

X
s

V .
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The G action on V preserves V∗ and commutes with the SH̄ action. So G also acts
on V∗ ×SH̄

Z, the map V∗ ×SH̄
Z → V is G-equivariant and XZ is a G-variety.

In the case of a general G/H we set XH,Z equal to the normalization of XZ in
the field of rational function on G/H . We clearly have the cartesian diagram

XH,Z
µZ

XZ

XH
µ

X .

In particular the morphisms µZ and sH,Z := sZµZ are flat. One has the following
result (see [5]).

Theorem 3.5.

(i) Every toroidal embedding of G/H is of the form XH,Z for some SH̄ em-

bedding Z over Aℓ. In particular it is defined and flat over A.

(ii) XH,Z is complete (resp. projective) if and only if the projection Z → Aℓ is

proper (resp. projective).
(iii) Every G orbit in XH,Z is of the form OK := (sH,Z)−1(V∗ ×SH

K) for a

unique SH̄ orbit K in Z.

(iv) Let FZ be the fan in LR whose cones are the W̃ translates of the cones in

FZ . Then FZ is the fan corresponding to SH embedding ZH := (XH,Z)SH
.

Furthermore, each G orbit in XH,Z intersects ZH in a unique NH◦(S) orbit

(notice that in accord with (iii) these orbits are in canonical bijection with

SH̄ orbits in Z).
(v) The divisors in ∆XH,Z

are defined over A.

Proof. All these statements are proved in [5] in the case of an embedding of G/H̄ .
To see (i) in the general case take a toroidal embedding Y of G/H . Let us take

the quotient by the finite group scheme H̄/H . We get an embedding of G/H̄ which
is obviously toroidal and hence of the form XZ for a suitable SH̄ embedding Z.
If we now consider XH,Z , we get a morphism Y → XH,Z which is G-equivariant
birational and finite. Since both Y and XH,Z are normal, it follows that the above
morphism is a G-equivariant isomorphism.

The proof of the remaining statements is now easy and we leave it to the reader.
�

Remark 3.6. (1) Let us point out that our result in particular implies that the G
orbits in XH,Z are exactly the preimages of G orbits in XZ .

(2) It is not hard to see that XH,Z is smooth if and only if ZH is smooth.
Equivalently if and only if the SH embedding whose fan is FZ is smooth. This
depends very much on the lattice Hom(ΛSH

, Z) ⊂ LR.
(3) There exists an open affine covering {Ui = SpecRi} of the A form of XH,Z

such that Ri are free A-modules and Ui ∩ Uj = SpecRij , where Rij is also a free
A-module.
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3.3. Line bundles on a toroidal embedding. In this section we assume Y to
be a smooth toroidal compactification of G/H with the A structure described in
the previous section.

We have the following lemma about the structure of the Picard group of Y .

Lemma 3.7. Let Y be a equivariant smooth toroidal compactification of G/H then

(i) We have the following sequence describing the Picard group of Y :

0 →
⊕

D∈∆Y

ZO(D) → Pic(Y )
∗Y−→ ΛH → 0.

(ii) SPic0(Y ) =
⊕

D∈∆Y
ZO(D).

(iii) For each closed G orbit O of Y consider the restriction ı∗O : SPic0(Y ) →
Pic(O) of line bundles to O. Then the product of these restriction maps

ı∗ : SPic0(Y ) →
∏

Pic(O) is injective.

(iv) All line bundles on Y are defined and flat over A.

Proof. The only thing we need to show to prove (i) is the injectivity of the map
from

⊕
D∈∆Y

ZO(D) to Pic(Y ). Notice that, since G is semisimple and simply

connected and Pic(Y ) discrete, every line bundle has a unique G linearization.
Thus Pic(Y ) ≃ PicG(Y ). It follows that it is enough to prove the injectivity of the
map from

⊕
D∈∆Y

ZO(D) to PicG(Y ). Consider the restriction map PicG(Y ) →

PicSH
(Y +
S ). PicSH

(Y +
S ) is isomorphic to

⊕
ZO(D′), where the sum is take over all

SH -equivariant divisors D′. So the claim follows from Theorem 3.5. Since SPic0 is
the kernel of ∗Y , this also proves (ii).

(iii) follows from the previous considerations and the fact that, up to isomorphism
a SH -equivariant line bundle on Y +

S is completely determined by its restriction to

the closed orbits, that is the SH fixpoints in Y +
S .

Finally let D ∈ ∆Y . By Theorem 3.5(v) it is defined over A. We know that
ΛH = Pic(G/H) is generated by the codimension 1 irreducible B orbits in G/H
and that these orbits are defined over A by Lemma 2.7 in [6] and Lemma 2.1. Thus
(iv) follows from (i). �

Let FY be the fan associated to the toric variety Y +
S and let FY (i) be the set of

faces of FY of dimension i. In particular the closed orbits of Y are parametrized by
FY (ℓ) while FY (1) can be identified with ∆Y the set of G invariant divisors. For
each ρ ∈ FY we set yρ := yη for η a generic element in ρ and denote by Oρ = Gyρ
the associated G orbit.

By Theorem 3.5 and the description of the equivariant Picard group of a toric
variety we have the following description of the strictly spherical line bundles on Y :

SPic0(Y ) = {λ = (λτ ) ∈
∏

τ∈FY (ℓ)

ΩH : λτ = λτ ′ on τ ∩ τ ′}. (3)

We can think of λ as a real valued function on the Weyl cochamber C which
coincides with the linear form λτ on the face τ . We denote by Lλ a line bundle
whose class is given by λ. In particular we can describe in this way the line bundles
O(D) for each divisor D ∈ ∆Y . Indeed let vD ∈ Λ∨

SH
be a not divisible element of



680 C. DE CONCINI, S. KANNAN, AND A. MAFFEI

ΛSH
in the 1-dimensional face of FY associated to D. For each τ ∈ FY (ℓ) notice

that, since Y is smooth, the set {vD′ : D′ ∈ ∆Y } ∩ τ is a basis of Λ∨
SH

.
So we can define αD,τ ∈ ΛSH

to be the weight which is equal to zero if vD /∈ τ

while if vD ∈ τ it is 1 on vD and zero on each vD′ ∈ τ with D′ 6= D. It is then easy
to see that αD = (αD,τ )τ∈FY (ℓ) is the class of O(D) in SPic0(Y ).

Now we want to describe the sections of a strictly spherical line bundle on Y in
the case of characteristic 0. The proofs are very similar to the one given in [1]. A
description of the section of a line bundle on a general spherical variety is given
in [2] and we could have used that result as well. However the description we are
going to give is more suited to our purpose.

For D ∈ ∆Y let sD be a G invariant section of Γ(Y, O(D)) vanishing on D. If
λ =

∑
D aDαD, we set sλ =

∏
D s

aD

D . Also for a given µ ∈ Ω+
H consider the line

bundle φ∗(Lµ), where φ : Y → X is the G-equivariant projection from Y to X . This
line bundle corresponds to the element µ ∈ SPic0(Y ) with µτ = µ for all τ ∈ FY (ℓ)
under the identification of ΩH with ΛSH

given by Lemma 2.5(v). In particular V ∗
µ

is a submodule of Γ(Y, φ∗(Lµ)).
For λ ∈ SPic0(Y ) set

A(λ) = {µ ∈ Ω+
H : ∀τ ∈ FY (ℓ), λτ − µ =

∑

vD∈τ

aDαD with aD > 0}

= {µ ∈ Ω+
H : µ 6 λ on C}.

