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Università di Roma “La Sapienza”

Novembre 1999

Tesi di dottorato

Varietà Quiver
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Introduzione

Uno spettro si aggira nella teoria della rappresentazione. È lo spettro
della geometria, il cui crescente utilizzo negli ultimi vent’anni ha portato a
risultati straordinari. Non si può ridurre questo fenomeno all’utilizzo dei
fasci perversi e del teorema di decomposizione, che pure ne sono stati gli
attori principali e spesso cruciali, sembra che una filosofia generale sia an-
data affermandosi, filosofia che fa uso di molti altre strutture geometriche e
che viene genericamente indicata con “geometric methods”, o “new geometric
methods”, in teoria della rappresentazione. Uno dei suoi aspetti fondamentali
consiste nella sorprendente possibilità di descrivere la teoria delle rappresen-
tazioni di alcune algebre di natura geometrica. Può quindi essere utile ed in
alcuni casi risolutivo riuscire a dare una descrizione in termini geometrici delle
algebre che si vogliono studiare. Malgrado si sia riusciti ad ottenere questa
descrizione in vari casi importanti, questa rimane una operazione misteriosa.
A lungo sono state utilizzate a questo scopo varietà naturalmente connesse
con i gruppi di cui si volevano studiare le rappresentazioni: il gruppo stesso
e le sue classi coniugate, la varietà delle bandiere prima totale e poi parziale,
la fibra di Springer e la varietà di Steinberg. Poi si è cominciato ad utiliz-
zare la versione “affine” delle varietà appena elencate che pur continuando
ad essere varietà naturali sono tecnicamente molto più complicate. Ma an-
cora manca l’algoritmo per costruire la varietà giusta per ogni problema. In
particolare sembrava mancare una varietà adatta per i quantum groups: fin
dall’inizio di questo decennio si è cominciato a fare dei tentativi, ed è piano
piano cresciuto l’interesse verso varietà meno naturali. Le quiver varieties
sono una nuova di classe di varietà che sembra particolarmente interessante.
Queste varietà sono state introdotte intorno al 1993-1994 da Hiraku Naka-
jima come generalizzazione dello spazio dei moduli degli instantoni su uno
spazio ALE, il quale si era già dimostrato particolarmente adatto in connes-
sione con un altro problema che andava in cerca di varietà: la costruzione di
strutture hyperKähleriane. Malgrado la loro costruzione possa sembrare più
artificiosa queste varietà si sono dimostrate particolarmente interessanti dal
punto di vista della teoria della rappresentazione.

1. Quiver varieties e quantum groups

I quantum groups sono stati introdotti da Drinfeld [3] e Jimbo [9] me-
diante generatori e relazioni. Un problema naturale che si è subito posto è
stato quindi quello di dare una descrizione alternativa in termini di strutture
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4 INTRODUZIONE

geometriche. Questa ricerca va naturalmente di pari passo con la ricerca di
basi speciali di queste algebre e delle loro rappresentazioni.

1.1. La costruzione di Uq(gln) di Beilinson, Lusztig e MacPher-

son. Uno dei primi risultati nella costruzione geometrica dei quantum groups
è stato ottenuto nel caso di GLn da Beilinson, Lusztig e MacPherson in [1].
Riassumiamo brevemente questo risultato.

Sia F(k, d) l’insieme delle n-bandiere parziali di uno spazio vettoriale di
dimensione d sul campo k. Le GL(k, d) - orbite di F(k, d)×F(k, d) sono un
insieme finito che indichiamo con Θd indipendente dal campo k. Sia inoltre
K̂d il Q(v)-modulo libero con base gli elementi di Θd. Fissiamo ora k = Fq
un campo finito e per A,B,C ∈ Θd e (F ′, F ′′) ∈ C definiamo

cA,B,C,q = card{F ∈ F(k, d) : (F ′, F ) ∈ A and (F, F ′′) ∈ B}.

È ovvio che la la definizione non dipende dalla scelta di (F ′, F ′′) ∈ C. Os-
serviamo inoltre che esistono polinomi cCA,B ∈ Z[v] tali che per ogni q si

abbia cA,B,C,q = cCA,B(
√
q). Beilinson, Lusztig e MacPherson dimostravano

quindi che l’algebra associativa K̂d definita prendendo per costanti di strut-
tura questi polinomi è un quoziente di Uq(gln) .

Theorem 0.1. Il prodotto definito da A ∗ B =
∑

C∈Θd
cCA,BC definisce

su K̂d una struttura di algebra associativa e esiste un morfismo di algebre
surgettivo da Uv2(gln) a K̂d.

A questo punto per costruire Uq(gln) mandavano d all’infinito. For-
malmente la costruzione funziona nel seguente modo. Sia Θ = gl(n,N),

Θ̃ ⊂ gl(n,Z) l’insieme delle matrici con coefficienti non negativi fuori della
diagonale e σ : Θ −→ Z la funzione che associa ad ogni matrice la somma dei
suoi coefficienti. Osserviamo che Θd è in bigezione con σ−1(d). Definiamo

inoltre per A ∈ Θ̃

co(A) =(Σ ai1, . . . ,Σ ain),

ri(A) =(Σ a1i, . . . ,Σ ani).

Sia ora

K̂ =
{

ΣA∈Θ̃ fAA ∈ Q(v)⊕Θ̃ : ∀x ∈ Zn gli insiemi degli

elementi A ∈ Θ̃ : fA 6= 0 and ri(A) = x e degli

elementi A ∈ Θ̃ : fA 6= 0 and co(A) = x sono finiti
}

Vogliamo estendere la struttura di algebra a K̂. Per fare ciò abbiamo bisogno
della seguente proposizione ([1] Proposition 4.2).

Proposition 0.2. Sia r ≥ 2 e siano A1, . . . , Ar ∈ Θ̃ tali che co(Ai) =

ri(Ai+1) per i = 1, . . . , r − 1. Allora esistono s, p0 ∈ N e Z1, . . . , Zs ∈ Θ̃ e
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G1, . . . , Gs ∈ Q(v)[v′] tali che per ogni p ≥ p0 Ai + pI ∈ Θ e

(A1 + pI) ∗ · · · ∗ (Ar + pI) =

s∑

i=1

Gi(v, v
−p)(Zi + pI)

Possiamo quindi estendere il prodotto ∗ a tutto K̂ mediante la formula:

A1 ∗ · · · ∗Ar =

{∑s

i=1Gi(v, 1)Zi se co(Ai) = ri(Ai+1) for i = 1, . . . , r − 1 ,

0 altrimenti.

Definiamo ora il Q(v)-sottomodulo U di K̂ generato dagli elementi

Ad,j =
∑

(z1,...,zn)∈Z
n : Σ zi=d−σ(A)

vz1j1+···+znjn (A+ diag(z1, . . . , zn))

dove d ∈ N, A ∈ Θ è una matrice con la diagonale nulla, j = (j1, . . . , jn) ∈ Nn

e diag(z1, . . . , zn) è la matrice diagonale che ha i coefficienti lungo la diagonale
uguali a z1, . . . , zn.

Theorem 0.3. Il prodotto ∗ definisce una struttura di algebra associativa
su K̂ e U è una sottoalgebra isomorfa a Uq(gln).

Entrambi questi teoremi vengono dimostrati individuando dei generatori di
queste algebre che soddisfano le relazioni dei generatori standard dei quantum
groups.

1.2. La costruzione geometrica di Ginzburg di sln. Prendendo
spunto dalla costruzione di Beilinson, Lusztig e MacPherson, Ginzburg diede
una costruzione di sln che non fa uso della geometria sui campi finiti e che ha
rappresentato il modello anche per la costruzione di Nakajima delle algebre di
Kac-Moody. In particolare uno dei risultati di questa tesi è la dimostrazione
dell’equivalenza della costruzione di Ginzburg con la costruzione di Nakajima
nel caso del quiver di tipo A. Riassumiamo quindi il risultato di Ginzburg
annunciato in [6] e che si può trovare in tutti i dettagli in [2]. Nel seguito n
è fissato e NN è il cono nilpotente in gl(N).

Definition 0.4. Se N è un numero naturale e a = (a1, . . . , an) una
partizione di N , diciamo che una successione F : {0} = F0 ⊂ F1 ⊂ · · · ⊂
Fn = CN di sottospazi di CN è una bandiera parziale di tipo a se dimFi −
dimFi−1 = ai. Indichiamo con Fa la GL(N)-varietà omogenea delle bandiere
parziali di tipo a. Definiamo inoltre

Ñ a = T ∗Fa ∼= {(u, F ) ∈ gl(W )× Fa tale che u(Fi) ⊂ Fi−1},
µa : Ñ a −→ N la proiezione sul secondo fattore,

ÑN =
∐

a⊢N

Ñ a e µN =
∐

a⊢N

µa : ÑN −→ NN

Za = Ñ a ×NN
Ñ a e ZN = ÑN ×NN

ÑN

∆a ⊂ Fa × Fa la diagonale.
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Definiamo inoltre Fa = ∅ se a = (a1, . . . , an) ∈ Zn e esiste i tale che

ai < 0, ǫi = (. . . , 0,
i

1,
i+1

−1, 0, . . . ) e infine per i = 1, . . . , n− 1 e a ⊢ N :

Y +
i,a = {(F, F ′) ∈ Fa+ǫi ×Fa : Fj = F ′

j se j 6= i e Fi ⊃ F ′
i}

Y −
i,a = {(F, F ′) ∈ Fa−ǫi ×Fa : Fj = F ′

j se j 6= i e Fi ⊂ F ′
i}

Su HBM
∗ (ZN) =

⊕
a⊢N H

BM
∗ (Za) è definita una struttura di algebra di

convoluzione e è facile vedere che in questo casoHBM
top (ZN) =

⊕
a⊢N H

BM
top (Za)

è una sottoalgebra.
Il risultato principale dell’articolo [6] è il seguente:

Theorem 0.5. Siano ei, fi, hi generatori di Chevalley di U(sln) allora
possiamo definire un morfismo di algebre Θ: U(sln) −→ HBM

top (ZN) mediante:

hi 7−→
∑

a⊢N

(ai − ai+1)[T
∗
∆a

(Fa × Fa)],

ei 7−→
∑

a⊢N

[T ∗
Y +

i,a

(Fa+ǫi ×Fa)],

fi 7−→
∑

a⊢N

[T ∗
Y −

i,a
(Fa−ǫi ×Fa)].

Inoltre:

(1) Θ è surgettiva,
(2) Se x ∈ NN e consideriamo l’usale struttura di HBM

∗ (ZN)-modulo

sull’omologia HBM
∗ (Ñ x) della fibra di Springer generalizzata Ñ x =

µ−1
N (x) ⊂ NN abbiamo che:

(a) HBM
top (Ñ x) è un HBM

top (ZN) sottomodulo irriducibile

(b) HBM
top (Ñ x) visto come rappresentazione di sln è il modulo ir-

riducile associato alla partizione d1 ≥ d2 · · · ≥ dn, con di =
dim ker xi − dim ker xi−1.

