MOSCOW MATHEMATICAL JOURNAL
Volume 8, Number 4, October-December 2008, Pages 667-696

THE QUOTIENT OF A COMPLETE SYMMETRIC VARIETY

CORRADO DE CONCINI, SENTHAMARAI KANNAN, AND ANDREA MAFFEI

Dedicated to Ernest Vinberg on the occasion of his 70th birthday

ABSTRACT. We study the quotient of a completion of a symmetric va-
riety G/H under the action of H. We prove that this is isomorphic to
the closure of the image of an isotropic torus under the action of the re-
stricted Weyl group. In the case the completion is smooth and toroidal
we describe the set of semistable points.
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1. INTRODUCTION

Let G be a semisimple simply connected algebraic group over an algebraically
closed field of characteristic different from 2. Given an involution o of G with fixed
subgroup G7, we fix a subgroup G C H C Ng(G?).

Our goal in this paper is the study of the action of H on certain completions of
G/H with the methods of geometric invariant theory.

The study of such problems starts with the famous paper [12] of Kostant and
Rallis in which the H action on the quotient Lie G/ Lie H is studied. This can be
considered as an infinitesimal version of our study. Results similar to those in [12]
have been later obtained by Richardson in [14] in the case of the quotient G/H.

In particular Richardson has proved, among other things, that if we take the
image Sy in G/H of an anisotropic maximal torus S in G and consider the action
of the restricted Weyl group W on Sy (see below for the definitions), the GIT
quotient H \\ G/H is isomorphic to W\Sy. Furthermore, he shows that the closed
H orbits in G/H are precisely the orbits of elements in Sy.

In this paper we generalize these two results to the case of a completion Y of
G/H. In particular we reprove the results of Richardson mentioned above.

To state our result take a smooth toroidal projective G-equivariant completion
Y of G/H. In'Y consider the closure Yg of Sy. The W action on Sy extends to
an action on Yg. Fix an ample line bundle £ on Y. Our first result is that the GIT
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quotient H \\, Y relative to £ is isomorphic to W\Ys. In particular this quotient
does not depend on the choice of £. (Theorem 4.1).

We then pass to the study of the set Y*° C Y of semistable points in Y with
respect to L. Also in this case we show that Y*% does not depend on the choice of
L (Remark 5.6) and we describe rather precisely the intersection of Y*° with any
G orbit. In particular we show that given two H orbits O; C Oy in Y** then they
both lie in the same G orbit (Proposition 6.1) and that a H orbit O in Y% is closed
if and only if it meets Yg (Theorem 6.4). These last facts allow us to give a version
of our results in the case of any G stable open subset in Y.

The proofs of our results are rather straightforward in characteristic zero and
are based on the careful analysis of sections of line bundles on Y given in [1] and
[2]. However to carry out our proofs in positive characteristic we have to deal with
a number of rather technical results which often do not appear in the literature and
which, in view of this, we have decided to explain here.

2. PRELIMINARIES

In this section we introduce notations, recall some simple properties and describe
the spherical weights relative to a given involution.

Let us choose an algebraically closed field k whose characteristic is not equal
to 2. Usually all algebraic group schemes in this paper are going to be affine and
defined over k but, occasionally we are going to consider group schemes defined
over the ring A := Z[1/2] and flat over Spec A. Gothic letters are going to denote
Lie algebras.

Let G be a semisimple and simply connected algebraic group. Let G be the
adjoint quotient of G' and Z the kernel of the projection of the isogeny G — G.
This is a possibly not reduced subgroup of G whose associated reduced subvariety
is given by the center of G.

Let o be an involution of G and let H° = G be the subgroup of elements fixed
by 0. We consider also the inverse image H under the isogeny G — G of the
subgroup of G of elements fixed by the involution of G induced by o. We recall
that H° is connected and reductive and that H is a possibly not reduced subgroup
of G whose associated reduced subgroup is the normalizer Ng(H®) of H°. It is
known that the connected component of the identity of H with reduced structure
is equal to H® (see [4]).

Let now H® C H C H be a possibly not reduced subgroup of G. The quotient
G/H = Speck[G]" is called a symmetric variety.

We fix an anisotropic maximal torus S of G, that is a torus of G such that
o(s) = s~ ! for all s € S, and having maximal dimension among the tori with this
property. The dimension ¢ of S is called the rank of the symmetric variety. We
choose also a o stable maximal torus 7' of G containing S and a Borel subgroup
containing T with the property that the intersection BNo(B) has minimal possible
dimension. Occasionally we will also need to consider isotropic tori, that is tori
contained in H.

2.1. Ring of definition. It will be important for us that the classification of
involutions is independent of the characteristic (see [16]). So we can use Kac
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classification or Satake classification to construct the involutions. If we use Kac
classification, we see that we can assume that GG, 0 and hence H®° are all defined
over A and that there is a maximally isotropic maximal torus (this means a max-
imal torus of G containing a maximal torus of H®) defined over A and a o stable
Borel subgroup containing this torus also defined over A. On the other hand if we
use Satake classification, we see that we can assume that G, o, H°, the maximal
torus 7', the torus S and the Borel subgroup B are all defined over A. However,
occasionally, we will need to work with an A form of G, where both maximally
isotropic and maximally anisotropic maximal tori are defined and split over A.

We start with a flat A form G of G, and with a ¢ defined over A constructed
using Kac diagrams. So H° is defined over A and there exists an A split maximal
torus N of H° defined over A and an A split maximal torus M of G defined
over A containing N. The characters of M, N are defined over A and the root
decomposition of the Lie algebra of G is also defined over A. In particular all Borel
subgroups containing M are defined over A. Let B); be a o stable Borel subgroups
of G containing M. Let ¥ and ¥+ C ¥ be the corresponding sets of roots and
positive roots of the Lie algebra of G’ with respect to Bys. Finally notice that also
H, hence H, can be assumed to be defined over A.

We want to show that in G there is a maximally anisotropic maximal torus
defined and split over A. This slightly strength a result in [6].

Lemma 2.1. There is a torus S in G defined and split over A such that o(s) = s=*
for all s € S and S has maximal dimension among the tori with this property.
Moreover there is a maximal torus T of G containing S defined and split over A.
Finally the root decomposition of g with respect to the action of the torus T is
defined over A and there is a Borel B subgroup containing T and defined and flat
over A such that the dimension of o(B)N B is the minimal possible. The two Borel
subgroups B and By are conjugated by an element of G(A).

Proof. For each root 3 € ¥ denote by ug(t) the corresponding one parameter
subgroup. This subgroup can be defined over A. We construct (see [11, Section
VIL.7]) the torus T as follows. Let B C ¥ be a set of roots maximal among the
subsets with the following properties:

(i) B € B implies 0(8) = and o(ug(t)) = ug(—t);

(ii) B, p' € B implies 8+ (', B — (' ¢ V.
For each 8 € B set

95 = us(Du_s(=1/2) and gs =[] 95
peB

Notice that since by ii) the roots in B are orthogonal to each other, the elements
g as [ runs in B commute and gp is well defined and lies in G(A).

We then set T = gBZng;1 and S = gBMzgggl, where My is the subtorus of
T corresponding to the coroots in B. By [11, Section VI.7] T and S have all the
required properties.

Our claims about the root decomposition now follows from the analogous proper-
ties for the torus M, and under this hypothesis it is clear that each Borel containing
T is defined and flat over A. Also notice that gBBMggl is a Borel containing T’
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so it must be conjugated to B by an element in Ng(T'). Now by Lemma 2.7 in
[6] every element of the Weyl group has a representative in G(A) proving the last
claim. 0

We finish this section with a simple Lemma regarding invariants. Since we are
going to deal with not necessarily reduced algebraic groups, let us recall that if L
is a not necessarily reduced algebraic group and V' is a representation of L, a L
invariant vector v € V' is a vector whose image under the coaction V- — V @ k[L]
isv® 1.

Lemma 2.2. Let L be an algebraic group scheme defined and flat over A (we do
not assume that L is either connected or reduced in general) and let V' be a finite di-
mensional representation of L defined and flat over A. Assume that V (C)“(©) £ 0.
Then there is an L invariant vector defined over A whose reduction modulo p is
different from 0 for all odd primes p. In particular V (k)“® #£ 0.

Proof. Let V4 be an A lattice compatible with the action. The action of L on V' is
given by the coaction map af: V4 — A[L] ®4 Va. If B is an A algebra, set aﬁB =
idg ®4 af. Thus an element v in V(B) := B®a V34 is fixed by L if aﬁB(U) =1®w.
Let now F: Va4 — A[L]®4 Va be given by F(v) = a*(v) —1®v and Fp = idg @ F.
V(B)Y = ker F. In particular notice that when B is a field of characteristic zero
we have, since V4 is a free A-module, that ker Fp = B ® 4 ker F'. In particular
V(C)“©® = C®4 ker F is defined over A. Moreover since also A[L] ® 4 V4 has no
torsion, we have that if n € Z \ {0}, v € V4 and nv € ker F' then v € ker F. So
ker F' is a direct summand of V4.

It follows that k ® 4 ker F injects into a non-zero subspace of V (k)“®) proving
our claim. O

2.2. Spherical weights and the restricted root system. We want to describe
now the Weyl modules of G which have a non-zero H invariant vector.

If A is a torus, we denote with A4 its character lattice Hom(A, k*). Given a
surjective homomorphism A — B between tori, we are going to consider Ap as a
sublattice of A 4.

Let A = Ar and let r: A — Ag be the surjective homomorphism induced by the
inclusion S C T. Let also ® be the root system of g with respect to T, ®T (resp. A)
be the choice of positive roots (resp. the simple roots) corresponding to the Borel
B and AT be the dominant weights with respect to B.