We then have the following theorem whose proof is completely analogous to the
one given in [1].

Theorem 3.8. Assume Y to be a smooth toroidal compactification of G/H and

assume the field to be of characteristic zero and let λ ∈ SPic0(Y ) then

Γ(Y, Lλ) =
⊕

µ∈A(λ)

sλ−µ V ∗
µ .

From the above result we can deduce, as in [1, Section 4.2] and [15], the following
corollary. Let Ω++

H be the set of elements of ΩH that are in the interior of the Weyl
cochamber C.

Corollary 3.9. Let Y be a smooth toroidal compactification of G/H, let λ ∈
SPic0(Y ) and assume the field to be of characteristic zero. Then

(i) For every µ ∈ Λ+ V ∗
µ is an irreducible summand of Γ(Y, L) if and only if

Γ(YS , L|YS
) has a section of SH weight equal to µ;

(ii) For every line bundle L generated by global sections, the restriction map

Γ(Y, L) → Γ(YS , L|YS
)

is surjective;
(iii) Lλ is an ample line bundle if and only if it is very ample;

(iv) Lλ is an ample line bundle if and only if λτ ∈ Ω++
H and λτ < λτ ′ on τ ′ r τ

for all faces τ and τ ′ of FY of maximal dimension.
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Remark 3.10. We have limited our discussion to strictly spherical line bundle and
to characteristic 0. Using Frobenius splitting methods it is easy to generalize the
previous results as in [6]. However the stated result are enough for our purpose
here.

4. The Quotient of a Symmetric Variety

Let Y be an embedding ofG/H and letK be a subgroup such thatH◦ ⊂ K ⊂ H .
Any line bundle on Y has a G linearization, so in particular it has a K linearization.
Recall that if L is an ample line bundle on Y a point y on Y is said to be L semistable
(with respect to the action of K) if for some n > 0 there exists f ∈ Γ(Y, Ln)K such
that f(y) 6= 0. We denote by Y ss(L) the set of L semistable points, or in case L
is chosen just semistable points. Y ss(L) is a possibly empty open subset of Y . By
[13] Theorem 3.21 there exists a good quotient of the set of L semistable points
which we shall denote by K \\L Y .

In this section we are going to prove the following theorem.

Theorem 4.1. Let Y be an equivariant projective embedding of G/H and let L
be an ample and spherical line bundle on Y then the inclusion YS ⊂ Y induces an

isomorphism of algebraic varieties between W̃\YS and K \\L Y .

We will prove this theorem by computing the invariant sections. We will analyze
first the case of the wonderful compactification and the case of the quotient of the
open affine part G/H .

4.1. Invariants and semiinvariants of the Cox ring of the wonderful com-

pactification. In this section we compute the H invariants of the ring R(X). We
use the notations introduced in Section 3.1.

Lemma 4.2. Let λ ∈ Π. Then (GrF (Γ(X, Lλ)))
H = GrF (Γ(X, Lλ)

H). In partic-

ular the dimension of the space of invariants Γ(X, Lλ)
H equals the cardinality of

the set Kλ := {µ ∈ Ω+ : µ 6σ λ} if λ ∈ ΩH and is zero otherwise.

Proof. In characteristic zero the equality

(GrF (Γ(X, Lλ)))
H = GrF (Γ(X, Lλ)

H)

is an immediate consequence of the linear reductivity of H .
Also (in arbitrary characteristic) by equation (1) we have that

(GrF (Γ(X, Lλ)))
H =

⊕

µ∈Π+, µ6σλ

sλ−µ(V ∗
µ )H .

By Vust criterion (Theorem 2.3) (V ∗
µ )H is one dimensional if µ ∈ Ω+

H and it is zero

otherwise. So, since by Lemma 2.5 Z[Φ̃] ⊂ ΩH we have that (GrF (Γ(X, Lλ)))
H

has dimension equal to |Kλ| if λ ∈ ΩH and it is zero otherwise.
In general (GrF (Γ(X, Lλ)))

H ⊃ GrF (Γ(X, Lλ)
H) so

dimΓ(X, Lλ)
H 6 dim(GrF (Γ(X, Lλ)))

H .

On the other hand by Theorem 3.1 and Lemma 3.7 the variety X and the spaces
Γ(X, Lλ) are all defined over A. Lemma 2.2 then clearly implies that in positive
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characteristic dimΓ(X, Lλ)
H can only increase. This together with the previous

inequality implies our claim. �

We compute now the ring R(X)H . By Lemma 4.2, for each α̃ ∈ ∆̃ we can
choose pα̃ ∈ Γ(X, Lω̃α̃

) an H◦ invariant section which does not vanish on X∆̃. So,
if λ =

∑
aα̃ω̃α̃ ∈ Ω+, we can define

pλ =
∏

α̃∈∆̃

paα̃

α̃ . (4)

Proposition 4.3. The set {sµpλ : µ ∈ Π, µ >σ 0, λ ∈ Ω+
H} is a k basis of R(X)H.

In particular the ring R(X)H
◦

is a polynomial ring in the variables sα̃, pα̃ with

α̃ ∈ ∆̃.

Proof. Notice first that by Lemma 4.2, if λ ∈ ΩH , Γ(X, Lλ)
H = Γ(X, Lλ)

H◦

so it
is enough to prove the claim in the case of H◦.

The image of pα̃ in the graded ring GrF (R(X)) defines an H◦ invariant element
p̄α̃ of V ∗

ω̃α̃
. So by the description of the H◦ invariants of GrF (R(X)) the image of

the elements sµpλ in the graded ring GrF (R(X)) is a k basis of the space of H◦

invariants. This implies that the elements sµpλ are linearly independent.
By construction, the elements sµpλ are H◦ invariants. So, again by Lemma 4.2

they are a k basis of R(X)H
◦

. �

The computation of semi invariants is similar. If V is a representation of H̄ ,
we denote by V H̄si the subspace spanned by the set of semi invariant vectors, i. e.,
vectors spanning lines fixed by H̄ .

By Theorem 2.4, we know that there are semi invariants which are not H◦

invariants only if there exists an exceptional simple root. Set ∆e = {α ∈ ∆1 : α is

exceptional} and ∆̃ne = {α̃ ∈ ∆̃ : α is not exceptional}. By Theorem 2.4 the set

{ωα : α ∈ ∆e} ∪ {ω̃α̃ : α̃ ∈ ∆̃ne} is a basis of Π. Let q̄α ∈ V ∗
ωα

be a non-zero H̄
semi invariant. q̄α is unique up to multiplication by a non-zero scalar. So the

ring
(
RΠ(X∆̃)

)H̄
si

of semi invariants is a polynomial ring in the generators q̄α with

α ∈ ∆e and p̄α̃ (the restriction of pα̃ to X∆̃) with α̃ ∈ ∆̃ne. Using Corollary 2.6 and

arguing as in Lemma 4.2 we deduce that there exists qα ∈ Γ(X, Lωα
)H̄si such that

its restriction to X∆̃ is equal to q̄α. If λ =
∑

α∈∆e
cαωα +

∑
α̃∈∆̃ne

cα̃ω̃α̃ ∈ Π+, we

define qλ =
∏
α∈∆e

qcα
α ·

∏
α̃∈∆̃ne

pcα̃

α̃ . The arguments given in the case of invariants
can now be easily adapted implying

Proposition 4.4. Let λ ∈ Π. Then (GrF (Γ(X, Lλ)))
H̄
si = GrF (Γ(X, Lλ)

H̄
si).