1.3. Quiver varieties e costruzione geometrica delle algebre di

Kac-Moody. Generalizzando la descrizione dello spazio dei moduli degli
istantoni sulle risoluzioni delle singolarità razionali bidimensionali A,D,E
data da Kronheimer e Nakajima in [14], e ispirato dai lavori di Ginzburg
sulla costruzione di U(sl(n)) e di Lusztig sulla costruzione geometrica delle
basi canoniche [15, 16], Nakajima ha introdotto una nuova classe di varietà
associate ad un grafo, ad un elemento del reticolo del reticolo dei pesi d
dell’algebra associata al grafo e ad un elemento del reticolo delle radici v.
Nakajima ha chiamato queste varietà quiver varieties ma che forse sarebbe
stato meglio chiamare Nakajima’s quiver varieties perché differiscono da al-
tre varietà assocate al grafo definite in precedenza. Daremo un cenno della
costruzione nel seguito di questa tesi, limitiamoci quindi a descrivere con
qualche veniale imprecisione uno dei risultati principali di Nakajima. Con-
sideriamo una algebra di Kac-Moody simmetrica g dove fissiamo una base
di Chevalley e un sistema di radici. Ad un peso d e un elemento del reticolo
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delle radici v associamo una varietà liscia M(d, v), una singolare M0(d) e una
mappa propria:

πd,v : M(d, v) −→ M0(d).

Fissiamo ora d e consideriamo l’unione disgiuntaM(d) delle varietàM(d, v)
al variare di v e il prodotto fibrato Z(d) di M(d) su M0(d). In virtù di una
costruzione molto generale l’omologia di Borel-Moore di Z(d) aquista una
struttura di algebra di convoluzione [2] e l’omologia delle fibre M(d)x =⋃
v π

−1
d,v(x) aquista una struttura di H∗(Z(d)) modulo. Osserviamo infine che

in M0(d) esiste un punto speciale che chiamiamo 0.
Uno dei risultati principali di Nakajima si può cos̀ıriassumere.

Theorem 0.6. Esiste un morfismo di algebre Φ: U(g) −→ Htop(Z(d))
e in particolare H∗(M(d)0) ha una struttura di U(g-modulo. e Htop(M(d)0)
è un suo U(g)-sottomodulo . Inoltre Htop(M(d)0) è la rappresentazione ir-
riducibile di peso più alto d e la decomposizione

Htop(M(d)0) =
⊕

v

Htop(M(d, v)0)

fornisce la decomposizione in pesi di Htop(M(d)0): più precisamente il sot-
tospazio Htop(M(d, v)0) ha peso d− v.

1.4. Quiver varieties e la costruzione geometrica dei quantum

groups. Nakajima ha annunciato di poter utilizzare le quiver varieties per

dare una costruzione geometrica dei quantum groups. Nel caso di Ãn lo stesso
risultato era stato già ottenuto da Varagnolo e Vasserot [27].

2. Questa tesi

La geometria può essere spesso una utile guida, quando non è uno stru-
mento insostituibile, nello studio della teoria delle rappresentazioni.

In particolare, il risultato di Nakajima mostra che lo studio della ge-
ometria delle varietà quiver può fornire informazioni sulla teoria delle rap-
presentazioni delle algebre di Kac-Moody: per esempio fornisce immediata-
mente una base canonica, costituita dalle componenti irriducibili della va-
rietà M(d, v)0, delle rappresentazioni integrali e irriducibili delle algebre di
Kac Moody. In questa tesi affronto lo studio di alcune proprietà delle varietà
quiver.

Il primo capitolo è principalmente un capitolo di rassegna. Nella prima
sezione vengono definite le quiver varieties come varietà hyerkähleriane. Ad
un grafo con n vertici e a due ennuple di naturali d, v viene associata una
varietà hyperkähleriana Mζ(d, v) dipendente da un parametro continuo ζ .
Questa è la definizione originale che Nakajima da in [21]. Ho inserito una
dimostrazione alla fine di questa sezione in quanto leggermente diversa da
quella originale.

Nella seconda sezione ricordo alcune generalità sul collegamento tra la
costruzione dei quozienti via mappe momento e la costruzione del quoziente
dei punti semistabili. Il caso che ci interessa è leggermente diverso da quello
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che si utilizza usualmente ed ho quindi riportato alcune dimostrazioni. Purtroppo
non sono riuscito a dimostrare in questa generalità un risultato altrettanto
soddisfacente di quello usuale.

Nella terza sezione definisco le quiver varieties come varietà algebriche
e introduciamo una serie di risultati e notazioni che saranno necessari nel
seguito.

Nella quarta sezione ricordiamo un risultato di Nakajima sull’azione del
gruppo di Weyl sulle quiver varieties lisce. Dimostriamo anche un analogo
di questo risultato per la varietà singolare M0 che mi sembra essere nuovo.

Nella quinta sezione enunciamo il risultato di Nakajima sulla costruzione
delle rappresentazioni delle algebre di Kac-Moody ricordato sopra.

Questo capitolo può forse apparire un po‘ disomogeneo. In particolare
non tutti i risultati che ricordo saranno effettivamente utilizzati nel seguito
della tesi, e altri invece importanti non sono stati ricordati. Questo è dovuto
al fatto che ho dato maggior rilievo ai risultati che penso possano essere
preliminari nello studio di altri problemi connessi con le varietà quiver. In
particolare il quarto paragrafo va interpretato in questo senso. Analogamente
può apparire un pò superflua la costruzione delle varietà quiver come varietà
hyperKhäleriane. In realtà penso che questa costruzione è utile per costruire
una azione del gruppo di Weyl simile a quella costruita da Slodowy nel caso
della varietà delle bandiere ([25]).

Il secondo capitolo è dedicato ad alcune osservazioni sulla omologia delle
quiver varieties. Nell’ultima sezione (§4) viene dimostrata la seguente pro-
prietà dell’omologia delle quiver varities:

H∗ (M(d + d′)) = H∗ (M(d))⊗H∗ (M(d′)) .

Il risultato sulla moltiplicatività avrebbe da una parte lo scopo di ridurre
lo studio dell’omologia delle quiver varieties al caso dei pesi fondamentali,
dall’altro suggerisce una via per una interpretazione geometrica della formula
di Littlewood-Richardson. Soprattutto da questo secondo punto di vista
il risultato sulla moltiplicatività si può considerare incompleto. Non viene
dimostrato infatti che l’isomorfismo in questione è di g-moduli. Nell’ultima
parte del capitolo dimostro una proprietà da cui la g-equivarianza potrebbe
seguire.

Il risultato sulla moltiplicatività (§4) dell’omologia delle quiver varieties
e il calcolo degli indici di contrazione (§2) penso che siano nuovi. Nello stesso
capitolo riporto la dimostrazione di un risultato di Nakajima sulla omologia
delle varietà quiver che utilizzo e di cui non è disponibile un riferimento
bibliografico.

Nel capitolo terzo fornisco una descrizione completa delle quiver varieties
in termine delle varietà di Slodowy, nel caso dei grafi di tipo A. Questo
risultato era stato congetturato da Nakajima in [21] §8 e come è spiegato
nello stesso paragrafo non sembra avere una naturale generalizzazione agli
altri grafi finiti: D e E. Un’altra distinzione tra il caso A e i casi D,E è dato
dalla seguente osservazione: nel caso An−1 se prendiamo d = (n, 0, . . . , 0) e



3. RINGRAZIAMENTI 9

v = (n − 1, n − 2, . . . , 1) otteniamo che la varietà M(d, v) è isomorfa alla

varietà delle bandiere complete in Cn. È forse inutile ricordare che questa
varietà gioca un rulo importantissimo nella teoria delle rappresentazioni di
SL(n) e di Sn. Se C è la matrice di Cartan associata al grafo di tipo A,
all’interno del “linguaggio” delle quiver varieties si può caratterizzare questa
varietà come una varietà M(d, v) per la quale d−Cv = 0 e M(d, v)0 ha una
sola componente irriducibile. Ci si può chiedere allora se esiste sempre una
varietà del genere e se ha anche negli altri casi un particolare ruolo. E‘ facile
vedere che già nel caso D4 una varietà di questo tipo non esiste.

Esistono altri aspetti del caso A che invece almeno congetturalmente si
potrebbero estendere agli altri casi. La costruzione dell’isomorfismo tra le
varietà di Slodowy e le varietà quiver di tipo A data nel terzo capitolo mostra
come ogni fibra della mappa

π : M(d, v) −→M0(d, v)

sia isomorfa ad una fibra M(d′, v′)0 per una varietà quiver per lo stesso grafo
e per opportuni d′, v′. Nel caso dei grafi di tipo finito questa ipotesi è sup-
portata dalla descrizione delle quiver varieties come spazio dei moduli degli
istantoni sulle risoluzioni minimali delle superfici C2/Γ.

Ma l’aspetto che sarebbe più interessante generalizzare è legato al cal-
colo dell’omologia delle quiver varieties e quindi, grazie al risultato di Naka-
jima, dei caratteri delle rappresentazioni irriducibili al quale accenniamo
nell’osservazione 3.1. L’omologia delle quiver varieties di tipo An si può
infatti studiare utilizzando un procedimento induttivo. Spaltenstein ha in-
fatti utilizzato questo procedimento per dare una cellurarizzazione delle fibre
di Springer generalizzate. Il punto essenziale è che data una fibra di Springer
di tipo An (cioè una fibra della proiezione di una varietà delle bandiere ad
n passi) esiste una mappa in una grassmaniana le cui fibre sono fibre di
Springer di tipo An−1. Questa mappa si può descrivere naturalmente nel
linguaggio delle quiver varieties e ci si può chiedere se questo procedimento
si possa estendere a situazioni più generali. Nel caso D4, per esempio, si pos-
sono utilizzare metodi simili per calcolare l’omologia delle quiver varieties nel
caso dei pesi fondamentali, e quindi grazie ai risultati del capitolo 2 di ogni
quiver variety. Non è chiaro però se sia possibile organizzare questi metodi in
modo organico. Io penso che questo sia collegato a capire meglio la struttura
dell’algebra R associata al grafo (vedi la definizione 1.17).
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cussioni e per avermi suggerito di studiare le varietà quiver. Voglio in-
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General conventions

N : = {0, 1, 2, . . .}
[ϕ]Ei,Fj

: if E =
⊕

iEi and F =
⊕

j Fj are complex vector spaces and

ϕ ∈ HomC(F,E) then

[ϕ]Ei,Fj
= πEi

◦ ϕ ◦ ıFj

where πEi
is the projection of E on Ei with kernel equal to

⊕
h 6=iEh

and ıFj
is the inclusion of Fj in F . When the decompositions of

the sapces will be clear from the contest we will use this convention
without specifing the spaces Ei, Fj.

v ≥ u [v > u] : if v = (v1, . . . , vn), u = (u1, . . . , un) ∈ Rn we say that
v ≥ u [v > u] if vi ≥ ui [vi > ui] for all i.

dim: otherwise stated with dim we mean the complex dimension of a
vector space, a manifold or an algebraic variety

Hi(X), Hc
i (X) : Hi(X) is the Borel-Moore homology group with coef-

ficient in a field of characteristic 0 and Hc
i (X) is the singular ho-

mology group with coefficient in a field of characteristic 0 .
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CHAPTER 1

General properties of quiver varieties

In this chapter we define quiver varieties and we describe some general
properties of these varieties.