Every character A of T extends uniquely to a one dimensional character of B
and we define £ as the line bundle G xg k_) on G/B. Every line bundle on
G/B is isomorphic to a line bundle of this form. For A\ € AT the Weyl module
Vi is defined as the dual of the space of sections I'(G/B, L£y). With the choices
of the previous section, all these objects are defined over A. Furthermore, it is
well known [10] that I'(G/B, L) and hence V) is flat over A. Occasionally we
will have to consider also line bundles on a partial flag variety G/P, where P is a
parabolic subgroup containing B. The natural projection G/B — G/P induces an
inclusion of Pic(G/P) in Pic(G/B) = A and allows us to identify Pic(G/P) with
the sublattice Ap of A consisting of those characters A of B which extend to P. For
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A € Pic(G/P) we are going, by abuse of notation, to denote by Ly the line bundle
GXp]k,)\ on G/P
We define the monoid of dominant H spherical weights as

Qf ={Ae AT I(G/B, Lx)" #0}

and the lattice of spherical weights Q2 as the lattice generated by ;. We set also
Q= Qpo and O = Q..

Recall that, since H has an open orbit in G/B, if A € AT then the space of H
invariant sections I'(G/B, £)¥ is at most one dimensional. A non-zero vector in
I'(G/B, £,)" will be called a spherical vector.

Let us now give a description of 2. In characteristic zero 2 has been described
by Helgason [9] using analytic methods. An algebraic proof of these results has
been given by Vust [19]. The Theorem of Vust is stated in characteristic zero but
its proof can be used verbatim in any characteristic different from 2 once we replace
Vi with V. Moreover Vust’s proof can also be easily adapted to describe the lattice
Q. Let Sy = 5/S N H then we have the following Theorem.

Theorem 2.3 (Vust [19, Théoréme 3]). Let A\ € AT then A\ € Qf; if and only if
o(A) ==X and r(\) € Ag,,.

We will need also to study quasi invariants under the action of H, so we define
a dominant weight \ to be quasi spherical if the representation I'(G/B, L) has a
line fixed by H. We denote the monoid of quasi spherical dominant weights by I+
and we set II equal to the sublattice spanned by IIT and call it the lattice of quasi
spherical weights.

Quasi spherical weights have been described in terms of spherical weights and
exceptional roots by De Concini and Springer in [6].

Let @ (resp. Ag) be the set of roots (resp. simple roots) fixed by o and let ®
(resp. A1) be the complement of ®¢ in & (resp. of Ay in A). With our choices
of the Borel subgroup B we have o(a) € ®~ for all a« € & = &1 N O (see [4]).
Moreover the involution ¢ induces an involution & of A1, where &(«) is the unique
simple root such that o(«) + 7(«) lies in the span of Ag. A simple root a € Ay
is said to be exceptional if 7(a) # « and k(o(a), a) # 0, k being a nondegenerate
bilinear form on A invariant under the action of the Weyl group. We denote by
{wa }aen, the fundamental weights with respect to the simple basis A. We have,

Theorem 2.4 (De Concini and Springer [6, Lemma 4.6 and Theorem 4.8]).

(i) For each \ € II* the line fized by H is unique.
(i) 1Tt is generated as a monoid by QT and the fundamental weights w,, cor-
responding to the exceptional roots.

The set of spherical weights is related to the restricted root system as follows.
Let us quickly recall how restricted roots are defined. If @ € ® is not fixed by o,
we define the restricted root & as a — o(«) and the restricted root system dCAas
the set of all restricted roots. This is a (not necessarily reduced) root system (see
[14]) of rank ¢ and the subset ®* (resp. A) of restricted roots & with a positive
(resp. a simple) is a choice of positive roots (resp. a simple basis) for ®.
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We collect in the following lemma some known and easy consequences of the
previous theorems.
Lemma 2.5.
(i) INAT =1I" and Qg N AT = Qf; )
(ii) In the adjoint case we have Qg = Z[®];
(iil) In the simply connected case we have

Q={reA: o)) = -\ and Z2Y ¢ 7 for all & € B}

k(&,a)

(iv) If A € A and nX € Q for some positive natural number n, then o(A) = —X;
(v) The restriction of r to Qy is injective and r(Qp) = Ag,, .

In particular, by (iii), QT is the set of dominant weights of the root system P,
so it is a free monoid of rank ¢ and a basis of it is given by fundamental weights
wg with respect to A. Notice that if « is exceptional also § = 7(«) is exceptional.
If this is the case, we shall call & € A an exceptional restricted simple root and we
recall that @s = wa + wpg.

Finally we apply Lemma 2.2 to our situation.

Corollary 2.6. If \ € QJI;, then V has a nonzero vector fized by H and if A € 11T
then Vi has a line fized by H. More precisely there is a vector of Vi defined
over A whose reduction modulo any odd prime is different from 0 and fixed by H
(respectively spans a line fived by H).

Proof. Let G, o, V) be defined over A as explained above. Let M, N, By be as in
Section 2.1. In particular any character of the group H° is a character of N hence
it is defined over A.

Let now A € Qf;. Since V) (C) contains a non-zero vector fixed by H, the claim
follows from Lemma 2.2.

In general notice that since H° is a spherical subgroup (it has an open orbit
in G/B) it acts on two different lines in V) (C) stabilized by H° with different
characters. In particular any line in V) (C) which is stabilized by H°(C) must be
defined over A: indeed let R be such a line and consider the character y of H®
given by the action of H® on R. Recall that with our choices all characters of H°
are defined over A. Applying Lemma 2.2 to V) ® x~! we see that the line R must
be defined over A. In particular the line stabilized by H(C) in V) (C) is stabilized
by H° so it is defined over A and it is H stable. O

2.3. Line bundles on G/H. In this section we want to study some properties of
the line bundles on G/H. We begin with a remark on H/H.

Lemma 2.7. The coordinate ring of H/H is isomorphic to the group algebra
k[ /Qq].
Proof. Let HNS = H x¢g S be the scheme theoretic intersection of H and S. By
Proposition 7 in [19] we have H = H® - (H N S). Thus,

H/H~HNS/HNS ~ker{Sy — Sy},

where the kernel has to be considered scheme theoretically. Now by Lemma 2.5 v)
we have S ~ Speck[Q 5] and Sy ~ Speck[Qp].
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It follows that, if we denote by eX the function on Sy corresponding to x € Qyy,
the coordinate ring of the kernel is then given by k[Sg]/{eX — 1: x € Qp) ~
k[ /Q 5], proving the claim. O

We denote by zpy the point of G/H corresponding to the coset eH and by
qu: G/H — G/H the projection induced by inclusion H C H.

The line bundles on G/H are parametrized by the set of one dimensional char-
acters Ay of H by associating to a line bundle £ the character by which H acts on
the fiber of £ over xy.

If A € IIT by Theorem 2.4, the line fixed by H in VY is unique and we can consider
the character —x g (\) given by the action of H on this line. The map xp: IIT — Ay
extends to a group homomorphism yg: II — Ap and by Lemma 2.5(i) the kernel
of this homomorphism is given by Qp. In particular for any & € I1/Q 5z we can
consider a line bundle £¢ on G/ H whose associated isomorphism class is given by

xa (§)-

Proposition 2.8. The vector bundles (qu)«(Oc/n) and @D¢cq,, /o, L on G/H
are G-equivariantly isomorphic.

Proof. Set 2y = Qp /Q 5. Notice first that by Lemma 2.7 the map ¢y is a covering
of degree equal to the cardinality of Zx. So the two vector bundles (¢x)«(Oc/m)
and @z, L¢ have the same rank.

If £ € 2, then ¢} (L¢) is trivial for all £ as a G-linearized line bundle. So by
adjunction we have a G-equivariant monomorphism of sheaves L¢ — (¢m)+«(Og /).
Thus, for any subset R C Zp there exists a G-equivariant map yg: 6956 rLe —
(qu)+(Ogym). Since g is equivariant, the induced map at the level of the total
spaces of vector bundles has constant rank.

We claim that g is of rank |R|. If |R| = 1, this is clear by the above considera-
tions. We proceed by induction. Write R = R'U{&}. vj is of rank |[R| — 1. Assume
g is not of maximal rank. We clearly get an inclusion j: £ — @g/eR’ Le. In
particular there exists ¢’ € R’ such that the composition of j with the projection
onto L¢ is a non-zero G-equivariant morphism and thus an isomorphism of line
bundles. Since £ # £, this is a contradiction.

If we apply this to R = Zp and use the fact that (¢u)«(Og/m) and @z, Le
have the same rank, we get that vz, is a isomorphism as desired. U

3. COMPLETIONS OF SYMMETRIC VARIETIES

An embedding of a symmetric variety G/H is a normal connected G-variety Y
together with an open G-equivariant inclusion jy: G/H C Y. We set yo equal to
the image of xy under this embedding and call it the basepoint of Y. We are also
going to consider the finite covering my : G/H® — Y of jy given by my (¢H®) = g-yo.
We denote by Yy the image of 7y and set Y =Y \ Y, and Ay equal to the set of
irreducible components of 9Y of codimension 1 in Y.

A line bundle £ on Y is said to be spherical if 75 (L) is isomorphic to the trivial
line bundle on G/H°. We denote SPic(Y') the subgroup of the Picard group Pic(Y)
of Y of spherical line bundles. We also say that a line bundle is strictly spherical
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if restricted to the open orbit G/H it is isomorphic to the trivial line bundle and
we denote by SPico(Y") the subgroup of Pic(Y') of classes of strictly spherical line
bundles.