Moreover the set {sµqλ : µ ∈ Π, µ >σ 0, λ ∈ Π+} is a k basis of R(X)H̄si . In

particular the ring R(X)H̄si is a polynomial ring in the variables sα̃ with α̃ ∈ ∆̃, pα̃
with α̃ ∈ ∆̃ne and qα with α ∈ ∆e.

4.2. Filtration of the coordinate ring of G/H and Richardson theorem.

We want now to use the wonderful variety X to define a filtration of the coordinate
ring of G/H . In the case in which H is the diagonal subgroup in G = H×H , these
ideas already appear in [18]. This will be used to describe the H invariants of this
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ring. This description of the invariants has already been given by Richardson [14]
but a proof in our setting seems natural.

First we make explicit the relation between the coordinate ring of G/H and the
ring RΩH

(X).

For each α̃ ∈ ∆̃ we choose a trivialization ϕω̃α̃
: π∗(Lω̃α̃

) → OG/H◦ . Given

λ =
∑

α̃∈∆̃ cα̃ω̃α̃ ∈ Ω we obtain the trivialization of π∗(Lλ) given by
⊗

α̃∈∆̃ ϕ
⊗cα̃

ω̃α̃
.

With these choices the pull back of sections defines a ring homomorphism:

π∗
H : RΩH

(X) → k[G/H ].

Notice also that since sα̃ is G invariant the functions π∗
H(sα̃) are constant and we

can normalize them to be equal to 1.
For each λ ∈ ΩH we consider the G submodule

Fλ := π∗
H(Γ(X, Lλ))

of k[G/H ]. Notice that since the sα are all equal to 1, we clearly have that if µ <σ λ,
Fµ ⊂ Fλ. Also, since the image of πH is dense in X we have that π∗

H restricted to
Γ(X, Lλ) is an isomorphism onto Fλ. Furthermore, if we set F′

λ =
∑

µ<σλ
Fµ, we

have Fλ/F
′
λ ≃ V ∗

λ .

Proposition 4.5. The map π∗
H induces an isomorphism of rings

ϕ :
RΩH

(X)

(sα̃ − 1: α̃ ∈ ∆̃)
→ k[G/H ].

Proof. The mapping ϕ is clearly well defined and its surjectivity follows immediately
from Proposition 2.8.

Let us now show that ϕ is injective. As above set ΞH = ΩH/ΩH̄ and for all
cosets ξ ∈ ΞH define Rξ =

⊕
λ∈ξ Γ(X, Lλ) so that RΩH

(X) =
⊕

ξ∈ΞH
Rξ is a ΞH

grading of the ring RΩH
(X).

On the other hand by Proposition 2.8, the coordinate ring k[G/H ] decomposes
as the direct sum

⊕
ξ∈ΞH

Γ(G/H̄, Lξ) and the restriction of π∗
H decomposes as the

direct sum
⊕

ξ∈ΞH
∗ξ , where ∗ξ : Rξ → Γ(G/H̄, Lξ) is induced by the inclusion X

of G/H̄ in X .

Also, since the elements {sα̃− 1: α̃ ∈ ∆̃} lie in R0 the ideal I that they generate
decomposes as the direct sum I =

⊕
ξ∈ΞH

Iξ with Iξ = I ∩ Rξ, for each ξ ∈ ΞH .
Thus ∗ξ induces a map

ϕξ : Rξ/Iξ → Γ(G/H̄, Lξ)

and it is enough to see that ϕξ is injective for each ξ ∈ Ξq.
Fix ξ ∈ ΞH . Let g =

∑
λ∈A gλ ∈ Rξ with gλ ∈ Γ(X, Lλ) and A a finite subset

of the coset ξ. Assume π∗
H(g) = 0. By assumption there exists µ ∈ ξ such that

µ >σ λ for all λ ∈ A. Set g′ =
∑

λ∈A s
µ−λgλ and notice that g′ ≡ g mod Iξ

and that g′ ∈ Γ(X, Lµ). We have π∗
H(g′) = π∗

H(g) = 0 and since π∗
H restricted to

Γ(X, Lµ) is injective, g′ = 0 and g ∈ Iξ as desired. �

Corollary 4.6. The G submodules Fλ, λ ∈ ΩH , induce a good (increasing) filtra-

tion of the coordinate ring k[G/H ].



684 C. DE CONCINI, S. KANNAN, AND A. MAFFEI

We are now going to use this filtration to study the ring of invariants k[G/H ]K .
We first need a well known lemma.

Lemma 4.7. Fix a dominant weight λ ∈ Ω+.

(i) Let φ ∈ V ∗
λ be a nonzero H◦ invariant and let us consider the decomposition

of V ∗
λ with respect to the action of T . Then the lowest weight component

of φ is not zero.

(ii) Let pλ ∈ Γ(X, Lλ) denote the H◦ invariant defined in formula (4) and

consider the decomposition of pλ ∈ Γ(X, Lλ) with respect to the action of

T . Then the lowest weight component of pλ is not zero.

Proof. In V ∗
λ there is a non-zero vector v fixed by the maximal unipotent sub-

group U− opposite to B. This vector is unique up to a non-zero scalar and has
weight −λ which is the lowest weight of V ∗

λ . Write φ = w + av with w lying in
the unique T stable complement V ′ of the one dimensional space spanned by v and
a ∈ k. V ′ is B stable. We need to prove a 6= 0.

Consider the G submodule W generated by φ. Since W must contain a non-zero
vector fixed by U−, it has to contain v.

On the other hand B ·H◦ is dense in G so the subspace W is equal to the space
spanned by the vectors b · φ with b ∈ B. If a = 0, then W would be contained in
V ′ giving a contradiction. This proves (i).

To see (ii) it suffices to consider the image p̄λ in Γ(X, Lλ)/F
′
λ,λ ≃ V ∗

λ which is

non-zero by the very definition of pλ. �

We can now prove Richardson Theorem (see [14, Corollary 11.5]). Notice that,

since NH◦(S) ⊂ H◦ ⊂ K the inclusion of SH in G/H induces a map from W̃\SH
to K \\G/H .

Theorem 4.8. Let H◦ ⊂ K ⊂ H be a subgroup of H. Then the inclusion SH ⊂

G/H induces an isomorphism W̃\SH ≃ K \\G/H.

Proof. By the definition of W̃ , the restriction of functions from G/H to SH induces
a homomorphism

d : k[G/H ]K → k[SH ]
eW .

We claim that d is an isomorphism.
To see this we first make some remarks on the K invariants of k[G/H ]. For

λ ∈ Ω+
H let fλ := π∗

H(pλ). Arguing as in Proposition 4.3 it is easy to see that the

elements fλ with λ ∈ Ω+
H are a basis of k[G/H ]K as a vector space. In particular

for each λ ∈ Ω+
H , FKλ /F

′K
λ is one dimensional and spanned by the class of fλ (notice

that ΩH ⊂ ΩK).

The computation of the W̃ invariants of the ring k[SH ] is also very simple.
Let k[SH ] =

⊕
λ∈ΛSH

kϕλ, where ϕλ is a function of weight λ. We know by

Theorem 2.3 and Lemma 2.5 that the restriction r of character from T to S induces
an isomorphism between ΛSH

and ΩH so we identify the two lattices. Also a weight

λ ∈ ΩH is dominant with respect to ∆̃ if and only if it is dominant with respect to
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∆. If λ ∈ Λ+
SH

, we set

ψλ =
∑

ψ∈ eW ·ϕ−λ

ψ.