1. Notations and definitions

In this section we give the definition of quiver varieties. Except some mi-
nor change in section 1.7 all definition, results and proofs are due to Nakajima
[21, 22].

1.1. The graph. Let (I,H) be a finite oriented graph: I is the set
of vertices that we suppose of cardinality n, H the set of arrows and the
orientation is given by the two maps

h 7−→ h0 and h 7−→ h1

from H to I. We suppose also that:

(1) ∀h ∈ H h0 6= h1,
(2) an involution h 7→ h̄ ofH without fixed points and satisfying h̄0 = h1

is fixed,
(3) a subset Ω of H is given satisfying:

(a) Ω ∩ Ω = ∅ and Ω ∪ Ω = H ,

(b) it does not exist n > 0 and h(1), . . . , h(n) ∈ Ω such that h
(i)
1 =

h
(i+1)
0 for i = 1, . . . , n− 1 and h

(n)
1 = h

(1)
0 ,

we define ǫ : H −→ {−1, 1} by

ǫ(h) =

{
1 if h ∈ Ω,

−1 if h ∈ Ω.

We observe that given a symmetric graph without loops is always possible
to define Ω, ǫ and an involution ¯ as above.

1.2. The Cartan matrix and the Weyl group. Let A be the matrix
whose entries are the numbers

aij = card{h ∈ H : h0 = i and h1 = j}.
We define a generalized symmetric Cartan matrix by C = 2I −A. Following
[17] an X, Y -regular root datum (I,X,X∨, < ,>) with Cartan matrix equal
to C is defined in the following way:

(1) X∨ and X are finetely generated free abelian groups,
(2) < ,>: X ×X∨ −→ Z is a perfect bilinear pairing,

13
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(3) two linearly independent sets Π = {αi : i ∈ I} ⊂ X and Π∨ =
{α∨

i : i ∈ I} ⊂ X∨ are fixed and we set Q = 〈Π〉 and Q∨ = 〈Π∨〉,
(4) <αi , α

∨
j>= cij ,

(5) (nonstandard) rankX = rankX∨ = 2n− rankC,
(6) (nonstandard) a linearly independent set {ωi : i ∈ I} of X such

that <ωi, α
∨
j>= δij is fixed.

Once C is given it is easy to construct a data as above. We call h the
complexification of X∨ and we observe that through the bilinear pairing
< ,> we can identify h∗ with the complexification of X. We observe also
that the triple (h,Π,Π∨) is a realization of the Cartan matrix C ([10] pg.1).

The Weyl group W attached to C is defined as the subgroup of Aut(X) ⊂
GL(h∗) generated by the reflections

si : x 7−→ x−<x, α∨
i> αi. (1)

We observe that the dual action is given by si(y) = y− <αi, y> α∨
i and

that the lattices Q and Q∨ are stable for these actions. So the annihilator
◦

Q∨ = {x ∈ X :<x, y >= 0 ∀y ∈ Q∨} is also stable by W and we can

consider the action of Won the lattice P = X /
◦

Q∨ ≃ HomZ(Q,Z) and we
call x 7→ x the projection from X to P . We observe also that this projection

is an isomorphism from the lattice P̃ , that is not W -stable, spanned by
{ωi : i ∈ I} and P . Finally we observe that

αi =
∑

j∈I

cijωj .

1.3. The algebras U and Ũ. We call U the enveloping algebra of the

Kac-Moody algebra attached to the Cartan matrix C ([10] ch.1) and Ũ the
specialization at q = 1 of the algebra introduced in [17] ch.23. Since the
matrix C is symmetric we can describe the algebra U as the algebra with
unity generated by {ei, fi : i ∈ I} and h with the following relations ([10]
Th. 9.11):

[h, h′] = 0 for h, h′ ∈ h, (2a)

[h, ei] =<αi, h> ei for i ∈ I and h ∈ h, (2b)

[h, fi] = − <αi, h> fi for i ∈ I and h ∈ h, (2c)

[ei, fj ] = δijα
∨
i for i, j ∈ I, (2d)

(ad ei)
1−cjiej = 0 for i 6= j ∈ I, (2e)

(ad fi)
1−cjifj = 0 for i 6= j ∈ I. (2f)

We call U+ the subalgebra with unity of U generated by {ei : i ∈ I}, U0

the subalgebra with unity generated by h and U− the subalgebra with unity
generated by {fi : i ∈ I}. We recall that we have the following triangular
decomposition of the algebra U:

U = U− ⊗U0 ⊗U+ .
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and we remark that U0 ≃ S(h) ≃ C[X ⊗Z C] with multiplication given by

the usual multiplication of functions. The algebra Ũ is an algebra (without
unity) that has the following triangular decomposition:

Ũ = U− ⊗ Ũ0 ⊗U+ ,

where Ũ0 = {f : X → C : f(x) = 0 for all but a finete number of x ∈ X}.
If 1λ(x) = δλx then the set {1λ : λ ∈ X} is a basis of Ũ0 and we can define

a product on Ũ through the formulas:

1λei = ei1λ−αi
for λ ∈ X and i ∈ I, (3a)

1λfi = fi1λ+αi
for λ ∈ X and i ∈ I, (3b)

[ei, fj]1λ = δij <λ, α
∨
i> 1λ for λ ∈ X and i, j ∈ I. (3c)

To be more precise there is not an element ei or fi in Ũ but only elements
ei1λ, so the formulas above are a little bit sloppy: for example the first one
should be written 1λ(ei ⊗ 1µ ⊗ u−) = δλ−αi,µ(ei ⊗ 1λ−αi

⊗ u−).

1.4. d, v and the space of all matrices. We begin now to define the
varieties attached to the graph which should be the geometric counterparts
of the algebra just defined. For the exposition it will be usefull to identify
the set I with the set of integers {1, . . . , n}.

In this thesis d = (d1, . . . , dn) and v = (v1, . . . , vn) will be two n-tuples of
nonnegative integers. We also think of d, v as elements of X in the following
way:

d =
∑

i∈I

diωi and v =
∑

i∈I

viαi ; (4)

and through these identifications we define also an action of W on u, v. We
define also v∨ =

∑
i∈I viα

∨
i ∈ Q∨. Once d, v are fixed we fix also complex

vector spaces Di and Vi of dimensions di and vi and we define the following
spaces of maps:

SΩ(d, v) =
⊕

i∈I

Hom(Di, Vi)⊕
⊕

h∈Ω

Hom(Vh0, Vh1),

SΩ(d, v) =
⊕

i∈I

Hom(Vi, Di)⊕
⊕

h∈Ω

Hom(Vh0, Vh1),

S(d, v) = SΩ(d, v)⊕ SΩ(d, v).

More often, when it will not be ambiguous we will write SΩ, SΩ and S instead
of SΩ(d, v), SΩ(d, v) and S(d, v).

As a general convention we will call γi an element of Hom(Di, Vi), δi an
element of Hom(Vi, Di) and Bh an element of Hom(Vh0 , Vh1), and we will use
γ for (γ1, . . . , γn), δ for (δ1, . . . , δn) and B for (Bh)h∈H .
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Once Di, Vi and an element (B, γ, δ) of S are fixed we define also:

Ti = Di ⊕
⊕

h :h1=i

Vh0 , (5a)

ai = ai(B, γ, δ) = (δi, (Bh̄)h : h1=i) : Vi −→ Ti , (5b)

bi = bi(B, γ, δ) = (γi, (ǫ(h)Bh)h :h1=i) : Ti −→ Vi . (5c)

In this thesis we will identify the dual of space of the C-linear maps
Hom(E,F ) between two finite dimensional vector spaces with Hom(F,E)
through the pairing <ϕ, ψ >= Tr(ϕ ◦ ψ). So we can describe S also as
SΩ ⊕ S∗

Ω = T ∗SΩ and we observe that a natural symplectic structure ω is
defined over S by

ω((sΩ, sΩ), (tΩ, tΩ)) =<sΩ, tΩ> − <tΩ, sΩ> .

If we want to describe this structure explicitely in terms of maps (B, γ, δ) we
have:

ω((B, γ, δ), (B̃, γ̃, δ̃)) =
∑

h∈H

ǫ(h) Tr(BhB̃h̄) +
∑

i∈I

Tr(γiδ̃i − γ̃iδi) (6)

=
∑

i∈I

Tr(biãi − b̃iai)

1.5. Hermitian and hyperKähler structure on S. We suppose now
that the spaces Di, Vi are endowed with hermitian metrics. So we can speak
of the adjoint ϕ∗ of a linear map between these spaces, and we have a positive
definite hermitian structure h on S with explicit formula:

h((B, γ, δ), (B̃, γ̃, δ̃)) =
∑

h∈H

Tr(BhB̃
∗
h) +

∑

i∈I

Tr(γiγ̃
∗
i + δ̃

∗

i δi) (7)

=
∑

i∈I

Tr(aiã
∗
i + b̃∗i bi)

Moreover we can define a structure of hyperKähler manifold on the real
riemannian manifold (S,Reh): that is the datum of three covariant constant
orthogonal automorphisms I, J and K of the tangent bundle which satisfy:

I2 = J2 = K2 = IJK = −1.

In our case I, J and K are defined as follows:

I is the usual multiplication by i =
√
−1,

J(B, γ, δ) = (ǫ(h̄)B∗
h̄,−δ∗i , γ∗i ), or J(sΩ, sΩ) = (−s∗

Ω
, s∗Ω),

K(B, γ, δ) = (ǫ(h̄)iB∗
h̄,−i δ∗i , i γ

∗
i ) or K(sΩ, sΩ) = (−is∗

Ω
, is∗Ω).

We define also the real symplectic forms ωI , ωJ , ωK by the formulas:

ωI(s, t) = Reh(Is, t), ωJ(s, t) = Reh(Js, t), ωK(s, t) = Reh(Ks, t).

We observe that ωI , ωJ , ωK are closed forms and that

ωI = − Imh and (ωJ + iωK)(x, y) = h(y, Jx) = ω(x, y).
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In particular −ωI is a Kähler form on S.