Many of the properties of Y can be deduced from corresponding properties of
the associated toric variety Yg. This is defined as the closure of the orbit S - yg
in Y. Notice that since S - yg is isomorphic to S, Ys is a toric variety for the
torus Sp. The normalizer Npo(S) of S in H® acts on Yg and the action of the
centralizer Zpo (S) of S is trivial. It follows that we have an action of the restricted
Weyl group W = Ngo(S)/Zwo(S) on Ys.

We are now going to describe an open subvariety Y; of Yg with the property
the W translates of YSJr cover Yg. Let AY be the lattice of one parameter subgroups
of S. If n € AY and there exists the limit lim; . 7(t) - Yo, we denote this limit
by y,. We say that n € AY is positive if &(n(t)) is a nonnegative power of ¢ for
all @ € A and let YSJr the union of the S orbits of the elements {y,: n € A is
positive}. Tt is then immediate to verify that Yg = I/T/YSJr . Indeed if y € Yg there
isane AY and a s € S such that y = s(limy—.o 7(t) - yo). Since 7 is W conjugate
to a positive one parameter subgroup, we deduce y is W conjugate to an element
in YS"' .

3.1. The wonderful compactification of a symmetric variety. The so called
wonderful compactification X of the symmetric variety G/H has been introduced
in characteristic zero in [4] and in arbitrary characteristic in [6]. We want to very
briefly recall some of the basic properties of X and introduce some notations.
Recall that by Lemma 2.5 and Theorem 2.3 a basis of the character lattice Ag,,

is given by the set A = {ay, ..., @} of simple restricted roots (with an arbitrarily
chosen numbering). Thus we get an action, defined over A, of Sz on the affine
space A’ given by s(ai, ..., as) = (@i(s)ai, ..., ae(s)as). The following theorem

(Theorem 3.1 in [4], Proposition 3.10, Theorem 3.10 and Theorem 3.13 in [6]) can
be taken implicitly as the defnition of the wonderful compactification.

Theorem 3.1. The wonderful compactification X of G/H is the unique G/H em-
bedding such that

(i) X is a smooth projective G-variety and the closure of every G orbit in X
18 smooth;
(il) 0X is a divisor with normal crossing and smooth irreducible components;
(iii) given a G orbit O C X, O is the transversal intersection of the irreducible
divisors in Ax containing it;
(iv) The intersection of any number of divisors in Ax is a G orbit closure. In
particular the intersection of all divisors in Ax is the unique closed G orbit
m X;
(v) There exists a scheme X defined and flat over A whose specialization to k
is isomorphic to X. Moreover the point xo = jx(xg) is defined over A;
(vi) Let G be as in Section 2.1. There is an action of G on X that specializes
over k to the action of G on X;
(vii) We have an isomorphism X;r ~ Al as Syo toric varieties defined over A.h
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Since any projective G-variety is isomorphic to a variety G/P with P a parabolic
subgroup containing B, we have already remarked that its Picard group can be
identified with a sublattice of A. Thus composing with the homomorphism induced
by the inclusion of the unique closed orbit, we get a homomorphism j: Pic(X) — A.
One has the following result (Theorems 4.2 and 4.8 in [0]).

Theorem 3.2.

(i) The homomorphism j is injective and its image is the sublattice IT of A.
(ii) The map D — j(O(D)) is a bijection between Ax and A.

Notice that combining these two results we easily see that we get a bijection
between the subsets I' € A and the set of G orbit closures defined by associating
to I' the intersection

Xr = N D.
{D: j(O(D))eT}
In particular Xz is the unique closed orbit while X = Xg. Let also X5 = X4
for & € A.

For each A € II we choose a line bundle £, on X such that j(£y) = A in the
following way. First we choose a basis B of Il and for each 8 € B we take a line
bundle with the required property. Now, for A = ZﬁeB cg B €l cg € Z, we set

Ly = Qpen E?cﬁ. We denote the restriction of these line bundles to Xz by the
same symbol.

If L C A is a sublattice of A, then our definition allows us to consider the graded
rings

RL(X):=EPT(X, L)) and Rp(Xz):=EPT(Xz, Ly).
AEL AEL
The ring R(X) = Rn(X) it is called the Coz ring of X and it was studied in the
case of the variety X in [3], where it was called the ring of all sections. The fact
that G is simply connected implies that each line bundle on X has a canonical G
linearization. It follows G acts on Ry (X) and Rz (XR).

The space I'(X, £) of sections of £y has been described as a G-module in [4]
and [6]. Let us recall here this description.

Recall that a good filtration of a G-module W is a filtration W = Wy D Wi D
-+« D Wy, = {0} by G submodules such that for each i = 1, ...m, W;_1/W; is
isomorphic to T'(G/B, L,,) for a suitable dominant weight A;.

The result in [6] implies that I'(X, £,) has a good filtration. To be more precise
first of all one shows that for any A € Il the map

I'(X, L)) = T'(X3, L)

is surjective.

Now for any A, p € IT set pu <o X if A — pu € N[A].

Notice that, for & € A, there is a G invariant section sg of Lg, unique up to
multiplication by a non-zero scalar, whose divisor is Xg4.

If v =) snad >, 0, consider s := [[;s2%. If X >, p, the multiplication
by s*~# defines a G-equivariant injective map from I'(X, L,) to I'(X, L)) whose
image we denote by s* *T'(X, L,,).
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For any v >, 0 we now set

Fxo= > s$HI(X, Ly).

B A—v

The F) , form a decreasing filtration of I'(X, £) by G submodules. In [4], [6] the
associated graded is computed and we have that the division by s” and restriction
of sections to Xz gives an isomorphism Fy /(3 _, Fi.) = VY, so that

GrpT(X, L) = P S (1)

RETTT, p<o A

Clearly the filtration Fi . respects multiplication. This implies that the associ-
ated graded

Grp R(X) := P Grr (X, L))
Aell

of R(X) has a ring structure. Furthermore, (1) gives a ring isomorphism
GI‘FR(X)ZRH(XA)[S&U ey Sd[]. (2)

In the previous section we have studied spherical weights. We want to prove now
that A is spherical precisely when L is spherical.

The homomorphism 7% : Pic(X) — Pic(G/H®) can be identified with the ho-
momorphism y: IT — Apo associating to A € II, the character y(A) by which H°
acts on the fiber of £, on the point xg.

We claim that x(\) = xg-(\) is the dual of the character by which H° acts on
the line fixed by H in VY introduced in the previous section. To see this we may
assume A € 1T,

We fix A € ITT and £ = £,. In this case £ has no base points over X3, so,
since Xz is the unique closed orbit in X, by Theorem 3.1(iv) it also has no base
points over X. Thus by the reductivity of H, there is a positive integer m and a
line L C T'(X, £L™) stable under the action of H and such that if o € L — {0}, o
does not vanish on zq. It follows that H° acts on L by the character —my/(A).

Take the filtration {F,,x,} of I'(X, £™). There is a unique submodule F,» .
such that L C Fpx., — Fpxr. So L has non-zero image in V7, and
thus coincides with the unique H stable line in V%, . We deduce that my(\) =
X#e (mA — v). Since v lies in Z[®], we have xgo(mA — v) = xuo(mA), whence
mxmo(A) = mx(A). Finally since H® is connected its character group has no
torsion and we get that x e (A) = x()) as desired. We deduce the following lemma.

v'>,v

Lemma 3.3. Let A € II then w% (L)) is trivial if and only if X € Q. Moreover if
wu: G/H — X is defined by mu(gH) = g - xo then w5 (L)) is trivial if and only if
A€ Qp.

Proof. The first claim has just been proved. As for the second it follows since by
Theorem 2.3 a character A lies in Q2 NIIT if and only if the line in V* stable under
H is pointwise invariant under H. (]
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3.2. Toroidal compactifications and ring of definition. An embedding Y of
G/H is called toroidal if there exists a basepoint preserving G-equivariant map
oY — X.

Presently we are going to explain their construction and show that they are
defined and flat over A.

Let Lg = Hom(Ag, R) and Ly = Ag ®z R bet its dual. The S, or Sy, toric
varieties are described by fans in Lg. In particular take the cochamber C' C Ly of
dominant elements with respect to A and let 7; 1 be the Sy toric variety associated
to C. Ty has a natural A form 7 g. In particular in the adjoint case 7 5 ~ AY.

Choose an A form of GG as in Section 2.1. Consider for any H the finite field
extension Q(G/H) C Q(G/H). Q(G/H) is the field of rational functions on X
and we take X i equal to the normalization of X in Q(G/H). Let ¢py: Xy — X
denote the normalization map and let Xy = X g (k).

Lemma 3.4. Xy is a projective normal and Cohen—Macaulay embedding of G/H.
on s a finite flat morphism. In particular X g is proper and flat over A.

Proof. The projectivity and normality of X i are clear from the definitions. Let us
show that Xz is Cohen—Macaulay.

To see this, let us recall X is covered by the G translates of an open set U of the
form X; x U, where U is the unipotent radical of the parabolic P C B such that
XAi ~ G/P. By Theorem 3.1 we have that X; and U are defined over A and so
is the isomorphism X; = T5 ~ A’. In particular the open set U is defined over A
and we denote by U the associated subscheme of X and U the subgroup scheme
of G defining U.

It easily follows that X g is covered by the the G(A) translates of the preimage
Uy of U and that U ~ T i x U. Since T  is Cohen—Macaulay, also U is Cohen—
Macaulay and everything follows.