The elements ψλ with λ ∈ Ω+
H are clearly a basis of k[SH ]

eW .

Given λ ∈ Ω+
H , let Uλ denote the span of elements ψµ with µ ∈ Ω+

H and µ 6σ λ.

Notice that fλS := d(fλ) lies in Uλ. Indeed fλS is a W̃ invariant and its weights are
in a subset of the weights appearing in V ∗

λ . Thus for each λ ∈ Ω+
H , d(Fλ)

K ⊆ Uλ.
We claim that d maps isomorphically FKλ onto Uλ. This will imply our claim.

By an easy induction we need to show that fλS /∈
∑

µ<σλ, µ∈Ω+

H
Uµ. Using

Lemma 4.7 it suffices to prove that the restriction to SH of a lowest weight vector h
in Fλ is non-zero. The closure of SH in X contains the unique point of the closed
orbit X∆̃ fixed by B. h does not vanish at this point. Since h is non-zero at a

point in the closure of SH , it cannot vanish on SH proving that fλS does not lie in∑
µ<σλ, µ∈Ω+

H
Uµ. �

Remark 4.9. Notice that in particular K \\G/H does not depend on the choice
of the subgroup K between H◦ and H . However it is not true in general that the
K orbits in G/H are the same of the H orbits in G/K. To see this it is enough
to take G = SL(2, C) And σ the conjugation by

(
i 0
0 −i

)
. Then H◦ is the diagonal

torus and it is easy to check that H◦ ( 1 1
0 1 ) H̄ 6= H̄ ( 1 1

0 1 ) H̄ .

To complete our picture we show, with a different proof, another result of
Richardson which tells us the orbits of the elements in SH are precisely the closed
orbits in G/H .

Proposition 4.10. Let H◦ ⊂ H, K ⊂ H̄. Let s ∈ SH then Ks is closed in G/H.

Proof. Since H◦ has finite index both in H and in K, it is enough to study the case
H = K = H◦.

Fix V to be a finite dimensional faithful representation of G. Consider the map
χ : G/H◦ → G ⊂ GL(V ) given by χ(gH◦) = gσ(g)−1. By [17] Theorem 5.4.4 this is
a closed immersion. Notice that χ(h ·x) = hχ(x)h−1 for all h ∈ H◦ and x ∈ G/H◦.

For s ∈ SH set x = χ(s) = s2. The element s is semisimple in GL(V ). We want
to prove that the orbit {hxh−1 : h ∈ H◦} is closed in GL(V ).

Let p(t) be the minimal polynomial of x. Since x is semisimple, p(t) does not
have multiple roots. For all λ ∈ k∗ and y ∈ G set Vλ(y) = {v ∈ g : Ady(v) = λv}.
Notice that for y ∈ T

Vλ(y) =

{⊕
α∈Φ: α(y)=λ gα if λ 6= 1,

t ⊕
⊕

α∈Φ: α(y)=1 gα if λ = 1.

Given λ ∈ k∗ and µ = 1
2 (λ + λ−1) set

Wµ(y) =

{
Vλ(y) ⊕ Vλ−1(y) if λ 6= ±1,

Vλ(y) if λ = ±1.
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Notice that we have

h =
⊕

µ

(h ∩Wµ(x)) (5)

since h = tσ ⊕
⊕

α∈Φ0
gα ⊕

⊕
α∈Φ+

1
k(xα + σ(xα)) and σ(α)(x) = α(x)−1 so that

xα+σ(xα) ∈ Wα(x)+α(x)−1 . Let nµ = dim(h∩Wµ(x)). We define the closed subset
M ⊂ G as follows. An element y ∈ G lies in M if

(i) p(y) = 0;
(ii) the characteristic polynomial of Ady is equal to the characteristic polyno-

mial of Adx;
(iii) dim(h ∩Wµ(y)) > nµ for all µ.

By condition (iii) and relation (5) it follows that if y ∈ M , dim(h ∩Wµ(y)) = nµ
for all µ. In particular dim h ∩ V1(y) = dim h ∩ V1(x) so that dim h ∩ Zg(y) =
dim h ∩ Zg(x).

Now by condition (i) if y ∈ M , y is semisimple and so by [17, Theorem 5.4.4]
we have that Zg(y) is the Lie algebra of ZG(y). It follows that dim h ∩ Zg(y) =
dimH ∩ ZG(y) = n1 and finally dimH◦y = dimH − n1 so that every H◦ orbit in
M has the same dimension.

In particular every H◦ orbit in M is closed. Since x ∈ M , the proposition
follows. �

Remark 4.11. Notice that our proof works also under the slightly more general
assumption that G is reductive. This will be useful later on.

Remark 4.12. We notice that if H◦ ⊂ K ⊂ H and s ∈ S then Ks = Hs in G/H .
Indeed by Remark 4.9 we have that K \\ G/H = H \\ G/H so the natural map
Kx 7→ Hx from the set of K orbits into the set of H orbits is a bijection at the
level of closed orbits. At this point everything follows from the fact that Hs is a
union of closed K orbits.

4.3. The quotient of a smooth projective toroidal compactification. Let
us now assume that L is a line bundle generated by global sections but not nec-
essarily ample on a given smooth, projective toroidal compactification Y of G/H .
This is going to be useful in order to prove Theorem 4.1 in its full generality.

Since L is spherical, π∗
Y (L) is trivial. Notice now that the G linearization of L

restricts to a NH◦(S) linearization of L|YS
and that ZH◦(S) acts trivially on L|YS

.
To see this first notice that ZH◦(S) acts trivially on the fiber of L over y0. Indeed
π∗
Y (L) is trivial, hence H◦ acts trivially on the fiber of L over y0 and ZH◦(S) ⊂ H◦.

Now, ZH◦(S) commutes with S and S ·y0 is dense in YS so necessarily ZH◦(S) acts
trivially on L|YS

.
Notice that Y ss(L) = Y ss(Ln) for any n > 0, so K\\LnY ≃ K\\LY . Since Ω/ΩK

is finite, up to taking a power of L we can always assume that π∗
Y,K(L) ≃ OG/K ,

where πY,K : G/K → Y is defined by πY,K(gK) = g · y0. We call these line bundles
K spherical. We have

Theorem 4.13. Let L be a K spherical line bundle on Y . Then

Γ(Y, L)K ≃ Γ(YS , L|YS
)

eW .
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We need first a well known general fact on flat schemes over A whose proof we
give for completeness.

Lemma 4.14. Let U be a projective flat scheme over A such that there exists an

open affine covering {U1, . . . , Un} of U with Ui = SpecRi and Ui ∩Uj = SpecRij,
where Ri and Rij are free A-modules. Let L be a locally free sheaf over U . For

each ring extension A → B let UB = U ×Spec(A) Spec(B) and LB the pull back of

L to UB. Then:

(i) Γ(U, L) is a finitely generated free A-module;
(ii) the map B ⊗A Γ(U, L) → Γ(UB, LB) is injective;
(iii) moreover if B is a field of characteristic 0 then we have an isomorphism

B ⊗A Γ(U, L) ≃ Γ(UB, LB).

Proof. The fact that Γ(U, L) is finitely generated is the content of Theorem III.5.2a)
in [8].