1.6. Group actions and moment maps. We can define an action of
the groups G = GL(V ) =

∏
GL(Vi) and GL(D) =

∏
GL(Di) on the set S

in the following way:

g(Bh, γi, δi) = (gh1Bhg
−1
h0
, giγi, δig

−1
i ) for g = (gi) ∈ GL(V ), (8)

g(Bh, γi, δi) = (Bh, γig
−1
i , giδi) for g = (gi) ∈ GL(D). (9)

We observe that these actions commute, that ω is GL(V ) invariant, and that
they commute with the action of I. Moreover if U = U(V ) =

∏
U(Vi) is the

group of unitary trasformations in GL(V ) we have that U(V ) commute with
J,K and that ωI , ωJ , ωK , h are U(V ) invariant.

We want to define moment maps for these actions. We use the definition
of moment map given in [22], which differs from the one in [20] ch.8 for a
sign: if (M, η) is a (real or complex) symplectic manifold and σ : K×M →M
is an action of a Lie group which preserves the symplectic form η then a map
µ : M → k∗ is said a moment map if:

µ(km) = Ad∗
g µ(m) for k ∈ K and m ∈M,

<x, dµm(v)> = η(σx(m), v), for m ∈M, v ∈ TmM and x ∈ k,

where σx(m) = dσ(1G,m)[x, 0].
In the case that (M, η) is a real symplectic vector space we observe that

the map η : M → k∗ defined by:

<η(m), x>= 1
2
η(x ·m,m) for m ∈M and x ∈ k (10)

is moment map for the action of K. In our case we identify g∗ = HomC(g,C)
with g = ⊕gl(Vi) through the pairing <(xi) , (yi)>=

∑
i Tr(xiyi). Since if

x, y ∈ u then <x, y >∈ R we can use the same pairing to identify u∗ =
HomR(u,R) with u. Moreover we observe that g = u⊕ iu. The i-component
of the moment maps µ, µI : S −→ g = ⊕gl(Vi) defined as in (10) have the
following explicit formulas:

µi(B, γ, δ) =
∑

h∈H : h1=i

ǫ(h)BhBh̄ + γiδi = biai ,

µI,i(B, γ, δ) =
i

2

(
∑

h∈H : h1=i

BhB
∗
h −B∗

h̄
Bh̄ + γiγ

∗
i − δ∗i δi

)
=

i

2
(bib

∗
i − a∗i ai),

we observe that µ is a moment map for the action of G on the symplectic
manifold (S, ω) and that µI is a moment map for the action of U on the
symplectic manifold (S, ωI). Since ω = ωJ+iωK we observe that µ = µJ+iµK
splits in the sum of the two moment maps for the action of U on (S, ωJ) and
(S, ωK). It is common to group all these moment maps together and to define
an hyperKähler moment map

µ̃ = (µI , µ) : S −→ u⊕ g = (R⊕C)⊗R u.
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Finally we want to identify the z = ZU ⊕ ZG = ZU(u) ⊕ ZG(g) =
⊕i iR IdVi

⊕⊕i C IdVi
with Rn ⊕Cn and with (R⊕C)⊗Z P through:

∑

i∈I

( i
2
ξi, λi)IdVi

←→ (ξ1, . . . , ξn, λ1, . . . , λn)←→
∑

i∈I

(ξi, λi)ωi. (11)

In particular we consider an action of the Weyl group W on z through this
identification.

1.7. Quiver varieties as hyperKähler quotients. The equations µI =
ξ and µ = λ are called ADHM equations. For ζ = (ξ, λ) ∈ z, we define:

Lζ(d, v) = {s ∈ S : µ̃(s) = ζ}
and we observe that it is stable for the action of U , so, at least as a topological
Hausdorf space we can define the quiver variety of type ζ as

Mζ(d, v) = Lζ(d, v)/U(V ).

It will be convenient to define also Mζ(d, v) = ∅ if d, v ∈ Zn and there exists
i such that vi < 0 or di < 0. We want now to give a sufficient condition on
ζ for the smoothness ofMζ .

Lemma 1.1. Let µ̃(s) = ζ ∈ z then

dµ̃s is surjective ⇐⇒ dµs is surjective ⇐⇒ StabG{s} = {1G}
Proof. 3) ⇒ 2) is a general fact: indeed if dµs is not epi there exists

x ∈ g such that <x, dµs(v)>= 0 for each v ∈ TsS. But since µ is a moment
map this is equivalent to σx(s) = 0 and this implies exp(tx)s = s for each
t ∈ C.

2) ⇒ 3). Let g = (gi) ∈ G such that gs = s and set Xi = gi − IdVi
and

x = (Xi) ∈ g. By explicit formula we can check σx(s) = 0 and <Im dµs, x>,
so x = 0 and g = 1G.

1) ⇒ 2) is trivial.
3) ⇒ 1) is a general fact: let ζ = (ξ, λ) and set N = µ−1(λ). Since dµs is

an epimorphism in a neighborhood of s (N,Reh) is a smooth riemmannian
manifold and TsN = ker dµs is stable by the action of I, so ωI |TsN is a non
degenerate symplectic form. Now working as in 3)⇒ 2) we see that dµIs|TsN

is surjective from which 1) follows. �

Remark 1.2. We observe that for 1) ⇒ 2) ⇐⇒ 3) we don’t need
µ̃(s) ∈ z and that for 3)⇒ 1) it’s enough that µ(s) ∈ ZG(g).

Definition 1.3. Let nowH = {ζ = (ξ, λ) ∈ z : ∃u ∈ Nn−{0} such that
0 ≤ ui ≤ vi and <ξ , u∨>=<λ , u∨>= 0}. H is a union of a finite number of
real subspace of z of codimension 3.

Lemma 1.4. If ζ ∈ z−H and µ̃(s) = ζ then StabG{s} = 1G.

Proof. For the lemma above it’s enough to prove that dµs is an epimor-
phism. Let s = (B, γ, δ) and suppose that dµs it’s not an epimorphism. As
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we saw above this is equivalent to the existence of a nontrivial x = (Xi) ∈ g

such that σx(s) = 0: in our case this is equivalent to the following equations:

Xiγi = 0 δiXi = 0 and Xh1Bh = BhXh0. (12)

Now we divide the proof in two cases according to the nilpotency of the maps
Xi.

First case: Xi nilpotent for each i. Since Xs
i solve the same equations

we can assume that X2
i = 0. We can choose an an orthogonal decomposition

Vi = Pi ⊕ Qi ⊕ Ri such that Pi ≃ Qi ≃ Ui and Xi

∣∣
Pi

= Xi

∣∣
Ri

= 0 and Xi

∣∣
Qi

it’s the identity map from Qi = Ui to Pi = Ui. From equations (12) it follows
that respect this decomposition the maps Bh, γi, δi have the following shape:

Bh =



bh b12h b13h
0 bh 0
0 b32h b33h


 , γi =



γ1
i

0
γ3
i


 and δi =

(
0 δ2

i δ3
i

)

If ui = dimC Ui and ξiIdVi
= −2iµI,i(s) we have that

n∑

i=1

ξiui =

n∑

i=1

Tr
(
ξiIdVi

∣∣
Pi

)

=

n∑

i=1

Tr

(
∑

h :h1=i

[
BhB

∗
h − B∗

h̄Bh̄

]
PiPi

+ [γiγ
∗
i − δ∗i δi]PiPi

)

=
∑

h∈H

Tr
(
bhb

∗
h + b12h b

12
h

∗
+ b13h b

13
h

∗ − b∗
h̄
bh̄ + γ1

i γ
1
i

∗)

=
∑

h∈H

Tr
(
b12h b

12
h

∗
+ b13h b

13
h

∗
+ γ1

iγ
1
i

∗) ≥ 0

since Tr(ϕϕ∗) ≥ 0 for any ϕ. On the same way we see that

n∑

i=1

ξiui =

n∑

i=1

Tr
(
ξiIdVi

∣∣
Qi

)
=
∑

h∈H

Tr
(
−b12h

∗
b12h − b32h

∗
b32h − δ2

i

∗
δ2
i

)
≤ 0,

so
∑

i∈I ξiui = 0. Finally if λi = µi(s) we have that

n∑

i=1

λiui =

n∑

i=1

Tr
(
ξiIdVi

∣∣
Pi

)
=

n∑

i=1

Tr

(
∑

h : h1=i

ǫ(h)BhBh̄ + γiδi

∣∣∣
Pi

)

=
n∑

i=1

Tr

(
∑

h : h1=i

ǫ(h)Bh

∣∣∣
Pi

Bh̄

∣∣∣
Pi

)
=
∑

h∈H

Tr

(
ǫ(h)Bh

∣∣∣
Pi

Bh̄

∣∣∣
Pi

)
= 0.

So if u = (u1, . . . , un) we have that u 6= 0, 0 ≤ ui ≤ vi and that
<ξ, u∨>=<λ, u∨>= 0.

Second case: there exists i0 such thatXi0 is not nilpotent. Let {α1, . . . , αm}
the set of the eigenvalues of the maps Xi and let α1 6= 0. Taking a power of



20 1. GENERAL PROPERTIES OF QUIVER VARIETIES

X we can assume also that α2
i 6= α2

j if i 6= j. Let ξi, λi as in the first step
and Vi = ⊕α∈AVi,α the spectral decomposition of Vi. We observe that:

Bh(Vh0,α) ⊂ Vh1,α, Im γi ⊂ Vi,0 and Vi,α ⊂ ker δi if α 6= 0.

We have that

∑

i∈I

ξi Tr(X2
i ) =

∑

i∈I

Tr

(
Xi

(
∑

h :h1=i

BhB
∗
h − B∗

h̄
Bh̄ + γiγ

∗
i − δ∗i δi

)
Xi

)

=
∑

h∈H

Tr (BhXh0B
∗
hXh1)−

∑

h∈H

Tr
(
Xh1B

∗
h̄Xh0Bh̄

)
= 0

In the same way we obtain
∑

i∈I ξi Tr(X2r
i ) = 0. Now let uij = dim(Vi,αj

),
we have that

0 =
∑

i∈I

ξi Tr(X2r
i ) =

∑

i∈I

ξi

(
m∑

j=1

uijα
2r
j

)
=

m∑

j=1

(
∑

i∈I

ξiuij

)
α2r
j

for any r > 0, and since α2
i 6= α2

j if i 6= j we obtain
∑

i∈I ξiui1 = 0. Working
as in the first step we obtain also

∑
i∈I λiui1 = 0 and so if u = (u11, . . . , un1)

we have that u 6= 0, 0 ≤ ui ≤ vi and that <ξ, u∨>=<λ, u∨>= 0. �

As a consequence of the above lemma and general results on on hy-
perKähler manifolds (for example [7] or [8]) we obtain the following corollary.

Corollary 1.5. If ζ ∈ z−H then if it is not empty Mζ(d, v) is a smooth
hyperKähler manifold of real dimension 2 <2d− v, v∨>.

2. Geometric invariant theory and moment map

In this section we explain the relation between the moment map and the
GIT quotient proved by Kempf, Ness [12], Kirwan [20] and others. Since I
couldn’t find a perfect reference for our purpose I prefere to give proofs of
these facts.