Since any finite morphism between a Cohen—Macaulay scheme and a smooth
scheme is flat, we deduce that ¢ is flat and all the other claims are clear. O

We are now going to follow the method of [5] to build all toroidal compact-
ifications. For each @ € A we have already chosen a line bundle L5 on X to-
gether with a G invariant section sg € I'(X, L5). We can then consider the vector
bundle V := @i La and the G invariant section s := @sca 5a of V. Set
V5= {v = (vz) € V:vag # 0 Va € A}. By our previous identifications V* is
a principal Sz bundle. If Z is an Sg-variety, we can take the associate bundle
V* xg, Z on X with fiber Z. In particular V = V* x g, A’, where Sz acts on A’
via the characters & € A.

Now take Z to be a Sz embedding over A*. The corresponding fan Fy is a
(partial) decomposition of the fundamental Weyl cochamber C. The map Z — A’
induces a map V* x5, Z — V and we define X7 as the fiber product

Xy —Z>V*xg, Z

L

X—=2 sy
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The G action on V preserves V* and commutes with the Sz action. So G also acts
on V* Xg, Z, the map V* x5, Z — V is G-equivariant and Xy is a G-variety.

In the case of a general G/H we set Xy 7 equal to the normalization of Xz in
the field of rational function on G/H. We clearly have the cartesian diagram

Hz
Xy z——Xyz

|,

Xyt o X,

In particular the morphisms pz and sy z = szuz are flat. One has the following
result (see [5]).

Theorem 3.5.

(i) Ewvery toroidal embedding of G/H is of the form Xy z for some Sg em-
bedding Z over A*. In particular it is defined and flat over A.

(ii) Xz is complete (resp. projective) if and only if the projection Z — A* is
proper (resp. projective).

(iii) Every G orbit in Xpg 7z is of the form Ox = (sg.z) *(V* xs, K) for a
unique Sg orbit I in Z.

(iv) Let Fz be the fan in Lg whose cones are the W translates of the cones in
Fz. Then Fyz is the fan corresponding to Sy embedding Zp == (X, z) sy, -
Furthermore, each G orbit in X z intersects Z in a unique Ny (S) orbit
(notice that in accord with (iil) these orbits are in canonical bijection with
S orbits in Z).

(v) The divisors in Ax,, , are defined over A.

Proof. All these statements are proved in [5] in the case of an embedding of G/H.
To see (i) in the general case take a toroidal embedding Y of G/H. Let us take
the quotient by the finite group scheme H/H. We get an embedding of G /H which
is obviously toroidal and hence of the form X  for a suitable Sz embedding Z.
If we now consider Xg, 7z, we get a morphism ¥ — Xpg 7 which is G-equivariant
birational and finite. Since both Y and Xp, » are normal, it follows that the above
morphism is a G-equivariant isomorphism.
The proof of the remaining statements is now easy and we leave it to the reader.
O

Remark 3.6. (1) Let us point out that our result in particular implies that the G
orbits in X g 7 are exactly the preimages of G orbits in X.

(2) It is not hard to see that Xp z is smooth if and only if Zy is smooth.
Equivalently if and only if the Sy embedding whose fan is Fy is smooth. This
depends very much on the lattice Hom(Ag,,, Z) C Lg.

(3) There exists an open affine covering {U; = Spec R;} of the A form of Xy
such that R; are free A-modules and U; N U; = Spec R;;, where R;; is also a free
A-module.
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3.3. Line bundles on a toroidal embedding. In this section we assume Y to
be a smooth toroidal compactification of G/H with the A structure described in
the previous section.

We have the following lemma about the structure of the Picard group of Y.

Lemma 3.7. Let Y be a equivariant smooth toroidal compactification of G/H then

(i) We have the following sequence describing the Picard group of Y:

0— @ ZO(D) = Pie(Y) L5 Ay — 0.
DEAY

(ii) SPico(Y) = D pea, ZO(D).

(ili) For each closed G orbit O of Y consider the restriction 1§,: SPico(Y) —
Pic(O) of line bundles to O. Then the product of these restriction maps
1*: SPico(Y) — [[ Pic(O) is injective.

(iv) All line bundles on'Y are defined and flat over A.

Proof. The only thing we need to show to prove (i) is the injectivity of the map
from @pen, ZO(D) to Pic(Y). Notice that, since G is semisimple and simply
connected and Pic(Y) discrete, every line bundle has a unique G linearization.
Thus Pic(Y) ~ Picg(Y). It follows that it is enough to prove the injectivity of the
map from Ppea, ZO(D) to Picg(Y). Consider the restriction map Picg(Y) —
Picg, (Ys). Pics, (YS) is isomorphic to @ ZO(D’), where the sum is take over all
Spg-equivariant divisors D’. So the claim follows from Theorem 3.5. Since SPicq is
the kernel of 33, this also proves (ii).

(iii) follows from the previous considerations and the fact that, up to isomorphism
a Sy-equivariant line bundle on YSJr is completely determined by its restriction to
the closed orbits, that is the Sy fixpoints in YSJr .

Finally let D € Ay. By Theorem 3.5(v) it is defined over A. We know that
Ap = Pic(G/H) is generated by the codimension 1 irreducible B orbits in G/H
and that these orbits are defined over A by Lemma 2.7 in [6] and Lemma 2.1. Thus
(iv) follows from (i). O

Let Fy be the fan associated to the toric variety Y4 and let Fy (i) be the set of
faces of Fy of dimension 7. In particular the closed orbits of Y are parametrized by
Fy (¢) while Fy (1) can be identified with Ay the set of G invariant divisors. For
each p € Fy we set y, :=y, for n a generic element in p and denote by O, = Gy,
the associated G orbit.

By Theorem 3.5 and the description of the equivariant Picard group of a toric
variety we have the following description of the strictly spherical line bundles on Y:

SPico(Y)={A=(\;) € H Qu: A=A onTN7'} (3)
TEFy (0)

We can think of A as a real valued function on the Weyl cochamber C' which
coincides with the linear form A; on the face 7. We denote by £, a line bundle
whose class is given by A. In particular we can describe in this way the line bundles
O(D) for each divisor D € Ay. Indeed let v, € A¥, be a not divisible element of
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Ag,, in the 1-dimensional face of Fy associated to D. For each 7 € Fy (£) notice
that, since Y is smooth, the set {vp/: D" € Ay} N7 is a basis of AY

So we can define ap . € Ag, to be the weight which is equal to zero if vy, ¢ 7
while if v, € 7 it is 1 on v, and zero on each v, € 7 with D’ # D. It is then easy

to see that ap = (ap +), cpy (o 18 the class of O(D) in SPico(Y).

Now we want to describe the sections of a strictly spherical line bundle on Y in
the case of characteristic 0. The proofs are very similar to the one given in [1]. A
description of the section of a line bundle on a general spherical variety is given
in [2] and we could have used that result as well. However the description we are
going to give is more suited to our purpose.

For D € Ay let sp be a G invariant section of T'(Y, O(D)) vanishing on D. If
A=Y papap, we set s2 = [, s3. Also for a given u € Qf; consider the line
bundle ¢*(L£,,), where ¢: ¥ — X is the G-equivariant projection from Y to X. This
line bundle corresponds to the element p € SPico(Y) with p, = p for all 7 € Fy (¢)
under the identification of Q. with Ag,, given by Lemma 2.5(v). In particular V'
is a submodule of T'(Y, ¢*(L£,.)).

For A € SPicy(Y) set

AN ={peQ:Vre Fy(0), \r —pu= Z apap with ap > 0}

VpET

={peQ:p<AonCY.

We then have the following theorem whose proof is completely analogous to the
one given in [1].

Theorem 3.8. Assume Y to be a smooth toroidal compactification of G/H and
assume the field to be of characteristic zero and let A € SPico(Y') then

Y,C,\ @Sﬁ

HEA(N)

From the above result we can deduce, as in [1, Section 4.2] and [15], the following
corollary. Let Q}f be the set of elements of 2 that are in the interior of the Weyl
cochamber C.

Corollary 3.9. Let Y be a smooth toroidal compactification of G/H, let A €
SPico(Y) and assume the field to be of characteristic zero. Then
(i) For every p € A V,; is an irreducible summand of (Y, L) if and only if
I'(Ys, L|yy) has a section of Sy weight equal to p;
(ii) For every line bundle L generated by global sections, the restriction map

Y, L) = T'(Ys, Llys)
18 surjective;
(iii) Ly is an ample line bundle if and only if it is very ample;

(iv) Ly is an ample line bundle if and only if A, € Qf" and Ay < Ay on 7'\ 7
for all faces T and 7' of Fy of mazimal dimension.
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Remark 3.10. We have limited our discussion to strictly spherical line bundle and
to characteristic 0. Using Frobenius splitting methods it is easy to generalize the
previous results as in [6]. However the stated result are enough for our purpose
here.

4. THE QUOTIENT OF A SYMMETRIC VARIETY

Let Y be an embedding of G/H and let K be a subgroup such that H° ¢ K C H.
Any line bundle on Y has a G linearization, so in particular it has a K linearization.
Recall that if £ is an ample line bundle on Y a point y on Y is said to be £ semistable
(with respect to the action of K) if for some n > 0 there exists f € I'(Y, £*)% such
that f(y) # 0. We denote by Y**(L) the set of L semistable points, or in case £
is chosen just semistable points. Y**(L) is a possibly empty open subset of Y. By
[13] Theorem 3.21 there exists a good quotient of the set of £ semistable points
which we shall denote by K \\, Y.

In this section we are going to prove the following theorem.

Theorem 4.1. Let Y be an equivariant projective embedding of G/H and let L
be an ample and spherical line bundle on'Y then the inclusion Ys C Y induces an
isomorphism of algebraic varieties between W\Ys and K\, Y.