We can refine the covering Ui in such a way it has the same properties and
moreover it is such that L|Ui

is defined by a free Ri-module of rank 1. We have the
exact sequence:

0 → Γ(U, L)
r1−→

∏
Γ(Ui, L)

r2−→
∏

Γ(Ui ∩ Uj, L),

where r1 and r2 are given by restriction of sections. In particular Γ(U, L) is a
submodule of

∏
Γ(Ui, L) which is a free A-module, hence, since A is a PID, Γ(U, L)

is a free A-module.
Let M denote the image of r2. M is a submodule of

∏
Γ(Ui ∩ Uj , L), so also

M is a free A-module. Write r2 = ı ◦ r′ with r′ :
∏

Γ(Ui, L) → M and ı : M →∏
Γ(Ui ∩Uj, L). For any A algebra B we can tensor by B and, since by definition

Γ(Ui ×Spec(A) Spec(B), LB) = B ⊗A Γ(Ui, L), we get the exact sequence

0 → Γ(U, L) ⊗A B
r1⊗idB−−−−−→

∏
Γ(Ui ×Spec(A) Spec(B), LB)

r′⊗idB−−−−→M ⊗A B → 0

(6)
from which deduce that the map from Γ(U, L) ⊗A B to Γ(UB, LB) is injective.
This proves (i) and (ii).

Now assume that B is a field of characteristic zero. ı is an inclusion between free
A-modules, so since B has characteristic zero we have that ı ⊗ idB : M ⊗A B →∏

Γ(Ui∩Uj , L)⊗AB =
∏

Γ((Ui∩Uj)×Spec(A)Spec(B), LB) is injective. It follows
that M ⊗A B is the image of r2 ⊗ idB and by the exact sequence (6) we get that
Γ(U, L) ⊗A B is equal to the space of sections of LB on UB. �

Notice that by Remark 3.6(3) we can apply this lemma to a toroidal compacti-
fication. We obtain

Lemma 4.15. Let Y be a smooth toroidal compactification of G/H and let L be a

K spherical line bundle on Y generated by global sections. Then the restriction of

sections from Y to YS induces an isomorphism Γ(X, L)K ≃ Γ(YS , L|YS
)

eW .

Proof. We prove first that this map is injective. Consider the pull back π∗
Y,K(L). By

hypothesis this is isomorphic to the trivial line bundle on G/K. So a trivialization
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of it induces inclusions Γ(Y, L) ⊂ k[G/K] and Γ(YS , L|YS
) ⊂ k[SK ]. We get a

commutative diagram

Γ(Y, L)K k[G/K]K

Γ(YS , L|YS
)

eW k[SK ]
eW ,

where the horizontal maps are the induced by the pull back of sections and vertical
maps are given by restriction of sections. Since the inclusions G/H ⊂ Y and
SH ⊂ YS are open, the two horizontal maps are injective and by Theorem 4.8 also
the right vertical map is injective. It follows that also the vertical map on the left
is injective.

In order to prove surjectivity it is enough to prove that we have enough invari-
ants. First we prove this result in characteristic zero. Let U be a G submodule of
C[G/K] and US be its image in C[SK ]. Observe that by Theorem 4.8 we have an

isomorphism between UK and U
eW
S .

Set U equal to the image of Γ(Y, L) in k[G/K]. By Corollary 3.9(ii), the re-
striction map Γ(Y, L) → Γ(YS , L|YS

) is surjective for any spherical line bundle
generated by global sections. Thus US equals the image of Γ(YS , L|YS

) in k[SK ]
and this implies our claim.

Assume now that the base field k is of arbitrary characteristic. The description
of Γ(YS , L|YS

) as an S-module does not depend on the characteristic. It follows

that there is a basis of Γ(YS , L|YS
) on which W̃ acts by permutations. Thus also the

description of Γ(YS , L|YS
)

eW and hence its dimension d does not depend on the char-
acteristic. On the other hand by Lemma 4.14(ii) we have that d 6 dimΓ(Yk, Lk)

K .

Since Γ(Yk, Lk)
K injects into Γ(YS , L|YS

)
eW , everything follows. �

If we now set

AL :=
⊕

n

Γ(Y, Ln) and BL :=
⊕

n

Γ(YS , L
n|YS

),

we deduce from the above lemma that Proj(AKL ) = Proj(B
eW
L ) for any spherical line

bundle L generated by global sections on a smooth toroidal projective embedding
Y of G/H . In particular Theorem 4.1 follows for such a compactification.

4.4. Proof of Theorem 4.1. We now prove Theorem 4.1 for any projective em-
bedding Y of G/H . Consider an equivariant resolution Ỹ of the closure of the image
of G/H in Y ×X . By construction this is a toroidal compactification and we have

a G-equivariant birational projective morphism φ : Ỹ → Y . Clearly φ(ỸS) = YS .
As already noticed at the beginning of Section 4.3 we can assume L to be K

spherical. Let M = φ∗(L) and notice that this is a K spherical line bundle on Ỹ

generated by global sections. Notice also that since Y is normal we have Γ(Ỹ , M) =
Γ(Y, L) and AM = AL. We have the following commutative diagram, where the
horizontal map are given by pull back of sections, and the vertical maps are given
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by the restriction of sections:

Γ(Y, L)K
≃

Γ(Ỹ , M)K

Γ(YS , L|YS
)

eW Γ(ỸS , M|ỸS
)

eW

Now the vertical map on the right is an isomorphism by the result obtained for a
smooth toroidal compactification and the bottom map is injective, since ỸS → YS
is surjective. So also the vertical map on the left is an isomorphism. So B

eW
L ≃ AKL

and

K \\L Y = Proj(AKL ) ≃ Proj(B
eW
L ) = W̃\YS

as claimed. �

5. Semistable Points

In this section we want to give a more geometric description of the set of
semistable points. We analyze first the case of flag varieties.

5.1. Divisors of invariants in flag varieties. We give first some definitions. If
I ⊂ ∆̃, we set ∆I = ∆0 ∪ {α ∈ ∆1 : α̃ ∈ I} and define ΦI to be the subroot system
of Φ spanned by ∆I . We let PI denote the corresponding parabolic subgroup of G
and ΛI = ΛPI

the set of characters of PI . We also set ΠI = Π∩ΛI , ΩI,H = ΩH∩ΛI
and ΩI = ΩI,H◦ . We have

ΩI =
⊕

α̃∈∆̃rI

Z ω̃α̃ ΠI = ΩI +
⊕

α∈∆er∆I

Zωα.

Let us describe the set of invariant and semiinvariant sections with respect to
the action of H of a line bundle Lλ on G/PI . Since if λ ∈ Λ+

I , we have that
Γ(G/PI , Lλ) ≃ V ∗

λ (and is zero if λ is not dominant). In this case we can apply
directly the result of Vust without introducing any further filtration.

If α̃ ∈ ∆̃ r I, let p̄α̃ be a non-zero section of Lω̃α̃
on G/PI invariant under the

action of H◦. Similarly if α ∈ ∆e r I let q̄α be a non-zero semiinvariant section
of Lωα

on G/PI . If λ =
∑
aα̃ω̃α̃ is dominant so that aα̃ > 0 for all α̃, we define

p̄λ =
∏
α̃ p̄

aα̃

α̃ and similarly if λ =
∑

α∈∆e
cαωα +

∑
α̃∈∆̃ne

cα̃ω̃α̃ is dominant in ΠI

we define q̄λ =
∏
α∈∆e

q̄ cα
α ·

∏
α̃∈∆̃ne

p̄ cα̃

α̃ .