Let X be an affine variety over C and G a reductive group acting on X.
We can assume that X is a closed subvariety of a vector space V where G
acts linearly. Let h be an hermitian form on V invariant by the action of
a maximal compact group U of G and define a real U -invariant symplectic
form on V by

η(x, y) = Reh(ix, y).

Then we can define a moment map µ : V −→ u∗ = HomR(u,R) as in (10):

<µ(x), u>= 1
2
η(u · x, x).

We observe that the real symplectic form η resctricted to a complex subman-
ifold is always non degenerate and that µ restricted to the non singular locus
of X is a moment map for the action of U on X.

Now let χ be a multiplicative character of G. We observe that for all
g ∈ U we have |χ(g)| = 1 so i dχ : u −→ R. In particular we can think to
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i dχ as an element of u∗. Morover we observe that it is invariant by the dual
adjoint action, hence it makes sense to consider the quotient:

M = µ−1(i dχ)/U.

On the other side we can consider the GIT quotient. We remind the
definition. If ϕ is a character of G we consider the line bundle Lϕ = V × C

on V with the following G-linearization:

g(x, z) = (g · x, ϕ(g)z).

An invariant section of Lϕ is an algebraic function f : V −→ C such that
f(gx) = ϕ(g)f(x) for all g ∈ G and x ∈ V . We use the same symbol Lϕ
also for the restriction of Lϕ to X. Given a rational action of G on C-vector
space A we define

Aϕ,n = {a ∈ A : g · a = ϕ−n(g)a for all g ∈ G},

Aϕ =
∞⊕

n=0

Aϕ,n as a graded vector space.

Hence we have that H0(X,Lϕ)
G = C[X]ϕ,1. We observe that if I is the ideal

of algebraic function on V vanishing on X then

H0(X,Lϕ)
G =

H0(V, Lϕ)
G

Iϕ,1
.

This last fact can be proved easily for example averaging a ϕ equivariant
function f on X in the following way:

f̃(v) =

∫

U

ϕ−1(u)f(u · v) du.

Definition 1.6. A point x of X is said to be χ-semistable if there exist
n > 0 and f ∈ H0(X,L⊗n

χ )G such that f(x) 6= 0. We observe that by the
remark above a point of X is χ-semistable if and only if is χ-semistable as a
point of V . We call Xss

χ (resp. V ss
χ ) the open subset of χ-semistable points

of X (resp. V ).

We observe that we have an isomorphism Z ≃ Hom(C∗,C∗) given by
m −→ {t 7→ tm}. Hence we can define a perfect pairing <, >: Hom(C∗, G)×
Hom(G,C∗) −→ Z by <λ, χ>= χ ◦ λ.

The following lemmas are a consequence of Hilbert-Mumford criterion
and they are completely similar to the ones in [24].

Lemma 1.7. 1) A point x of X is χ-semistable if and only if G(x, 1) ⊂
Lχ−1 does not intersect X × {0} ⊂ Lχ−1.

2) A point x of X is χ-semistable if and only if for all one parameter
subgroup λ : C∗ −→ G if there exists the limit limt→0 λ(t) ·x then <λ, χ>≥ 0.
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Lemma 1.8. Let x, y ∈ Xss
χ then

1) Gx is a closed orbit in Xss
χ if and only if G(x, 1) is closed in Lχ−1 if

and only if for all one parameter subgroup λ : C∗ −→ G such that <λ, χ>= 0
if there exists the limit limt→0 λ(t) · x = y then y ∈ Gx.

2) Gx ∩ Gy ∩ Xss
χ 6= ∅ if and only if there exists α ∈ C∗ such that

G(x, 1) ∩G(y, α) 6= ∅.

Lemma 1.9. There exists a good quotient of Xss
χ by the action of G and

we have that

Xss
χ //G = Proj C[X]χ.

Moreover Proj C[X]χ is a finetely generated C-algebra and a projective map

π : Xss
χ //G −→ X//G = Spec C[X]G.

In the case of χ ≡ 1 the following fact is well known:

Proj C[X]χ = Spec C[X]G = µ−1(0)/U.

We want generalize this result for a general χ. Our construction coincide
with the one in [12] in the case χ ≡ 1.

If v is an element of V we define a map pv : G −→ R:

pv(g) = ‖g · v‖2 − 4 log
∣∣χ(g)

∣∣.
where ‖v‖2 = h(v, v). It is clear that pv is U -invariant.

Lemma 1.10.

dpv(g) = 0 ⇐⇒ µ(gv) = idχ.

Proof. Let Rg the right multiplication for g on G and let x = y+ iz an
element of g = u⊕ iu.

dpv(g)[Rg∗x] =
d

dǫ
h(exp(ǫx)g · v; exp(ǫx)g · v)− 4 log

∣∣χ(g)
∣∣
∣∣∣∣
ǫ=0

= 2η(z g v, g v)− 4 <dχ, iz>

= 4 <µ(gv)− idχ, z>
and the thesis follows. �

If z ∈ u we consider the function a : R −→ R defined by:

a(s) = pv(exp(izs)).

Since h is U -invariant there exist an orthonormal basis and real numbers
b1, . . . , bm such that

iz =




b1 0 . . . 0

0 b2
. . . 0

...
. . .

. . .
...

0 0 . . . bm


 .
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Hence in this basis we have the following explicit formulas:

a(s) =
m∑

j=1

e2bjs|vj|2 − 4 <dχ, iz> s

a′′(s) = 4

m∑

j=1

b2je
2bjs|vj |2.

From these formulas the following lemma follows easily.

Lemma 1.11. 1) If g is a critical point of pv then it is a global minimum.
2) If g, g′ are critical point of pv then

g′ ∈ U · g · StabG{v}.
3) StabG{v} is the complexification of StabU{v}.
Proof. Let’s prove 2): the proof of 1) and 3) are completely similar. We

can assume g = e and g′ = k exp(iz) where k ∈ U and z ∈ u. Moreover since
pv is U -invariant we can also assume k = e. Then we have that the function
a(s) defined above as a critical point in s = 0 and s = 1. Since a′′ ≥ 0 for all
s it follows that a′′ ≡ 0 between 0 and 1 . Then bj |vj| = 0 for all j. Hence
exp(iz) ∈ StabG{v}. �

Lemma 1.12. If pv has a minimum then Gv is a closed orbit in Xss
χ .

Proof. It is clearly enough to study the case X = V and we can assume
also that the minimum is obtained in e ∈ G.

First step: v ∈ V ss
χ . By absurd and lemma 1.7 suppose that (x, 0) ∈

G(v, 1) ⊂ Lχ−1 . Then there is a sequence gn of element of G such that
gn(v, 1) −→ (x, 0). Then pv(gn) −→ −∞

Second step: if G = T is a torus then the theorem is true. By lemma
1.8 we must prove that if λ is a one parameter subgroup of G such that
<λ, χ>= 0 and there exists the limit x of λ(t) · v for t → 0 then x ∈ Gv.
First of all I observe that in T there is a unique maximal compact subgroup
U = {g ∈ T : {gn} is compact }. Hence λ(S1) ⊂ U and there exist an
othonormal basis of V and integers number b1, . . . , bm such that

λ(t) =




tb1 0 . . . 0

0 tb2
. . . 0

...
. . .

. . .
...

0 0 . . . tbm


 .

Since there exists the limit x = limt→0 λ(t) · v then bi ≥ 0 if the i-component
of v is different from 0, Moreover if x 6= v there exist i such that the i-
component of v is different from 0 and bi > 0. Hence h(x, x) < h(v, v) and
limt→0pv(λ(t)v) < pv(e) against the minimality of pv in e.

We can now prove the theorem in the general case. We use the Cartan
decomposition G = UTU where T is an algebraic maximal torus in G that
is the complexification of a maximal compact subtorus of U . By absurd and
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lemma 1.8 we can assume that G(x, α) is the closed orbit in G(v, 1) ⊂ Lχ−1

and that (x, α) /∈ G(v, 1). Since G(x, α) is closed there exists a T closed orbit
in Lχ−1 contained in G(x, α). Without loss of generality we can assume that
this is precisely the orbit of (x, α). Moreover by the first step we have α 6= 0.

Now observe that by U -invariance of pv for all z ∈ Uv the function pz
has a minimum in e. By the result claimed in the second step T (z, β) is
a closed orbit in Lχ−1 for all β 6= 0. Then for all z̃ ∈ U(v, 1) there exists
fz̃ ∈ C[Lχ−1 ]T such that fz̃(z̃) = 1 and fz̃(w, α) = 0 . Let set

Uz̃ =
{
ỹ ∈ Lχ−1 :

∣∣fz̃(ỹ)
∣∣ > 1

2

}
.

The collection of open sets {Uz̃} covers the compact set U(v, 1). Then there
exist z̃1, . . . , z̃N ∈ U(v, 1) such that U(v, 1) ⊂ Uz̃1∪· · ·∪Uz̃N

. Let now f(ỹ) =∑m

i=1

∣∣fz̃i
(ỹ)
∣∣ then by T -invariance |f(ỹ)| > 1

2
on TU(v, 1) and f(w, α) = 0.

Then

TU(v, 1) ∩G(w, α) = ∅

and since the action U×V −→ V is proper and G(w, α) is obviously U stable
it follows that

G(v, 1) ∩G(w, α) ⊂ U TU(v, 1) ∩G(w, α) = ∅

and we have obtained an absurd. �

Lemma 1.13 (Neeman [23]). Let us consider the map ϕ : V −→ V//G×R

given by

ϕ(v) = (π(v), |µ(v)|).
The map ϕ is proper.

Proof. Let f1, . . . , fr be homogenous generators of the algebra C[V ]G of
positive degree. Define the map f = (f1, . . . , fr) between V and Cr and the
map ψ = (f, µ) : V −→ Cr×R. It is clearly enough to prove that ψ is proper.
By absurd suppose that there exists a sequence xn such that ‖xn‖ −→ +∞
and ψ(xn) −→ y. Let yn = xn/‖xn‖. Since ‖yn‖ = 1 for all n we can assume
(eventually we take a subsequence) that yn −→ y. By the homogeneity of µ
and of the polinomials fi we have that ψ(y) = limψ(yn) = 0. Hence ψ(y) = 0
and by standard properties of V//G we have that 0 ∈ Gy. Moreover lemmas
1.10,1.12 µ(y) = 0 implies that Gy is a closed orbit in V ss

1 = V . Hence
‖y‖ = 1, and Gy is a closed orbit in V and 0 ∈ Gv which is cleraly an
absurd. �

Proposition 1.14. The inclusion µ−1(idχ) ⊂ Xss
χ induces a closed em-

bedding

µ−1(idχ)/U →֒ Xss
χ //G.