We will prove this theorem by computing the invariant sections. We will analyze
first the case of the wonderful compactification and the case of the quotient of the
open affine part G/H.

4.1. Invariants and semiinvariants of the Cox ring of the wonderful com-
pactification. In this section we compute the H invariants of the ring R(X). We
use the notations introduced in Section 3.1.

Lemma 4.2. Let A € II. Then (Gre(T(X, L)) = Grp(D(X, £2)1). In partic-
ular the dimension of the space of invariants T'(X, Lx)H equals the cardinality of
the set Ky = {pu € QT : <5 A} if X € Qg and is zero otherwise.

Proof. In characteristic zero the equality
(Grr(D(X, L)) = Grr(T(X, £2)™)

is an immediate consequence of the linear reductivity of H.
Also (in arbitrary characteristic) by equation (1) we have that

Grr(T(X, L))" = € St
REITT, p<o A

By Vust criterion (Theorem 2.3) (V) is one dimensional if 1 € Q}; and it is zero
otherwise. So, since by Lemma 2.5 Z[®] C Qy we have that (Grg(T'(X, £x)))?
has dimension equal to |K,| if A € Qp and it is zero otherwise.

In general (Grp(T'(X, £2))) D Gre(I'(X, £2)") so
dimT'(X, £)7 < dim(Grp(T(X, £2))7.

On the other hand by Theorem 3.1 and Lemma 3.7 the variety X and the spaces
I'(X, L£,) are all defined over A. Lemma 2.2 then clearly implies that in positive
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characteristic dimI'(X, £,) can only increase. This together with the previous
inequality implies our claim. O

We compute now the ring R(X)". By Lemma 4.2, for each & € A we can
choose ps € T'(X, Ls,) an H° invariant section which does not vanish on Xx. So,
if A=> aaws € QT, we can define

=[] i (4)
acA
Proposition 4.3. The set {s#p*: p € II, u >, 0, A € Qf;} is a k basis of R(X)H.
In particular the ring R(X)Ho 15 a polynomial ring in the variables sa, pa with
a e A.

Proof. Notice first that by Lemma 4.2, if A € Qp, T(X, L) = (X, £,)"° so it
is enough to prove the claim in the case of H°.

The image of ps in the graded ring Grp(R(X)) defines an H° invariant element
pa of V_. So by the description of the H° invariants of Grp(R(X)) the image of
the elements s#p* in the graded ring Grp(R(X)) is a k basis of the space of H®
invariants. This implies that the elements s*p” are linearly independent.

By construction, the elements s#p* are H° invariants. So, again by Lemma 4.2
they are a k basis of R(X )", O

The computation of semi invariants is similar. If V is a representation of H,
we denote by Vf the subspace spanned by the set of semi invariant vectors, i.e.,
vectors spanning lines fixed by H.

By Theorem 2.4, we know that there are semi invariants which are not H°
invariants only if there exists an exceptional simple root. Set A, = {o € Ay: «v is
exceptional} and A,,. = {& € A: a is not exceptional}. By Theorem 2.4 the set
{wa: a € At U{ws: & € Ane} is a basis of II. Let g, € V; be a non-zero H
semi invariant. g, is unique up to multiplication by a non-zero scalar. So the
ring (RH (X A))i of semi invariants is a polynomial ring in the generators g, with
a € A, and pg (the restriction of ps to Xz) with & € Ae. Using Corollary 2.6 and
arguing as in Lemma 4.2 we deduce that there exists ¢, € I'(X, £, ) such that
its restriction to Xz is equal to Go. If A =37 A Caa + P aei, . CaWa € II*, we
define ¢* = [loca, 45 Tlaca,, pa*- The arguments given in the case of invariants
can now be easily adapted implying

Proposition 4.4. Let A € II. Then (Grp(D(X, L)) = Grp(D(X, £2)1).
Moreover the set {stq*: p € I, u >, 0, X € II'T} is a k basis of R(X)I. In
particular the ring R(X)H is a polynomial ring in the variables ss with & € A, pg

with & € Ape and g, with o € A..

4.2. Filtration of the coordinate ring of G/H and Richardson theorem.
We want now to use the wonderful variety X to define a filtration of the coordinate
ring of G/H. In the case in which H is the diagonal subgroup in G = H x H, these
ideas already appear in [18]. This will be used to describe the H invariants of this
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ring. This description of the invariants has already been given by Richardson [14]
but a proof in our setting seems natural.

First we make explicit the relation between the coordinate ring of G/H and the
ring Rq,, (X).

For each @ € A we choose a trivialization oz, : 7 (Ls,) — Og/po- Given
A = 4ci CaWa € Q we obtain the trivialization of 7*(Ly) given by @A @?{f&.
With these choices the pull back of sections defines a ring homomorphism:

7% Ra,, (X) — K[G/H].

Notice also that since s4 is G invariant the functions 7};(ss) are constant and we
can normalize them to be equal to 1.
For each \ € Qg we consider the G submodule

Fy:= 75 (T(X, Ly))

of k[G/H]. Notice that since the s, are all equal to 1, we clearly have that if u <, A,
F, C Fy. Also, since the image of 7y is dense in X we have that 7}; restricted to
I['(X, £,) is an isomorphism onto Fy. Furthermore, if we set ), = ZH%/\ F,, we
have Fy /F\ ~ V.

Proposition 4.5. The map 73 induces an isomorphism of rings

RQH (X)

Ga—1ach) HC/H)

Proof. The mapping ¢ is clearly well defined and its surjectivity follows immediately
from Proposition 2.8.

Let us now show that ¢ is injective. As above set =y = Qp/Q5 and for all
cosets § € Eg define Re = P, I'(X, £1) so that Ro, (X) = Pz, Re isa En
grading of the ring Rgq,, (X).

On the other hand by Proposition 2.8, the coordinate ring k[G/H] decomposes
as the direct sum P, =, I'(G/H, L¢) and thﬁ restriction of 7}; decomposes as the
direct sum Decz,, Ji, where g5 Re — I'(G/H, Le) is induced by the inclusion jx
of G/H in X.

Also, since the elements {s5 —1: & € A} lie in Ry the ideal I that they generate
decomposes as the direct sum I = 69565}1 Ie with I¢ = I N Re, for each £ € Zp.
Thus jg induces a map

@e: Re/le — T(G/H, L)

and it is enough to see that ¢ is injective for each £ € =,.

Fix £ € Eg. Let g = > 5o 491 € Re with gy € T'(X, £,) and A a finite subset
of the coset . Assume 7}, (g) = 0. By assumption there exists p € & such that
[ = Aforall A € A Set ¢/ = Yy o4 5" *gx and notice that ¢ = g mod I¢
and that ¢’ € I'(X, £,,). We have 7};(¢9') = 7};(g) = 0 and since 7}; restricted to
I'(X, L) is injective, ¢’ =0 and g € I¢ as desired. O

Corollary 4.6. The G submodules Fx, A\ € Qp, induce a good (increasing) filtra-
tion of the coordinate ring k(G /H].
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We are now going to use this filtration to study the ring of invariants k[G/H]¥.
We first need a well known lemma.

Lemma 4.7. Fiz a dominant weight A € QT.

(i) Let ¢ € V¥ be a nonzero H® invariant and let us consider the decomposition
of V' with respect to the action of T'. Then the lowest weight component
of ¢ is not zero.

(ii) Let p* € T'(X, L)) denote the H® invariant defined in formula (4) and
consider the decomposition of p» € T'(X, L) with respect to the action of
T. Then the lowest weight component of p* is not zero.

Proof. In V' there is a non-zero vector v fixed by the maximal unipotent sub-
group U~ opposite to B. This vector is unique up to a non-zero scalar and has
weight —A which is the lowest weight of Vy". Write ¢ = w + av with w lying in
the unique T stable complement V'’ of the one dimensional space spanned by v and
a € k. V' is B stable. We need to prove a # 0.

Consider the G submodule W generated by ¢. Since W must contain a non-zero
vector fixed by U™, it has to contain v.

On the other hand B - H° is dense in GG so the subspace W is equal to the space
spanned by the vectors b- ¢ with b € B. If a = 0, then W would be contained in
V' giving a contradiction. This proves (i).

To see (ii) it suffices to consider the image p* in T'(X, L))/ F5 5 = VY which is
non-zero by the very definition of p*. O

We can now prove Richardson Theorem (see [14, Corollary 11.5]). Notice that,
since Nyo(S) C H° C K the inclusion of Sy in G/H induces a map from W\Sy
to K\ G/H.

Theorem 4.8. Let H° C K C H be a subgroup of H. Then the inclusion Sy C
G/H induces an isomorphism W\Sg ~ K \\ G/H.

Proof. By the definition of I/T/, the restriction of functions from G/H to Sy induces
a homomorphism

d: k|G/H)X — Kk[SH]".

We claim that d is an isomorphism.

To see this we first make some remarks on the K invariants of k[G/H]. For
NS Q;} let f* := 7} (p"). Arguing as in Proposition 4.3 it is easy to see that the
elements f* with A € Qf; are a basis of k[G/H]¥ as a vector space. In particular
for each \ € Qf;, I /F/ f is one dimensional and spanned by the class of f* (notice
that Qg C QK)

The computation of the W invariants of the ring k[Sp] is also very simple.
Let k[Sy] = ®A€ASH kea, where ¢, is a function of weight A\. We know by
Theorem 2.3 and Lemma 2.5 that the restriction r of character from 7" to S induces
an isomorphism between Ag, and Qg so we identify the two lattices. Also a weight
X € Qp is dominant with respect to A if and only if it is dominant with respect to
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A If e A;H, we set

= >

YEW -0

The elements 1, with A € Q}; are clearly a basis of k[Sy]".