We notice that up to a non-zero scalar, p̄λ is the unique H◦ invariant section of
Lλ and that it is H invariant if and only λ ∈ ΩH . Similarly q̄λ is the unique H̄
semiinvariant section of Lλ.

In particular if we set R(G/PI) =
⊕

λ∈ΛI
Γ(G/PI , Lλ), we have that the ring

of invariants R(G/PI)
H◦

is a polynomial ring in p̄α̃ for α̃ /∈ I and the ring of

semiinvariants R(G/PI)
H̄
si is a polynomial ring in p̄α̃, q̄β for α̃ ∈ ∆̃ne r I and

β ∈ ∆e r ∆I .
If λ =

∑
cα̃ω̃α̃ ∈ Ω, we define the support of λ as suppΩ λ = {α̃ : cα̃ 6= 0}. Also

if J ⊂ ∆̃ r I we define p̄J =
∏
α̃∈J p̄α̃.
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Proposition 5.1. Let J ⊂ ∆̃ r I then the equation p̄J = 0 is reduced.

Furthermore, the divisor of the section p̄Ic is the complement of the unique open

H◦ orbit in G/PI , and we have H◦PI = HPI = H̄PI .

Proof. We start with the first assertion. Let DJ denote the divisor of p̄J = 0 with
reduced structure. Take λ ∈ Λ+

I with the property that Lλ ≃ O(DJ ) and let
ϕ ∈ Γ(G/PI , Lλ) such that divϕ = DJ . We claim that λ = ω̃J :=

∑
α̃∈J ω̃α̃.

Notice that by definition ϕ divides p̄J and for big enough n the section p̄J divides
ϕn. So ω̃J = λ+µ and nλ = ω̃J + ν with µ and ν dominant. Moreover DJ is an H̄
invariant so ϕ is an eigenvector under the action of H̄ . In particular λ and also µ
and ν are quasi spherical. Recall that ∆̃ne = {α̃ ∈ ∆1 : α is not exceptional}. We
can write

λ =
∑

α̃∈∆̃nerI

cα̃ω̃α̃ +
∑

α∈∆e : α̃/∈I

cαωα.

Since ϕ divides p̄J , we obtain cα̃, cα 6 1 and cα̃ = cα = 0 for α̃ /∈ J . Also since p̄J
divides ϕn, we obtain cα̃, cα > 1 for α̃ ∈ J . So cα = cα̃ = 1 if α̃ ∈ J and λ = ω̃J as
claimed.

Now let U = H◦ · [PI ] denote the open H◦ orbit in G/PI and U ′ the complement
of the divisor DIc . Since U ′ is H◦ stable, U ⊂ U ′.

We claim that U is affine. To see this is enough to prove that the Lie algebra
of H◦ ∩ PI is reductive. Indeed we have that this Lie algebra is equal to the Lie
algebra of LσI , where LI is the Levi factor of PI containing T .

Since U is affine, by [7, Proposition 3.1, p. 66], D = G/PI r U has pure codi-
mension one. Let Lλ ≃ O(D) and let ϕ ∈ Γ(G/PI , Lλ) be such that divϕ = D.

Since U ⊂ U ′ and p̄Ic = 0 is reduced, we have that p̄Ic divides ϕ. So Lλ is
ample. Moreover the section ϕ must be an eigenvector under the action of H̄ so λ
is quasi spherical. This together with the fact that λ ∈ ΛI easily implies that, up
to a non-zero constant,

ϕ =
∏

α̃∈Ic∩∆̃ne

p̄ cα̃

α̃ ·
∏

α∈∆e : α̃∈Ic

q̄ cα
α

with the exponents cα̃ and cα positive. On the other hand since ϕ is reduced we
must have cα̃ = cα 6 1 for all α̃, α. So λ = ω̃Ic and ϕ = p̄Ic as claimed.

Finally since the complement of the section p̄J is stable by the action of H , or
H̄ and is a single H◦ orbit, it is also a single H or H̄ orbit. �

5.2. Semistable points in a smooth toroidal compactification. In this sec-
tion we prove that the set of semistable points in a smooth toroidal compactification
does not depend on the choice of an ample line bundle.

We need to make few remarks on weights and convex functions. We start with
a simple and well known lemma on root systems.

Lemma 5.2. Let {α1, . . . , αr} be a set of simple roots in a root system R, and

{ω1, . . . , ωr} the corresponding set of fundamental weights. If K ⊂ {1, . . . , r},
every ωj can be expressed as

ωj =
∑

h∈K

ahαh +
∑

k/∈K

bkωk
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with ah, bk nonnegative rational numbers.

Furthermore, if K = ∆ and R is irreducible, the ah’s are strictly positive.

Proof. If r = 1, there is nothing to prove so we can proceed by induction.
Assume |K| < r. The space A and B respectively spanned by the αh’s with

h ∈ K and by the ωk’s with k /∈ K are mutually orthogonal. It follows that ωj can
be uniquely written as

ωj = γj + δj

with γj ∈ A and δj ∈ B.
If j /∈ K, then γj = 0 and there is nothing to prove.
If j ∈ K, then γj is a fundamental weight for the root system in A having the

αh’s with h ∈ K as simple roots. Thus by induction ah > 0 for each h ∈ K. Write
δj =

∑
k/∈K bkωk. We get bk = 〈δj , α

∨
k 〉 = −〈γj , α

∨
k 〉 > 0 as desired.

Assume now |K| = r. Write ωj =
∑r
h=1 aj,hαh and notice that 0 < (ωj , ωj) =

aj,j (αj , ωj). Since (αj , ωj) > 0, we deduce that aj,j > 0. In particular we can
write

αj =
ωj
aj,j

+ ξj ,

where ξj is a linear combination of the elements in ∆ \ {αj}. It follows that
ωk = (ak,j/aj,j)ωj + x with x a linear combination of the elements in ∆ \ {αj}.
Using the positivity of aj,j our claim now follows from the previous analysis applied
in the case in which K = ∆ \ {αj}.

It remains to show that in the irreducible case aj,h 6= 0, i. e., (ωj , ωh) 6= 0 for each
j, h = 1, . . . r. By contradiction assume that say (ω1, ω2) = 0. This means that
ω2 lies in the span of α2, . . . αr and it is a fundamental weight for the root system
having these roots as a set of simple roots. Let R′ be the irreducible component of
this root system containing α2. We can assume that our ordering of simple roots is
such that α2, . . . αs are a set of simple roots for R′. By induction ω2 =

∑s
h=2 a2,hαh

with a2,h > 0. On the other hand

0 = (ω2, α1) =
s∑

h=2

a2,h(αh, α1)

so that (αh, α1) = 0 for each h = 1, . . . , s. This clearly contradicts the irreducibil-
ity of R. �

Let Y be a smooth toroidal compactification ofG/H and let FY be the associated
decomposition of the Weyl cochamber C.

We define the support suppΩ ρ of a face ρ of FY as

suppΩ ρ := {α̃ ∈ ∆̃ : α̃ is not identically zero on ρ}.

Lemma 5.3. Let λ = (λτ )τ∈FY (ℓ) ∈ SPic0(Y ) be such that Lλ is ample. Let ρ

be a face of FY . Then there exist a positive integer n and µ ∈ Ω+
H such that

suppΩ µ = suppΩ ρ and µ ∈ A(nλ).