Proof. By lemmas 1.10 and 1.11 Z = µ−1(idχ) = {x ∈ X : px has a
minimum in e}. Moreover by lemma 1.12 Z ⊂ {x ∈ Xss

χ : Gx is closed in
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Xss
χ }. Then there exist continous maps π, ψ such tha the following diagram

commute:

Z

p0

��

⊂

π

$$I

I

I

I

I

I

I

I

I

I

Xss
χ

p1

��

Z/U
ψ

// Xss
χ //G

.

Now we observe that by lemma 1.13, and the fact that the projection the
maps π, ψ are proper. So it is enough to prove that ψ is injective.

Let x, y be elements of Z such that π(x) = π(y). Then Gx ∩ Gy =
Gx ∩ Gy ∩Xss

χ 6= ∅. Then y = gx and the function px has a minimum in g
and by lemma 1.11 y ∈ Ux. Hence p0(x) = p0(y).

�

Remark 1.15. In the case χ ≡ 1 it is easy to prove that the map ϕ :
Z/U −→ Xss

χ //G is surjective. In general the following are equivalent:

(1) ϕ is surjective,
(2) if Gv is a closed orbit in Xss

χ then pv has a minimum,

(3) if v ∈ Xss
χ then i dχ ∈ µGv.

In the case of the 1-dimensional torus it is easy to prove the general statement
but I was not able to prove the surjectivity in general.

3. Quiver varieties as algebraic varieties

In this section following [22] we introduce the varieties M0(d, v), M(d, v)
and M−(d, v) that will be the main object of study in this thesis. More in
general for χ : G → C∗ a character and for λ ∈ Z = ZG(g) we will define a
variety Mχ,λ(d, v) and we will set

M0 = M1,0 M = M+ = Mdet,0 and M− = Mdet−1,0,

where det is the character of G defined by det(gi) =
∏

det(gi). As we
will shortly explain the construction of Mχ,λ is an algebraic version of the
construction described in section 1.7.

Definition 1.16. For λ ∈ Z = ZG(g) and χ a character of G we define

Λλ(d, v) = µ−1(λ) ⊂ S with reduced structure,

Rχ,λ,n = {f ∈ C[Λλ] : f(gs) = χn(g)f(s)} and Rχ,λ =
∞⊕

n=0

Rχ,λ,n,

Mχ,λ(d, v) = Mχ,λ = Proj Rχ,λ =
(
Λλ

)ss
χ
//G,

πχ,λ : Mχ,λ −→M1,λ = Λλ//G.

Also in this case will be convenient to define Mχ,λ = ∅ if d, v ∈ Zn and there
exists i such that vi < 0 or di < 0.
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3.1. The coordinate ring of M0. As we have just seen M0 is the affine
variety Λ0//G. A set of generator of its coordinate ring was given by Lusztig
in [18] theorem 1.3. In this section we describe his result and we introduce
some notation.

Definition 1.17. A B-path α in our graph is a sequence h(m) . . . h(1)

such that h(i) ∈ H and h
(i)
1 = h

(i+1)
0 for i = 1, . . . , m − 1. We define also

α0 = h
(1)
0 , α1 = h

(m)
1 and we say that the degree of α is m. If α0 = α1 we

say that α is a closed B-path. The product of path is defined in the obvious
way.

An admissible path [β] in our graph is a sequence [i
rm+1

m+1 α
(m)irmm . . . α(1)ir11 ],

that we write between square brackets such that ij ∈ I, α(j) are B-path,

rj ∈ N and α
(j)
0 = ij and α

(j)
1 = ij+1 for j = 1, . . . , m. We consider also

the “empty” admissible paths indiced by elements of I: [∅i]. We define
[β]0 = i1, [β]1 = im+1 and [∅i]0 = [∅i]1 = i. The degree of [β] is 2 +∑m+1

j=1 rj +
∑m

j=1 degree(α
j) and the product of paths is defined by:

[β] · [β ′] =

{
0 if [β ′]1 6= [β]0
[βiβ ′] if [β ′]1 = [β]0 = i

Given aB-path α = h(m) . . . h(1) and an admissible path β = [i
rm+1

m+1 α
(m) . . .

. . . ir11 ] we define an evaluation of α and β on S in the following way: if
s = (B, γ, δ) ∈ S then

α(s) = Bh(m) ◦ · · · ◦Bh(1) ∈ Hom(Vα0 , Vα1)

β(s) = δim+1 ◦ (γim+1
◦ δim+1)

rm+1 ◦ α(m)(s) ◦ (γim ◦ δim)rm ◦ · · · ◦
◦ · · · ◦ α(1)(s) ◦ (γi1 ◦ δi1)r1 ◦ γi1 ∈ Hom(Dβ0

, Dβ1
).

For this reason sometimes instead of writing α = h(m) . . . h(1) we will write
α = Bh(m) · · ·Bh(1) and if β = [i

rm+1

m+1 . . . i
r1
1 ] we will write δim+1(γim+1

δim+1)
rm+1

. . . γi1.
The algebra R is the vector space spanned by the admissible path with

the product induced by the product of path described above. Finally once
λ = (λ1, . . . , λn) is fixed we define the associative algebra Rλ = R/Iλ of ad-
missible polynomials where Iλ is the bisided ideal generated by the elements
[αθiα

′]− λi[αα′] where α, α′ are B-path such that α0 = i = α′
1 and

θi =
∑

h :h1=i

ǫ(h)[hh̄] + [i].

If f is an element of R or Rλ and there exist i, j ∈ I such that:

f =
∑

β :β0=i β1=j

aβ[β]

we say that f is of type (i, j).
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Remark 1.18. We observe that the evaluation on S is a morphism of
algebra from R to the algebra defined by the morphisms of the category of
vector spaces. We observe also that the evaluation of Rλ on elements of
Λλ is well defined. Moreover if f is of type (i, j) we observe that f(s) ∈
Hom(Di, Dj).

Theorem 1.19 (Lusztig, [18] theorem 1.3). The ring C[S]G is generated
by the polynomials:

s 7−→ Tr (α(s)) for α a closed B-path

s 7−→ ϕ (β(s)) for β an admissible path and ϕ ∈
(
Hom(Dβ0

, Dβ1
)
)∗

3.2. GIT description of Mχ,λ. Given a character χ of G we say that
a point s ∈ S is χ-semistable if there exist n > 0 and f ∈ Rχ,λ,n such that
f(s) 6= 0. If λ is a central element λ we define:

Λχ,λ = {s ∈ Λλ : s is χ− semistable}
For χ = det, det−1 we will use the following notation:

Λ+
λ = Λdet,λ and Λ−

λ = Λdet−1,λ.

As we explained in section 2 we have that Mχ,λ is a good quotient of the set
Λχ,λ of χ-semistable points of Λλ. In this section we want to give a more
explicit description of these points. We call

pχ,λ : Λχ,λ −→Mχ,λ

the quotient map and we set p0 = p1,p, p = p+ = pdet,0 and p− = pdet−1,0.

Definition 1.20. Let s = (B, γ, δ) ∈ S.
Let for each i ∈ I Ui ⊂ Vi a linear subspace. We say that U = (U1, . . . , Un)

is B-stable if Bh(Uh0) ⊂ Uh1 .
We define V + = V +(s) as the smaller B-stable subspace of V containing

Im γ. It is easy to see that

V +
i =

∑

α a B−path
α1=i

Imα(s)γα0
.

We define define V − = V −(s) as the bigger B-stable subspace of V con-
tained in ker δ. It is easy to see that

V −
i = ker

{ ∏

α a B−path
α0=i

δα1α(s) : Vi −→
∏

α a B−path
α0=i

Dα1

}
.

We say that s is stable if its G-orbit is closed in S and StabG{s} = {1}
and we define

Λreg
λ = {s ∈ Λλ : s is stable }.

We say that s is +stable if V + = V .
We say that s is −stable if V − = 0.
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Lemma 1.21. Let s = (B, γ, δ) ∈ S then:
1) s is +stable ⇐⇒ s is det-semistable,
2) s is −stable ⇐⇒ s is det−1-semistable,
3) s is stable ⇐⇒ s is + and −stable,
4) If s is + or − stable then StabG{s} = 1

Definition 1.22. Let H = {λ ∈ Z : ∃u ∈ Nn − {0} such that 0 ≤
ui ≤ vi and <λ , u∨>= 0}. H is a union of a finite number of complex
hyperplanes of Z = ZG(g).

As for the hyperKähler case it follows that if λ ∈ Z −H then M+
λ (d, v)

and M−
ζ (d, v) are two smooth variety of complex dimension

Proposition 1.23 ([21, 22]). 1) Let s = (B, γ, δ) ∈ Λλ then Gs is a
closed orbit in S if and only if there exists a deconposition V =

⊕m

j=0 V
(j)

such that

(1) V (j) is B-stable for any j,
(2) Im γ ⊂ V (0) and V (j) ⊂ ker δ for j 6= 0,
(3) (B

∣∣
V (0) , γ, δ

∣∣
V (0)) ∈ Λreg

λ (d, v(0)),

(4) sj = (B
∣∣
V (j), 0, 0) ∈ Λλ(0, v

(j)) for j 6= 0 and describes a closed orbit

in Λλ(0, v
(j)), moreover

(a) StabG(v(j)){sj} = C∗,

(b)
∑

h : h1=i
ImBh = V

(j)
i for any i ∈ I.

2) Let s = (B, γ, δ) ∈ Λ+
λ and s′ ∈ Λλ and suppose that Gs′ is closed

in S, then π(p(s)) = p0(s′) if and only if there exist g ∈ GL(v) and a B-
stable filtration with respect to s: 0 = V (m) ⊂ V (m−1) ⊂ . . . V (1) ⊂ V (0) = V
such that V (1) ⊂ ker δ and s′ = g · gr(s), where gr(s) ∈ Λλ is defined in the
following way:

gr(s) = (s(0), s(1), . . . , s(m−1)) ∈ Λreg
λ (d, V (0)/V (1))×

m−1∏

j=1

Λλ(0, V
(j)/V (j+1))

and s(0), s(j) are enduced by s.

Remark 1.24. In the case of graph of finite type it is not difficult to see
that the only closed orbit in Λ0(0, v) is 0 (see [18] or [22]). The same result
is true also for Λλ(0, v) (see [19]).

Remark 1.25 (De Concini). In the case d = 0 we can look at the space
S(0, v) as representation of the graph (I,H). It is easy to see that Gs is a
closed orbit if and only if s is the direct sum of simple representation of this
graph.

3.3. HyperKähler description of Mχ,λ. If we apply the results of
section 2 we obtain:

M0,λ ≃M1,λ,

Midχ,λ →֒ Mχ,λ.
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Moreover proposition 3.5 in [21] proved that we have isomorphisms also in
the case of χ = det and χ = det−1.