Given X € QF;, let Uy denote the span of elements ¢, with u € Qf; and p <, A.

Notice that f3 := d(f*) lies in Uy. Indeed f3 is a W invariant and its weights are
in a subset of the weights appearing in Vy*. Thus for each A € Qf;, d(F))X C U,.
We claim that d maps isomorphically FX onto Uy. This will imply our claim.

By an easy induction we need to show that f3 ¢ Zu<a>\,ueﬂﬁ U,. Using
Lemma 4.7 it suffices to prove that the restriction to Sy of a lowest weight vector h
in Fy is non-zero. The closure of Sy in X contains the unique point of the closed
orbit Xz fixed by B. h does not vanish at this point. Since h is non-zero at a
point in the closure of Sy, it cannot vanish on Sy proving that fg‘ does not lie in

U,. [l
ZKUA, peQy Y r

Remark 4.9. Notice that in particular K \\ G/H does not depend on the choice
of the subgroup K between H° and H. However it is not true in general that the
K orbits in G/H are the same of the H orbits in G/K. To see this it is enough
to take G = SL(2, C) And o the conjugation by (5 fi). Then H° is the diagonal
torus and it is easy to check that H° (1) H # H (§1) H.

To complete our picture we show, with a different proof, another result of
Richardson which tells us the orbits of the elements in Sy are precisely the closed
orbits in G/H.

Proposition 4.10. Let H° C H, K C H. Let s € Sy then Ks is closed in G/H.

Proof. Since H° has finite index both in H and in K, it is enough to study the case
H=K=H".

Fix V to be a finite dimensional faithful representation of G. Consider the map
x: G/H° — G C GL(V) given by x(gH®) = go(g)~!. By [17] Theorem 5.4.4 this is
a closed immersion. Notice that x(h-z) = hx(z)h~! forallh € H° and x € G/H°.

For s € Sy set x = x(s) = s?. The element s is semisimple in GL(V'). We want
to prove that the orbit {hah=1: h € H®} is closed in GL(V).

Let p(t) be the minimal polynomial of z. Since z is semisimple, p(t) does not
have multiple roots. For all A € k* and y € G set Vi(y) = {v € g: Ady(v) = Av}.
Notice that for y € T

acd: aly)=x Ja if A # 1,
V)\(y):{® €D: a(y)=X

td @aetb: a(y)=1 Ja if A=1.

Given A € k* and 1 = 2 (A + A1) set

W) @ Va-i(y) i X # £,
Wily) = {Vx(y) if A= +1.
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Notice that we have
h=ED (hnWy(x) (5)
I
since b = t7 @ B,cp, 9o © Docor k(@a + 0(24)) and o(a)(z) = a(z)~! so that
To+0(Ta) € Woa)+a(@)—1- Let ny, = dim(hNW,(x)). We define the closed subset
M C G as follows. An element y € G lies in M if
(i) p(y) = 0;
(ii) the characteristic polynomial of Ad, is equal to the characteristic polyno-
mial of Ad,;

(iii) dim(h N Wy, (y)) = n, for all p.

By condition (iii) and relation (5) it follows that if y € M, dim(h N W,(y)) = n,
for all p. In particular dimbh N Vi(y) = dimb N Vi(z) so that dimbh N Zy(y) =
dim b N Zg(x).

Now by condition (i) if y € M, y is semisimple and so by [17, Theorem 5.4.4]
we have that Zg(y) is the Lie algebra of Zg(y). It follows that dimbh N Zg(y) =
dim H N Zg(y) = nq and finally dim H°y = dim H — ny so that every H® orbit in
M has the same dimension.

In particular every H® orbit in M is closed. Since x € M, the proposition
follows. (]

Remark 4.11. Notice that our proof works also under the slightly more general
assumption that G is reductive. This will be useful later on.

Remark 4.12. We notice that if H° C K C H and s € S then Ks = Hs in G/H.
Indeed by Remark 4.9 we have that K \\ G/H = H \\ G/H so the natural map
Kx — Hx from the set of K orbits into the set of H orbits is a bijection at the
level of closed orbits. At this point everything follows from the fact that Hs is a
union of closed K orbits.

4.3. The quotient of a smooth projective toroidal compactification. Let
us now assume that £ is a line bundle generated by global sections but not nec-
essarily ample on a given smooth, projective toroidal compactification Y of G/H.
This is going to be useful in order to prove Theorem 4.1 in its full generality.

Since L is spherical, 73 (L) is trivial. Notice now that the G linearization of £
restricts to a Nyo (S) linearization of L]y, and that Zgo(S) acts trivially on L|yy.
To see this first notice that Zg+(S) acts trivially on the fiber of £ over yo. Indeed
73 (L) is trivial, hence H® acts trivially on the fiber of £ over yo and Zp- (S) C H®.
Now, Zo (S) commutes with S and Sy is dense in Yg so necessarily Zgo (S) acts
trivially on Lly,.

Notice that Y*°(£) = Y**(L") for any n > 0, s0 K\\;. Y ~ K\\ Y. Since /Qg
is finite, up to taking a power of £ we can always assume that 7r§‘,7K(£) ~ Og/k,
where my k: G/K — Y is defined by 71y, k (gK) = g-yo. We call these line bundles
K spherical. We have

Theorem 4.13. Let L be a K spherical line bundle on'Y. Then
T(Y, L)X ~T(Ys, Llys)".
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We need first a well known general fact on flat schemes over A whose proof we
give for completeness.

Lemma 4.14. Let U be a projective flat scheme over A such that there exists an
open affine covering {U, ..., U,} of U with U; = Spec R; and U; NU; = Spec R;;,
where R; and R;; are free A-modules. Let L be a locally free sheaf over U. For
each ring extension A — B let Up = U Xgpec(a) Spec(B) and Lp the pull back of
L toUpg. Then:

(i) T(U, L) is a finitely generated free A-module;

(ii) the map BaT'(U, L) — T'(Up, Lp) is injective;

(iil) moreover if B is a field of characteristic 0 then we have an isomorphism

B@al(U, L) ~T(Ug, Lp).

Proof. The fact that T'(U, L) is finitely generated is the content of Theorem I11.5.2a)
in [8].

We can refine the covering U; in such a way it has the same properties and
moreover it is such that L|y, is defined by a free R;-module of rank 1. We have the
exact sequence:

0T, L) = [[rws £) = [[rwinu;, L),

where r; and ro are given by restriction of sections. In particular T'(U, £) is a
submodule of [[T'(U;, £) which is a free A-module, hence, since A is a PID, T'(U, £
is a free A-module.

Let M denote the image of ro. M is a submodule of [[T'(U; N Uj, £), so also
M is a free A-module. Write 7o = 20 ¢" with +': [[T(U;, £L) — M and +: M —
[IT(U;nUj, £). For any A algebra B we can tensor by B and, since by definition
(Ui Xspec(a) Spec(B), L) = B®a I'(U;, L), we get the exact sequence

0= DU, £) ©4 B 229, T (U Xspec(a) Spec(B), L) ~29 M @4 B — 0

(6)
from which deduce that the map from I'(U, £) ® a4 B to I'(Up, Lp) is injective.
This proves (i) and (ii).

Now assume that B is a field of characteristic zero. 2 is an inclusion between free
A-modules, so since B has characteristic zero we have that 1 ® idg: M ® 4 B —
[[T(U:iNU;, LY®aB = [[T((UiNUj) Xgpec(a) Spec(B), L) is injective. It follows
that M ® o B is the image of 7 ® idp and by the exact sequence (6) we get that
T'(U, L) ®a B is equal to the space of sections of L5 on Ug. O

Notice that by Remark 3.6(3) we can apply this lemma to a toroidal compacti-
fication. We obtain

Lemma 4.15. Let Y be a smooth toroidal compactification of G/H and let L be a
K spherical line bundle on'Y generated by global sections. Then the restriction of
sections from Y to Ys induces an isomorphism T'(X, L)% ~T'(Ys, L]ys)"V.

Proof. We prove first that this map is injective. Consider the pull back 7y x(L). By
hypothesis this is isomorphic to the trivial line bundle on G/K. So a trivialization



688 C. DE CONCINI, S. KANNAN, AND A. MAFFEI

of it induces inclusions I'(Y, £) C k[G/K] and T'(Ys, L|ys) C k[Sk]. We get a

commutative diagram

LY, £)K K[G/K]¥

| |

D (Ys, Llys)V ——Kk[Sx]"7,

where the horizontal maps are the induced by the pull back of sections and vertical
maps are given by restriction of sections. Since the inclusions G/H C Y and
Sy C Yg are open, the two horizontal maps are injective and by Theorem 4.8 also
the right vertical map is injective. It follows that also the vertical map on the left
is injective.

In order to prove surjectivity it is enough to prove that we have enough invari-
ants. First we prove this result in characteristic zero. Let U be a G submodule of
C[G/K] and Ug be its image in C[Sk]. Observe that by Theorem 4.8 we have an
isomorphism between UX and U gv .

Set U equal to the image of T'(Y, £) in k[G/K]. By Corollary 3.9(ii), the re-
striction map I'(Y, £) — I'(Ys, L]y,) is surjective for any spherical line bundle
generated by global sections. Thus Ug equals the image of I'(Ys, L|y,) in k[Sk]
and this implies our claim.

Assume now that the base field k is of arbitrary characteristic. The description
of T'(Ys, L]yy) as an S-module does not depend on the characteristic. It follows
that there is a basis of I'(Ys, L]y, ) on which W acts by permutations. Thus also the
description of I'(Ys, £L|ys)" and hence its dimension d does not depend on the char-
acteristic. On the other hand by Lemma 4.14(ii) we have that d < dim T'(Yy, Li).