Proof. Let S = suppΩ ρ and T = ∆̃ \ suppΩ ρ. Let τ be a maximal dimensional
face containing ρ. Since Lλ is ample, Corollary 3.9(iv) implies that λτ is regular
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dominant. So by Lemma 5.2 there exists a positive integer n such that we can write
nλτ as

nλτ =
∑

α̃∈S

aα̃ω̃α̃ +
∑

α̃∈T

bα̃α̃

with aα̃ positive integers and bα̃ nonnegative integers. Set µ =
∑
α̃∈S aα̃ω̃α̃. We

have µ = nλτ on ρ and µ 6 nλτ 6 nλ on the Weyl cochamber C again by
Corollary 3.9(iv). �

The following lemma is a sort of converse of Lemma 5.3.

Lemma 5.4. Let λ = (λτ )τ∈FY (ℓ) ∈ SPic0 be such that Lλ is ample. Let µ ∈ Ω+

and n a positive integer with µ ∈ A(nλ) and µ = nλ on ρ. Then suppΩ µ ⊃ suppΩ ρ.

Proof. If ρ is the zero face, there is nothing to prove. Assume that ρ has positive
dimension. By eventually substituting λ with nλ, let us also assume that n = 1.

Let ρ(1) be the set of 1 dimensional faces contained in ρ and notice that suppΩ ρ =⋃
ϑ∈ρ(1) suppΩ ϑ. So it is enough to prove the claim in the case of one dimensional

faces.
Let ρ be one dimensional and choose a non-zero point v in ρ.
Take a face τ of maximal dimension containing ρ and define

τρ = {u ∈ Λ∨
R : v + t(v − u) ∈ τ for some positive real number t > 0}.

Notice that µ > λτ on τρ. Indeed if u ∈ τρ there is a positive t such that
v + t(v − u) ∈ τ . Since µ ∈ A(λ), we have µ(v + t(v − u)) 6 λτ (v + t(v − u)). But
λ = µ on ρ so that µ(v) = λτ (v), so µ(u) > λτ (u).

Since the support of FY equals C, it is then clear that
⋃

τ∈FY (ℓ) : τ⊃ρ

τρ = {u ∈ Λ∨
R : 〈α̃, u〉 6 0 for all α̃ /∈ suppΩ ρ}.

Thus every α̃ ∈ suppΩ ρ lies in at least one of the sets τρ. It follows that

〈µ, α̃〉 > 〈λτ , α̃〉 > 0

since λ is ample. Thus α̃ ∈ suppΩ µ. �

We can now characterize the set of semistable points with respect to an ample
line bundle L on Y .

Consider the G-equivariant projection φ : Y → X onto the wonderful compact-
ification X . For each µ ∈ Ω we pull back the H◦ invariant section pµ. This is an
H◦ invariant section of Γ(Y, φ∗(Lµ)) and we denote it by the same symbol pµ. For

any subset I ⊂ ∆̃ we set pI :=
∏
α̃∈I p

ω̃α̃ . We also remark that the condition of

being semistable does not depend on the group K between H◦ and H̄ . Indeed, by
the description of invariant sections, if f is a H◦ invariant section which does not
vanish on x there exists an integer n such that fn is invariant under H̄ . In view of
this we will speak of semistable points without specifying the group K.

Proposition 5.5. Let Y be a smooth projective toroidal embedding of G/H and

let L be an ample line bundle on Y . Let ρ be a face of FY and let Oρ be the

corresponding G orbit. A point x ∈ Oρ is L semistable if and only if psuppΩ ρ(x) 6= 0.
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Proof. Let L = Lλ. Let ρ be a face of FY and x ∈ Oρ. Assume that psuppΩ ρ(x) 6= 0.
By Lemma 5.3 there exist a positive integer n and a dominant weight µ such that
µ ∈ A(nλ), µ = nλ on ρ and suppΩ µ = suppΩ ρ. Since pµ is a product of the

sections pα̃ for α̃ ∈ suppΩ ρ, we have that pµ(x) 6= 0. Thus snλ−µpµ is an H
invariant section of Lnλ not vanishing on x and x is semistable.

Conversely let x be semistable. Then by the description of invariants given in
the proof of Theorem 4.13 there exists a positive integer n and a dominant spherical
weight µ ∈ A(nλ) such that snλ−µpµ(x) 6= 0. The condition snλ−µ(x) 6= 0 implies
µ = nλ on ρ so we can apply Lemma 5.4 and we deduce that suppΩ µ ⊃ suppΩ ρ.
In particular pα̃(x) 6= 0 for all α̃ ∈ suppΩ ρ or equivalently psuppΩ ρ(x) 6= 0. �

The above proposition has the following

Corollary 5.6. Let L and L′ be two ample line bundles on Y . Then Y ss(L) =
Y ss(L′).

In view of this corollary we shall from now on say that a point is semistable if it
is semistable with respect to any ample line bundle and we shall denote the set of
semistable points by Y ss.

We now give a more set theoretic description of semistable points. Take a face ρ
of the fan FY and denote by Oρ the corresponding G orbit in Y . Set I = suppΩ ρ
and consider the G-equivariant projection φ : Y → X . Remark that for any η in the
relative interior of ρ the point yη depends only on suppΩ ρ and not on the choice
of η. Thus we can denote this point by yρ. By definition for such one parameter
subgroup η we have φ(yη) = xη. In particular it follows that φ(Oρ) = OI the open
orbit in XI and that the projection φ : Oρ → OI is a G-equivariant fibration.

By [4] we have a G-equivariant projection πI : OI → G/PIc with Ic = ∆̃ \ I.
Composing we get a fibration

γI := πI ◦ φ : Oρ → G/PIc

whose fiber over the point πI ◦ φ(yρ) we denote by Fρ.
In view of Proposition 5.1 and Proposition 5.5 we immediately get

Proposition 5.7. A point x in Oρ is semistable if and only if its H orbit intersects

Fρ. So we have that Ossρ := Y ss∩Oρ is equal to H◦Fρ (and also to KFρ and H̄Fρ).

Proof. This is clear since by Proposition 5.1 the section psuppΩ ρ does not vanish
exactly on the inverse image under γI of the open H◦ orbit in G/PIc . �

By Proposition 5.7 we then have that Ossρ = H ×H∩PIc Fρ.

Let us now take a subset J ⊂ ∆̃. We denote by L the standard Levi factor of
PJ and recall that L is σ stable and that if UPJ

is the unipotent radical of PJ ,
σ(UPJ

) = (UPJ
)− the opposite unipotent.

Lemma 5.8. For any subset J ⊂ ∆̃ we have

K ∩ L = K ∩ PJ .
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Proof. It is enough to analyze the case of K = H̄ . Since our problem is a problem
of support, we can work with the associated reduced subgroup H̄red = {x ∈ G :
xσ(x)−1 ∈ Z(G)}.

Take x = mu ∈ PJ ∩ H̄red with m ∈ L and u ∈ UPJ
. Then clearly uσ(u)−1 ∈ L.

It follows that σ(u)−1 ∈ U−
PJ

∩ PJ = {1} thus u = 1 and x ∈ L as desired. �

Going back to the semistable points in the orbit Oρ ⊂ Y , we get

Proposition 5.9. Let L be the standard Levi factor of PIc . Set KL = K ∩L. We

have a K-equivariant isomorphism

Ossρ ≃ K ×KL
Fρ.