4. Weyl group action and reduction to the dominant case

It is easy to check that if v ∈ Q and d ∈ P̃ then for all w ∈ W we
have that w(v − d) + d ∈ Q. So it makes sense to consider the variety
Mwζ(d, w(v − d) + d). In [21] §9 Nakajima proved the following theorem in
the case of graph of finite type (we say that a graph is of finite type if C is
the Cartan matrix of a Dynkin diagram of type A,D,E).

Theorem 1.26. If ζ ∈ z−H and w ∈W then there exists an isomorphism
of differential manifolds:

Φw,ζ : Mζ(d, v) −→Mwζ(d, w(v − d) + d).

Moreover Φw′,wζ ◦ Φw,ζ = Φw′w,ζ.

The proof of Nakajima is purely analytic but he suggests that the same
result can be achieved for a general graph using reflections functors. These
methods were also used by Lusztig in [19] to obtain a very similar result.

4.1. Reduction to the dominant case for M0. As we saw above we
can reduce the study of topological properties of M(d, v) to the case d − v
dominant. Although we don’t have an action of the Weyl group in the case
of M0, is still true that we can reduce the study of M0 to the dominant
case. Moreover in this case our construction will be algebraic and not only
of C∞-manifold.

To prove this result we consider the following general construction: let
v′ ≤ v (that is v′i ≤ vi for each i) and fix an embedding V ′

i →֒ Vi and a
complement Ui of V ′ in Vi, then we can define a map ̃ : S(d, v′) −→ S(d, v)
through:

̃(B′, γ′, δ′) =

((
B′ 0
0 0

)
,

(
γ′

0

)
,
(
δ′ 0

))
(13)

where the matrices of the new triple represents the maps described through
the decomposition Vi = V ′

i ⊕ Ui. It is easy to see that this map enduces a
map v

′

v =  : M0(d, v′) −→M0(d, v).

Lemma 1.27.  is a closed immersion

Proof. We prove that the map ♯ : C[Λ0(d, v)]
G(v) −→ C[Λ0(d, v

′)]G(v′)

is surjective. By proposition 1.19 this follows by the following two identities:

Tr (α ((s))) = Tr (α(s)) and β ((s)) = β(s)

for each B-path α and for each admissible path β. �

Lemma 1.28. If 2vi > di +
∑

j∈I aijvj and v′ = v − αi then  is an
isomorphism of algebraic varieties
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Proof. It’s enough to prove that  is surjective. Let s = (B, γ, δ) ∈
Λ0(d, v) and consider the sequence (see (5) for the notation) :

Ti
bi−−−→ Vi

ai−−−→ Ti.

Since biai = 0 and 2 dimVi > dimTi we have that bi is not surjective or that
ai is not injective.

Suppose that bi is not surjective, then up to the action of G(V ) we can
assume that Im bi ⊂ V ′

i . Then, for t ∈ C∗ consider gt = (gj,t) ∈ G(V ) with

gi =

(
IdV ′

i
0

0 t−1

)
and gj = IdVj

for j 6= i.

Then

(1) gi,tBh = Bh if h1 = i and giγi = γi, since ImBh, Im γi ⊂ Im bi ⊂ V ′
i ,

(2) ∃ limt→0Bhg
−1
i,t = Bh if h0 = i and δig

−1
i = δi

So ∃ limt→0 gts = s′ and it is clear that s′ ∈ ̃(Λ0(d, v
′)) and that p0(s) =

p0(s
′) ∈ Im .
If bj is surjective and ai is not injective the argument is similar. �

Applyng this lemma repetedly we obtain the following result.

Proposition 1.29. ∀v ∃v′ such that M0(d, v) ≃ M0(d, v′) and d − v′ is
dominant.

Remark 1.30. This result seems to be new.

5. Nakajima’s construction

In this section we describe Nakajima’s construction of integrable highest

weight representation of the algebra Ũ . All the results of this section are due
to Nakajima [22].

5.1. Some remark on M0. We observe that if v ≤ v′ ≤ v′′ then the
embeddings jvv′ : M0(d, v) →֒ M0(d, v′) defined in section 4.1 satisfy jv

′

v′′◦jvv′ =
jvv′′ . So, at least as a set we can define:

M0(d) = lim
−→
v

M0(d, v).

We observe that in the case of graphs of finite type (A,D,E), as a consequence
of lemma 1.28 there exists v such that M0(d, v) = M0(d). In the general case
although this limit has not a structure of an algebraic variety we will use
for example the notation M(d, v)×M0(d) M(d, v′) to mean M(d, v)×M0(d,v′′)

M(d, v′) with v′′ ≥ v, v′.
We observe also that working as in [22] Lemma 3.27 it is easy to prove

that ∀ d and ∀x ∈ M0(d) there exists a smallest v such that x ∈ M0(d, v).
We call this minimal dimension vector vmin(x).

If we fix d, v we define also M0
reg(d, v) as the (geometric!) quotient of

Λreg
0 by G. It is an open set (possibly empty) of M0(d, v). We define also

M0
sreg(d) =

⋃
vM

0
reg(d, v) and we observe that the last union is a disjoint
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union and that more precisely: x ∈ M0
sreg(d) ⇐⇒ x ∈ M0

reg(d, vmin(x)).

By remark 1.24 in the case of a graph of finite type we haveM0(d) = M0
sreg(d).

5.2. The convolution algebra. We fix the vector d. Given v and v′

we define:

∆(d, v) is the diagonal in M(d, v)×M(d, v),

Z(d, v, v′) = M(d, v)×M0(d) M(d, v′),

Zreg(d, v, v
′) = Z − {(x1, x2) ∈ Z : π(x1) /∈Msreg(d)},

using the convention explained in the previous section.

Definition 1.31. Since we can have an infinite number of components,
in order to define the convolution algebra H∗(Z) some special care has to be
taken. We define

H∗(Z(d)) = Π̃
v,v′
H∗(Z(d, v, v′))

where Π̃v,v′ A(v, v′) = { (av,v′) ∈
∏

v,v′ A(v, v′) : ∀ v av,v′ = 0 for all but

finitely many v′ and ∀ v′ av,v′ = 0 for all but finetely many v}. If α ∈
Hi(Z(d, v, v′)) and β ∈ Hi(Z(d, v′, v′′)) we can define

α ∗ β = p13 ∗ (p∗12(α) ∩ p∗23(β)) ∈ Hi+j−2dimM(d,v′)(Z(d, v, v′′))

with the usual convention (see for example [2]). We observe now that

(αv,v′)v,v′ ∗ (βv,v′)v,v′ =

(
∑

v′′

αv,v′′ ∗ βv′′,v′
)

v,v′

(14)

defines an associative algebra structure with unity on H∗(Z(d)).
If x ∈M0(d, v) we define M(d, v)x = π−1(x) ⊂M(d, v) and

H∗(M(d)x) =
⊕

v

H∗(M(d, v)x)

and we observe that the usual convolution

Hi(Z(d, v, v′))×Hj(M(d, v′)x) −→ Hi+j−2dimM(d,v′)(M(d, v)x)

extend to an action of H∗(Z(d)) on H∗(M
+(d)x). In the case x = 0 we will

use L(d, v) for the fiber M(d, v)0. We define also

Htop(Z(d)) = Π̃
v,v′

HdimM(d,v)+dimM(d,v′)(Z(d, v, v′))

Htop(M(d)x) =
⊕

v

HdimM(d,v)−dimM(d,vmin(x))(M(d, v)x)

Htop−i(M(d)x) =
⊕

v

HdimM(d,v)−dimM(d,vmin(x))−i(M(d, v)x)

Remark 1.32. If x /∈Msreg(d) then the right definition of top should be
different from the one given above (but in this thesis we are not interested
in this case).



32 1. GENERAL PROPERTIES OF QUIVER VARIETIES

Proposition 1.33 ([22]). 1) Let x ∈ M0
reg(d, v

0) ⊂ M0(d, v) then if it

is not empty M(d, v)x is of pure dimension 1
2
(dimM(d, v)− dimM(d, v0))

and it is a lagrangian subvariety of M(d, v).
2) Z is lagrangian.
3) Zreg(d, v, v

′) is of pure dimension 1
2
(dimM(d, v) + dimM(d, v′)).

4) L(d, v)× L(d, v′) ⊂ Zreg(d, v, v
′).

5) ∆(d, v) the diagonal of M(d, v)×M(d, v) is a component of Z(d, v, v) of
dimension dimM(d, v) and 1d =

∑
v[∆(d, v)] is the unit element of H∗(Z(d)).

6) Htop(Z(d)) is a subalgebra of H∗(Z(d)) and Htop(M(d)) andHtop−i(M(d))
are Htop(Z(d))-submodules of H∗(M(d)).

5.3. The action of the enveloping algebra. To define the action of

U or Ũ we have to define some special subvarieties of Z(d) called Hecke
correspondences. In the following we fix the vector d.

Let v′ = v − αi and set

Pi(d, v) =
{(

(B′, γ′, δ′), (B, γ, δ)
)
∈M(d, v′)×M(d, v) : ∃ϕj : Vj −→ V ′

j

such that ϕh1
Bh = B′

hϕh0
ϕjγj = γ′j δj = δ′jϕj

}

P̃i(d, v) =
{
(s, s′) ∈ M(d, v)×M(d, v′) : (s′, s) ∈ Pi(d, v)

}
.

Lemma 1.34. Pi(d, v) is a closed nonsingular lagrangian subvariety of
M(d, v − αi)×M(d, v) contained in Z(d, v, v′).

We define

Ei =
∑

v

[Pi(d, v)] ∈ Htop(Z(d))

Fi =
∑

v

(−1)<d−v,α
∨

i>+1[P̃i(d, v)] ∈ Htop(Z(d))

for i ∈ I and

Aλ =

{
[∆(d, v)] if v = d− λ ∈ Q
0 otherwise

for λ ∈ X.

Theorem 1.35. There exists a unique algebra homomorphism U −→
Htop(Z(d)) such that :

ei 7−→ Ei fi 7−→ Fi h 7−→
∑

v

<d− v, h> [∆(d, v)]

for i ∈ I and h ∈ h.

Theorem 1.36. There exists a unique algebra homomorphism Ũ −→
Htop(Z(d)) such that :

ei1λ 7−→ Ei ∗ Aλ 1λfi 7−→ Aλ ∗ Fi 1λ 7−→ Aλ

for i ∈ I and λ ∈ X.
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5.4. The construction of the integrable highest weight modules.

By the results described in the section above, for any d, and for any x ∈
M0(d, v) we have an action of the algebra U (or Ũ) on H∗(M(d)x). In the
case x = 0 we call this module Nakajima’s module. We observe that we have
the following natural decompositions of this module:

H∗(M(d)x) =
⊕

v

H∗(M(d, v)x) and H∗(M(d)x) =
⊕

j

Htop−j(M(d)x).

The first decomposition is the weight space decomposition and more precisely
H∗(M(d, v)x) is the weight space of weight d− v. The second decomposition

is a decomposition in U (or Ũ) submodules.
In [22] the following theorem is proved.