Since I'(Ys, Lx)¥ injects into I'(Ys, L|y4)", everything follows. O

If we now set

Ap = @I‘(Y, L") and Bg:= @F(YS; L ys),

we deduce from the above lemma that Proj(A%) = Proj(BZT/) for any spherical line
bundle £ generated by global sections on a smooth toroidal projective embedding
Y of G/H. In particular Theorem 4.1 follows for such a compactification.

4.4. Proof of Theorem 4.1. We now prove Theorem 4.1 for any projective em-
bedding Y of G/H. Consider an equivariant resolution Y of the closure of the image
of G/H inY x X. By construction this is a toroidal compactification and we have
a G-equivariant birational projective morphism ¢: Y — Y. Clearly ¢(Ys) = Y.
As already noticed at the beginning of Section 4.3 we can assume L to be K
spherical. Let M = ¢*(L£) and notice that this is a K spherical line bundle on Y
generated by global sections. Notice also that since Y is normal we have I'(Y, M) =
(Y, £) and Ay = Az. We have the following commutative diagram, where the
horizontal map are given by pull back of sections, and the vertical maps are given
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by the restriction of sections:

LY, L)X —=—= T, M)XK

| |

D(Ys, Llys)W —=T(Ys, Mly)V

Now the vertical map on the right is an isomorphism by the result obtained for a
smooth toroidal compactification and the bottom map is injective, since fis — Yg
is surjective. So also the vertical map on the left is an isomorphism. So BEV o~ A?
and B

K\ ;Y = Proj(A%) ~ Proj(BY) = W\Ys

as claimed. O

5. SEMISTABLE POINTS

In this section we want to give a more geometric description of the set of
semistable points. We analyze first the case of flag varieties.

5.1. Divisors of invariants in flag varieties. We give first some definitions. If
ICA, weset A = AgU {a € Ay1: & € I} and define ®; to be the subroot system
of ® spanned by A;. We let P; denote the corresponding parabolic subgroup of G
and A; = Ap, the set of characters of P;. We also set 1I; = IINA;, Qr g = QuNA;
and Q7 = Q7 go. We have

Q]: @ ZQN)& H[:Q]+ @ Zwa.
GEANT Q€A NAL

Let us describe the set of invariant and semiinvariant sections with respect to
the action of H of a line bundle £y on G/P;. Since if A € A}r, we have that
I'(G/Pr, £y\) ~ Vy (and is zero if A is not dominant). In this case we can apply
directly the result of Vust without introducing any further filtration.

Ifae AT , let pg be a non-zero section of L, on G/P; invariant under the
action of H°. Similarly if & € A, \ I let g, be a non-zero semiinvariant section
of L,, on G/P;. If A = > asws is dominant so that agz > 0 for all &, we define
P = [1;P% and similarly if A = ZaeAe CaWea + Z&GAM CWs 1s dominant in II;
we define ¢ = [laca, @ - 1laea,. P&"

We notice that up to a non-zero scalar, p* is the unique H° invariant section of
Ly and that it is H invariant if and only A € Q. Similarly ¢ is the unique H
semiinvariant section of L.

In particular if we set R(G/Pr) = @ycp, L'(G/Pr, L), we have that the ring
of invariants R(G/Pr)”° is a polynomial ring in ps for & ¢ I and the ring of
semiinvariants R(G/Pr) is a polynomial ring in fs, gs for @ € A,. ~ I and
[CRSIAVIENGAYS

If A =5 caws € Q, we define the support of A as suppg A = {a: cs # 0}. Also
if J € A~ I we define py = [lsc) Pa-
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Proposition 5.1. Let J C A~ I then the equation Dy =0 is reduced.
Furthermore, the divisor of the section py. is the complement of the unique open
H® orbit in G/Pr, and we have H°P; = HP; = HP;.

Proof. We start with the first assertion. Let D denote the divisor of p; = 0 with
reduced structure. Take A € A} with the property that £, ~ O(D;) and let
¢ € T(G/Pr, L)) such that divy = D;. We claim that A\ = & := Y, ; @a-
Notice that by definition ¢ divides p; and for big enough 7 the section p ; divides
©". Sow; = A+ pand nA = ©;+v with p and v dominant. Moreover D is an H
invariant so ¢ is an eigenvector under the action of H. In particular A and also p
and v are quasi spherical. Recall that A, = {& € A;: « is not exceptional}. We

can write
A= Z cawa + Z CoaWa-
GEA T a€EN.: agl
Since ¢ divides p;, we obtain ¢4, ¢o < 1 and cg = cq =0 for & ¢ J. Also since p;
divides ", we obtain cg, co = 1fora € J. Socqa =cag=1ifac Jand A =0, as
claimed.

Now let U = H° - [Py] denote the open H® orbit in G/P; and U’ the complement
of the divisor Dje. Since U’ is H® stable, U C U’.

We claim that U is affine. To see this is enough to prove that the Lie algebra
of H° N Py is reductive. Indeed we have that this Lie algebra is equal to the Lie
algebra of L{, where L; is the Levi factor of P; containing 7.

Since U is affine, by [7, Proposition 3.1, p. 66], D = G/P; ~\. U has pure codi-
mension one. Let £, ~ O(D) and let v € T'(G/ Py, L)) be such that divy = D.

Since U C U’ and p;. = 0 is reduced, we have that p,. divides p. So L) is
ample. Moreover the section ¢ must be an eigenvector under the action of H so A
is quasi spherical. This together with the fact that A € A easily implies that, up

to a non-zero constant,
— —~C& ~C
o= 1 #r- I a-
&EICﬂAne a€EA.: aclc

with the exponents cs and ¢, positive. On the other hand since ¢ is reduced we
must have ¢ = ¢, < 1 for all @, a. So A = @w;. and ¢ = p;. as claimed.

Finally since the complement of the section p; is stable by the action of H, or
H and is a single H° orbit, it is also a single H or H orbit. (]

5.2. Semistable points in a smooth toroidal compactification. In this sec-
tion we prove that the set of semistable points in a smooth toroidal compactification
does not depend on the choice of an ample line bundle.

We need to make few remarks on weights and convex functions. We start with
a simple and well known lemma on root systems.

Lemma 5.2. Let {ai, ..., a,} be a set of simple roots in a root system R, and
{wi, ..., wr} the corresponding set of fundamental weights. If K C {1, ..., r},
every w; can be expressed as

wj = Z apap + Z brwi

heK kK
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with ap, b nonnegative rational numbers.
Furthermore, if K = A and R is irreducible, the ay’s are strictly positive.

Proof. If r = 1, there is nothing to prove so we can proceed by induction.

Assume |K| < r. The space A and B respectively spanned by the «y,’s with
h € K and by the wy’s with k ¢ K are mutually orthogonal. It follows that w; can
be uniquely written as

wj =; +6;
with v; € A and 0; € B.

If j ¢ K, then v; = 0 and there is nothing to prove.

If j € K, then v; is a fundamental weight for the root system in A having the
ap’s with h € K as simple roots. Thus by induction ap > 0 for each h € K. Write
0j = D pgr bewr. We get by = (35, o) = — (75, o) = 0 as desired.

Assume now |K| = r. Write w; = >}, _, a;p, and notice that 0 < (wj, wj) =
aj; (aj, wj). Since (a;, w;) > 0, we deduce that a;; > 0. In particular we can
write w

j
G, T
where &; is a linear combination of the elements in A\ {a;}. It follows that
wr = (ak,;/aj;)w; +  with = a linear combination of the elements in A\ {a;}.
Using the positivity of a; ; our claim now follows from the previous analysis applied
in the case in which K = A\ {a;}.

It remains to show that in the irreducible case a; , # 0, i.e., (wj, wy) # 0 for each
j, h =1, ...r. By contradiction assume that say (w1, wz) = 0. This means that
wo lies in the span of ay, ..., and it is a fundamental weight for the root system
having these roots as a set of simple roots. Let R’ be the irreducible component of
this root system containing ae. We can assume that our ordering of simple roots is
such that as, ... ay are a set of simple roots for R’. By induction wy = ZZ:Q a2, non,
with a2 5, > 0. On the other hand

0= (w2, q) = ZGQ,h(am aq)
h=2

so that (ayp, ay) =0 for each h =1, ..., s. This clearly contradicts the irreducibil-
ity of R. O

Let Y be a smooth toroidal compactification of G/H and let Fy be the associated
decomposition of the Weyl cochamber C'.
We define the support suppgq p of a face p of Fy as

suppg p = {& € A: @ is not identically zero on p}.
Lemma 5.3. Let A = (Ar);cpy (o) € SPico(Y) be such that Ly is ample. Let p

be a face of Fy. Then there exist a positive integer n and p € Q;} such that
Suppg /4 = suppg p and p € A(nA).

Proof. Let S = suppqg p and T = A \ suppg, p- Let 7 be a maximal dimensional
face containing p. Since £, is ample, Corollary 3.9(iv) implies that A, is regular
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dominant. So by Lemma 5.2 there exists a positive integer n such that we can write

nA\, as
nA, = Z agWa + Z bgox
acs aeT
with ag positive integers and bs nonnegative integers. Set p = 3, g aaws. We
have 4 = nA; on p and p < nA; < nA on the Weyl cochamber C' again by
Corollary 3.9(iv). O

The following lemma is a sort of converse of Lemma 5.3.