In particular this induces a closure preserving bijection between K orbits in Ossρ
and KL orbits in Fρ.

Now consider the fiber FI of πI containing φ(yρ). We know from [4] that the
solvable radical of PIc acts trivially on FI and that FI = L̄/H̄L̄, where L̄ is the
adjoint quotient of L and H̄L̄ is the subgroup fixed by the involution induced by σ.

By the description of Y given in Theorem 3.5 it now follows that if we set Lρ
equal to the quotient of L modulo the subgroup in the center of L generated by the
one parameter subgroups η with η ∈ ρ, Fρ can be identified with Lρ/Hρ, where Hρ

is isogenous to the subgroup fixed by the involution on Lρ induced by σ.
Under this identification SHρ

coincides with YS ∩ Oρ. We thus can apply Re-
mark 4.11 and deduce

Proposition 5.10. Let x ∈ YS ∩Oρ. Then the orbit Kx is closed in Ossρ .

6. Closed Semistable Orbits

In this section we prove that in the case of a smooth toroidal compactification
Y of G/H the orbits through the elements of YS are the closed semistable orbits.
In this way we give a geometric counterpart to Theorem 4.1.

We show first that the closure of K orbits does not interacts with G orbits.

Proposition 6.1. Let Y be a smooth toroidal compactification of G/H, let L be

an ample line bundle on Y . Let x, y ∈ Y ss(L). If y ∈ K̄x, then y ∈ G · x.

Proof. As we have pointed out in Corollary 5.6, the set of semistable points of Y
does not depend on the choice of the ample line bundle L.

Let L = Lλ. For n big enough we have that Lnλ+αD
is also ample for every

D ∈ ∆Y . In particular for a large enough positive integer m, we can find invariant
sections fD ∈ Γ(Y, Lm(nλ+αD))

K and f ∈ Γ(Y, Lmnλ)
K such that fD(y) 6= 0 and

f(y) 6= 0.
Set now

U = {z ∈ Y such that f(z) 6= 0 and fD(z) 6= 0 for all D ∈ ∆Y }.

The set U is an open affine H invariant subset of Y ss with the property that if

π : Y ss → K \\ Y
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is the quotient morphism U = π−1(π(U)). In particular x ∈ U . Furthermore, on U
the line bundles Lm(nλ+αD) and Lmnλ have an H-equivariant trivialization.

It follows that also the line bundle LmαD
= Lm(nλ+αD) ⊗ L−1

mnλ has an H-

equivariant trivialization φD on U . Thus we can consider the H invariant function
tD = φD(smD) on U . Now by Theorem 3.5 a G orbit in Y is determined by the set
of D such that sD vanishes on the orbit. This implies our claim. �

Remark 6.2. The following simple example shows that Proposition 6.1 does not
hold for a non-toroidal Y . Take the compactification P(End(C3)) of PSL(3), so
G = SL(3) × SL(3) and K is the normalizer of the diagonal copy of SL(3). The
elements

x =




0 1 0
0 0 0
0 0 1


 and y =




0 0 0
0 0 0
0 0 1




give a counterexample to the statement in the proposition.

Let U be any G stable open subset of smooth toroidal projective embedding Y .
The proof of Proposition 6.1 implies

Proposition 6.3. π−1(π(U ∩ Y ss)) = U ∩ Y ss. Furthermore,

π|U∩Y ss : U ∩ Y ss → W̃\US

is a well defined quotient map.

Notice however that, as the following example shows, there are ample line bundles
L on Y such that if we restrict L to U , Uss(L) 6= U ∩Y ss. Indeed, take Y equal to
the wonderful embedding of PSL(3), L = Lω̃1+ω̃2

and U equal to the complement of
the divisor of equation sα̃1

= 0. Then U is isomorphic to the open set in P(End(C3))
of classes of matrices of rank at least 2 and there is an invariant namely s−1

α̃1
p 3
α̃1

,
which up to a constant gives the cube of the trace, defined on U and not vanishing
on

x =




0 1 0
0 0 0
0 0 1




while x is not semistable in Y .

From Propositions 5.10 and 6.1 we finally get

Theorem 6.4. Let Y be a smooth toroidal compactification of G/H and let H◦ ⊂
K ⊂ H̄. Let x ∈ Y ss then Kx is closed in Y ss if and only if Kx ∩ YS 6= ∅.

Proof. From the proof of Theorem 4.1 we get that YS ⊂ Y ss and the fact that if
x ∈ YS its orbit is closed is Proposition 5.10.

On the other hand since K \\ Y = W̃\YS, the restriction of the quotient map

π : Y ss → K \\ Y

to YS is surjective. Given p ∈ K \\ Y , π−1(p) contains a unique closed orbit and
this by the first part is necessarily the orbit of a point in π−1(p) ∩ YS . �
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Math. France 102 (1974), 317–333. MR 0366941

Dip. Mat. Castelnuovo, Univ. di Roma La Sapienza, Rome, Italy

E-mail address: deconcin@mat.uniroma1.it

Chennai Mathematical Institute, Chennai, India

E-mail address: kannan@cmi.ac.in

Dip. Mat. Castelnuovo, Univ. di Roma La Sapienza, Rome, Italy

E-mail address: amaffei@mat.uniroma1.it

http://www.ams.org/mathscinet-getitem?mr=MR1046690
http://www.ams.org/mathscinet-getitem?mr=MR1016427
http://www.ams.org/mathscinet-getitem?mr=MR1966632
http://www.ams.org/mathscinet-getitem?mr=MR718125
http://www.ams.org/mathscinet-getitem?mr=MR803344
http://www.ams.org/mathscinet-getitem?mr=MR1712864
http://www.ams.org/mathscinet-getitem?mr=MR0282977
http://www.ams.org/mathscinet-getitem?mr=MR0463157
http://www.ams.org/mathscinet-getitem?mr=MR0263988
http://www.ams.org/mathscinet-getitem?mr=MR899071
http://www.ams.org/mathscinet-getitem?mr=MR1920389
http://www.ams.org/mathscinet-getitem?mr=MR0311837
http://www.ams.org/mathscinet-getitem?mr=MR546290
http://www.ams.org/mathscinet-getitem?mr=MR656625
http://www.ams.org/mathscinet-getitem?mr=MR2363135
http://www.ams.org/mathscinet-getitem?mr=MR927604
http://www.ams.org/mathscinet-getitem?mr=MR1642713
http://www.ams.org/mathscinet-getitem?mr=MR884653
http://www.ams.org/mathscinet-getitem?mr=MR0366941

	1. Introduction
	2. Preliminaries
	2.1. Ring of definition
	2.2. Spherical weights and the restricted root system
	2.3. Line bundles on G/H

	3. Completions of Symmetric Varieties
	3.1. The wonderful compactification of a symmetric variety
	3.2. Toroidal compactifications and ring of definition
	3.3. Line bundles on a toroidal embedding

	4. The Quotient of a Symmetric Variety
	4.1. Invariants and semiinvariants of the Cox ring of the wonderful compactification
	4.2. Filtration of the coordinate ring of G/H and Richardson theorem
	4.3. The quotient of a smooth projective toroidal compactification
	4.4. Proof of Theorem 4.1

	5. Semistable Points
	5.1. Divisors of invariants in flag varieties
	5.2. Semistable points in a smooth toroidal compactification

	6. Closed Semistable Orbits
	References