Lemma 5.4. Let A = (A\;);cpy, (¢) € SPico be such that Ly is ample. Let p € QF
andn a positive integer with u € A(nA) and p = n\ on p. Then suppg it D Suppg p-

Proof. If p is the zero face, there is nothing to prove. Assume that p has positive
dimension. By eventually substituting A with n\, let us also assume that n = 1.

Let p(1) be the set of 1 dimensional faces contained in p and notice that suppg, p =
Use p(1) SUPPq 1. So it is enough to prove the claim in the case of one dimensional
faces.

Let p be one dimensional and choose a non-zero point v in p.

Take a face 7 of maximal dimension containing p and define

7 ={u € A} : v+t(v—u) € 7 for some positive real number ¢ > 0}.

Notice that ¢ > A; on 7°. Indeed if u € 7 there is a positive ¢ such that
v+t(v —u) € 7. Since p € A(A), we have p(v +t(v —u)) < A (v + (v —u)). But
A = pon pso that pu(v) = A (v), so p(u) = A (u).

Since the support of Fy equals C, it is then clear that

U o= {0 A (o) <0 orall & ¢ suppr ).
TEFy (£): TDp

Thus every & € suppg p lies in at least one of the sets 7. It follows that
(1, ) > (Ar, &) >0
since A is ample. Thus & € suppg, p. O

We can now characterize the set of semistable points with respect to an ample
line bundle £ on Y.

Consider the G-equivariant projection ¢ : ¥ — X onto the wonderful compact-
ification X. For each p € 2 we pull back the H® invariant section p*. This is an
H° invariant section of I'(Y, ¢*(£,)) and we denote it by the same symbol p*. For
any subset I C A we set Dy = Hdelpa’&. We also remark that the condition of
being semistable does not depend on the group K between H° and H. Indeed, by
the description of invariant sections, if f is a H® invariant section which does not
vanish on z there exists an integer n such that f" is invariant under H. In view of
this we will speak of semistable points without specifying the group K.

Proposition 5.5. Let Y be a smooth projective toroidal embedding of G/H and
let £ be an ample line bundle on Y. Let p be a face of Fy and let O, be the
corresponding G orbit. A point x € O, is L semistable if and only if psupp,, () # 0.
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Proof. Let L = L. Let p be a face of Fy and x € O,. Assume that psupp,, »(7) # 0.
By Lemma 5.3 there exist a positive integer n and a dominant weight p such that
uw € A(nA), p = nX on p and suppg i = suppg, p. Since p* is a product of the
sections pg for & € suppg p, we have that p#(z) # 0. Thus s"2 HpHt is an H
invariant section of £} not vanishing on = and z is semistable.

Conversely let x be semistable. Then by the description of invariants given in
the proof of Theorem 4.13 there exists a positive integer n and a dominant spherical
weight 1 € A(n)) such that s"2£p#(z) # 0. The condition s™274(z) # 0 implies
1 =mnA on p so we can apply Lemma 5.4 and we deduce that suppg, # D suppg p-
In particular ps(x) # 0 for all & € suppg p or equivalently psupp,, o(x) 7# 0. O

The above proposition has the following

Corollary 5.6. Let £ and L' be two ample line bundles on Y. Then Y*5(L) =
YSS(E/)‘

In view of this corollary we shall from now on say that a point is semistable if it
is semistable with respect to any ample line bundle and we shall denote the set of
semistable points by Y.

We now give a more set theoretic description of semistable points. Take a face p
of the fan Fy and denote by O, the corresponding G orbit in Y. Set I = suppg p
and consider the G-equivariant projection ¢: Y — X. Remark that for any 7 in the
relative interior of p the point ¥, depends only on suppg p and not on the choice
of . Thus we can denote this point by y,. By definition for such one parameter
subgroup 7 we have ¢(y,) = x,. In particular it follows that ¢(O,) = O; the open
orbit in X7 and that the projection ¢: O, — Or is a G-equivariant fibration.

By [4] we have a G-equivariant projection 7;: Oy — G/Pre with I¢ = A\ I.
Composing we get a fibration

v =mr0¢: Op — G/Pre

whose fiber over the point 7; o ¢(y,) we denote by F),.
In view of Proposition 5.1 and Proposition 5.5 we immediately get

Proposition 5.7. A point x in O, is semistable if and only if its H orbit intersects
F,. So we have that O;° :=Y**N O, is equal to H°F, (and also to K'F, and HF),).

Proof. This is clear since by Proposition 5.1 the section psupp,, , does not vanish
exactly on the inverse image under v; of the open H® orbit in G/ Pre. O

By Proposition 5.7 we then have that O;° = H Xpunp,. F).

Let us now take a subset J C A. We denote by L the standard Levi factor of
Pj and recall that L is o stable and that if Up, is the unipotent radical of Py,
o(Up,) = (Up,)~ the opposite unipotent.

Lemma 5.8. For any subset J C A we have
KNnL=KnPy.
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Proof. Tt is enough to analyze the case of K = H. Since our problem is a problem
of support, we can work with the associated reduced subgroup Heq = {z € G:
zo(z)~t € Z(G)}.

Take z = mu € PyN Hyeg withm € L and u € Up,. Then clearly ua(u)_1 e L.
It follows that o(u)~' € Up NPy = {1} thus u =1 and = € L as desired. O

Going back to the semistable points in the orbit O, C Y, we get

Proposition 5.9. Let L be the standard Levi factor of Pre. Set Kj = KN L. We
have a K -equivariant isomorphism

O;S ZKXKL Fp.

In particular this induces a closure preserving bijection between K orbits in OF
and Ky, orbits in F,.

Now consider the fiber Fy of m; containing ¢(y,). We know from [4] that the
solvable radical of Pj. acts trivially on F; and that F; = l_,/ H 7, where L is the
adjoint quotient of L and Hj is the subgroup fixed by the involution induced by o.

By the description of Y given in Theorem 3.5 it now follows that if we set L,
equal to the quotient of L modulo the subgroup in the center of L generated by the
one parameter subgroups n with n € p, F, can be identified with L,/H,, where H,
is isogenous to the subgroup fixed by the involution on L, induced by o.

Under this identification Sy, coincides with Y N O,. We thus can apply Re-
mark 4.11 and deduce

Proposition 5.10. Let x € Ys N O,. Then the orbit Kx is closed in O°.

6. CLOSED SEMISTABLE ORBITS

In this section we prove that in the case of a smooth toroidal compactification
Y of G/H the orbits through the elements of Yg are the closed semistable orbits.
In this way we give a geometric counterpart to Theorem 4.1.

We show first that the closure of K orbits does not interacts with G orbits.

Proposition 6.1. Let Y be a smooth toroidal compactification of G/H, let L be
an ample line bundle on' Y. Let x, y € Y*(L). Ify € Kz, theny € G - x.

Proof. As we have pointed out in Corollary 5.6, the set of semistable points of Y
does not depend on the choice of the ample line bundle L.

Let £ = L). For n big enough we have that L)1, is also ample for every
D € Ay. In particular for a large enough positive integer m, we can find invariant
sections fp € T'(Y, Em(ng-ng))K and f € T'(Y, Lmnr)X such that fp(y) # 0 and
f(y) #0.

Set now

U = {z € Y such that f(z) # 0 and fp(z) # 0 for all D € Ay }.
The set U is an open affine H invariant subset of Y*° with the property that if

Y - K\Y
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is the quotient morphism U = 7~ !(w(U)). In particular x € U. Furthermore, on U
the line bundles £,,,(na1q,) and Ly have an H-equivariant trivialization.

It follows that also the line bundle Limap, = Limmata,) @ E;ﬁw\ has an H-
equivariant trivialization ¢p on U. Thus we can consider the H invariant function
tp = ¢p(s’h) on U. Now by Theorem 3.5 a G orbit in Y is determined by the set

of D such that sp vanishes on the orbit. This implies our claim. O

Remark 6.2. The following simple example shows that Proposition 6.1 does not
hold for a non-toroidal Y. Take the compactification P(End(C?)) of PSL(3), so
G = SL(3) x SL(3) and K is the normalizer of the diagonal copy of SL(3). The
elements

0 1 0 0 0 0
r=10 0 O and y=10 0 O
0 0 1 0 0 1

give a counterexample to the statement in the proposition.

Let U be any G stable open subset of smooth toroidal projective embedding Y.
The proof of Proposition 6.1 implies

Proposition 6.3. 771 (7(UNY*%)) =UNY?*. Furthermore,
Tlyaye: UNY* — W\Us
is a well defined quotient map.

Notice however that, as the following example shows, there are ample line bundles
L on'Y such that if we restrict £ to U, U**(L) # U NY**. Indeed, take Y equal to
the wonderful embedding of PSL(3), £ = Lz, +5, and U equal to the complement of
the divisor of equation sz, = 0. Then U is isomorphic to the open set in P(End(C?))
of classes of matrices of rank at least 2 and there is an invariant namely sgllpgl,
which up to a constant gives the cube of the trace, defined on U and not vanishing

on

5

I
o O O
OO =
= o O

while x is not semistable in Y.
From Propositions 5.10 and 6.1 we finally get

Theorem 6.4. Let Y be a smooth toroidal compactification of G/H and let H° C
K C H. Let x € Y*° then Kx is closed in Y*° if and only if KxNYs # @.

Proof. From the proof of Theorem 4.1 we get that Ys C Y** and the fact that if
z € Yy its orbit is closed is Proposition 5.10.
On the other hand since K \\ Y = W\Y, the restriction of the quotient map
Y - K\Y

to Ys is surjective. Given p € K \\ Y, 7~ !(p) contains a unique closed orbit and
this by the first part is necessarily the orbit of a point in 7=!(p) N Y. O
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