Theorem 1.37. If x ∈ M0
reg(d, v

0) ⊂ M(d) then Htop(M(d)x) is the

irreducible module of heighest weight space d − v0 and with highest vector
[M0(d, v0)x].





CHAPTER 2

The homology of quiver varieties

In this chapter I describe some results on the homology of quiver varieties.

1. The dot action

In this section I follow [21]. Let’s set on S the following C∗-action:

t · (Bh, γi, δi) = (t
1−ǫ(h)

2 Bh, γi, tδi).

We call this action the dot action. This action commutes with the action
of GL(v) and leaves Λ0 and Λλ stable, so it induces actions on M0 and M
commuting with the projection π. Recall that L(d, v) = π−1(0) ⊂ M(d, v)
and denote by Fix(d, v) the subvariety of the fixed points under this action.
The following lemmas are easy to prove ([21]).

Lemma 2.1. 1) ∀ p ∈M0(d, v) there exists limt→0 t · p = 0.
2) For all p ∈M(d, v) there exists limt→0 t · p ∈ L(d, v).
3) If p ∈M0(d, v) and there exists limt→∞ t · p then p = 0.
4) For all p ∈M(d, v) there exists limt→∞ t · p if and only if p ∈ L(d, v).

Corollary 2.2. There is a deformation retraction of M(d, v) on L(d, v),
hence Hc

i (M(d, v)) = Hc
i (L(d, v)).

We consider now the connected component Fixτ (d, v) of the variety
Fix(d, v) of fixed points under the C∗-action on M(d, v)C∗

(here τ is just
an index). Since C∗ is reductive Fixτ (d, v) is a smooth subvariety of L(d, v).
Let

F+
τ = {p ∈M(d, v) : lim

t→0
t · p ∈ Fixτ},

F−
τ = {p ∈M(d, v) : lim

t→∞
t · p ∈ Fixτ}.

By lemma 2.1 {F+
τ }τ and {F−

τ }τ are respectively partitions of M(d, v) and
L(d, v) in locally closed algebraic subvarieties. If p ∈ Fixτ we have a C∗

action on TpM(d, v) and a decomposition TpM(d, v) = (TpM)− ⊕ (TpM)0 ⊕
(TpM)+ in C∗ submodules such that C∗ acts with negative weights on (TpM)−,

trivially on (TpM)0 and with positive weights on (TpM)+. Then

r−τ = dim (TpM)− r0
τ = dim (TpM)0 r+

τ = dim (TpM)+ (15)

35
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are independent of the choice of p in Fixτ and we have that

r0
τ = dimFixτ ,

p+
τ = lim

t→0
: F+

τ −→ Fixτ is a vector bundle of rank r+
τ on Fixτ ,

p−τ = lim
t→∞

: F−
τ −→ Fixτ is a vector bundle of rank r−τ on Fixτ .

We will use these partitions in order to get information on the homology of
M(d, v).

2. The contraction index for the dot action

In this section we will compute the numbers r−τ , r
0
τ and r+

τ . We approach
the problem from a more general point of view which will prove usefull later
on. Let (X,ω) be a smooth complex symplectic manifold and σ : G×X −→
X a free action of a reductive group G on X, with respect to which ω is
invariant and with moment map µ : X −→ g∗. Let Z = µ−1(0) and p : Z −→
M = Z/G the canonical projection. Since the action is free, as we saw in
lemma 1.1, Z and M are two smooth varieties of dimension dimX − dim g

and dimX−2 dim g respectively. Suppose now that another reductive group
H acts on X and that the actions of the two groups commute. If Z is H-
stable then the action of H on X induces a similar action on M (hence on
TM). Let now m = p(z) ∈M is fixed by this action. Then we have a linear
action of H on TmM which is the object of our interest. In case we can find
a group homomorphism ϕ : H −→ G such that ϕ(h)h · z = z for all h ∈ H ,
then we can define a new action τ : H × X −→ X as τ(h, p) = ϕ(h)h · p.
The H action on M induced by τ is equal to the one enduced by the original
action of H . Moreover τ(h, z) = z for all h, hence we get a linear action of H
on TzX. To avoid possible confusion in the future computation we emphasize
the role of ϕ and we write TzXϕ to denote this representation.

Lemma 2.3. Let X,Z, p,M,G,H, ω, z,m as above. Let χ : H −→ C∗ be
a character of H and ϕ : H −→ G a group homomorphism such that

(1) ω(h ·u, v) = χ(h)ω(u, h−1 ·v) for any h ∈ H and for any u, v ∈ TM ,
(2) ϕ(h)h · z = z for any h ∈ H.

Then in the representation ring of H we have

[TmM ] = [TzXϕ]− [χ⊗ ϕ ∗ (g∗)]− [ϕ∗(g)].

Proof. Consider the following two exact sequences:

0 −−−→ TzZ −−−→ TzXϕ

dµz−−−→ χ⊗ g∗ −−−→ 0,

0 −−−→ g
σz−−−→ TzZ −−−→ TmM −−−→ 0.
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where σz(x) = dσ(1G, z)[x, 0]. If we prove that σz and dµz are H-equivariant
we have proved the lemma. Let x ∈ g, u ∈ TzXϕ and h ∈ H then:

σz(h · x) =
d

dǫ
exp(ǫAdϕ(h) x)z

∣∣∣
ǫ=0

=

=
d

dǫ
ϕ(h)h exp(ǫx)ϕ(h−1)h−1z

∣∣∣
ǫ=0

= ϕ(h)∗h∗σz(x)

<dµz(h(u)), x> = ω(σz(x), h(u)) = ω(σz(x), ϕ(h)∗h∗(u)) =

= χ(h)ω(ϕ(h−1)∗h
−1

∗σz(x), u) = χ(h)ω(σz(h · x), u) =

=<χ(h)Ad∗ϕ(h)dµz(h(u)), x>

�

2.1. Computation of the index. Now we want to use lemma 2.3 to
compute the numbers r−τ , r

0
τ , r

+
τ .

Definition 2.4. If α = h(m) . . . h(1) is a B-path we define:

ℓ(α) = card{j : h(j) ∈ Ω}.
IF s = (B, γ, δ) ∈ Λ+

0 (d, v), p(s) ∈ Fixτ , j ∈ N and i ∈ I we define

V
(j)
i =

∑

α a B-path
ℓ(α)=j α1=i

Imα(s)γα0
.

We observe that by the stability condition for s we have
∑

j V
(j)
i = Vi for

any i.
If t ∈ C∗ then ∃1g ∈ G(V ) such that t · s = g · s. We observe also that if

v ∈ V (j)
i then:

g · v = g ·
( ∑

α a B-path
ℓ(α)=j α1=i

α(s)γα0
(dα)

)
=

∑

α a B-path
ℓ(α)=j α1=i

α(g · s)gα0γα0
(dα) =

=
∑

α a B-path
ℓ(α)=j α1=i

α(t · s)γα0
(dα) = tj

∑

α a B-path
ℓ(α)=j α1=i

α(s)γα0
(dα) = tj v

Hence V =
⊕

j V
(j) and

(1) Im γ ⊂ V (0),

(2) Bh(V
(j)
h0

) ⊂ V
(j)
h1

if h ∈ Ω,

(3) Bh(V
(j)
h0

) ⊂ V
(j+1)
h1

if h ∈ Ω,
(4) δ = 0.

We have just proved 1), 2), 3). To prove 4) we observe that for any s ∈ Λ+
0

such that p0(s) = 0 we have δ = 0 . Indeed if δi(vi) 6= 0 then by the stability
condition there exist elements dα ∈ Dα0 such that vi =

∑
α1=i α(s)γα0

(dα0).
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So we have δi(vi) =
∑

α1=i δiα(s)γα0
(dα0) and δiα(s)γα0

= [α](s) = 0 (since

p0(s) = 0). Now for t ∈ C∗ we define ϕ(t) ∈ G(V ) by:

(ϕ(t))
∣∣∣
V

(j)
i

= t−jId
V

(j)
i

and we observe that ϕ : C∗ −→ G(V ) is a group homomorphism and that

ϕ(t)t · s = s for any t ∈ C∗. (16)

We also set χ(t) = t and we observe that ω(t · s′, s′′) = χ(t)ω(s′, t−1 · s′′).
Now we apply lemma 2.3 to this situation. In this case S is a vector space

on which G,C∗ acts lineraly and g∗ is canonically identified with g. To avoid
confusion we call Sϕ the representation of C∗ defined by τ(h, s) = ϕ(h)h · s.

The decomposition V =
⊕

j V
(j) induces the following decomposition on

S, g:

Sϕ =
⊕

i∈I,k

Hom
(
Di, V

(k)
i

)
⊕
⊕

i∈I,k

Hom
(
V

(k)
i , Di

)
⊕

⊕

h∈Ω,k,l

Hom
(
V

(k)
h0
, V

(l)
h1

)
⊕
⊕

h∈Ω,k,l

Hom
(
V

(k)
h0
V

(l)
h1

)

g =
⊕

i∈I,k

Hom
(
V

(k)
i , V

(l)
i

)

Moreover this decompositions result to be a weight decompositions with re-
spect the C∗-action and

Hom
(
Di, V

(k)
i

)
has weight t−k ∀i ∈ I and ∀k,

Hom
(
V

(k)
i , Di

)
has weight tk+1 ∀i ∈ I and ∀k,

Hom
(
V

(k)
h0
, V

(l)
h1

)
has weight tk−l ∀h ∈ Ω and ∀k, l,

Hom
(
V

(k)
h0
, V

(l)
h1

)
has weight tk−l+1 ∀h ∈ Ω and ∀k, l,

Hom
(
V

(k)
i , V

(l)
i

)
has weight tk−l ∀i ∈ I and ∀k, l.

Now set v(k) the dimension vector of V (k) and:

aΩ
ij = card{h ∈ Ω : h0 = i and h1 = j}, and AΩ =

(
aΩ
ij

)
i,j∈I

,

aΩ
ij = card{h ∈ Ω : h0 = i and h1 = j}, and AΩ =

(
aΩ
ij

)
i,j∈I

.
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Applyng lemma 2.3 we obtain:

r0
τ =

∑

i∈I

div
(0)
i +

∑

h∈Ω,k

v
(k)
h0
v

(k)
h1

+
∑

h∈Ω,k

v
(k)
h0
v

(k+1)
h1

−
∑

i∈I,k

v
(k)
i v

(k)
i −

∑

i∈I,k

v
(k)
i v

(k+1)
i

= td v(0) +
∑

k

t
v(k)

(
AΩv

(k) + AΩv
(k+1) − v(k) − v(k+1)

)

r+
τ = td v +

∑

k>l

t
v(k)

(
AΩv

(l) − v(l)
)

+
∑

k≥l

t
v(k)

(
AΩv

(l) − v(l)
)

r−τ = td(v − v(0)) +
∑

k<l

t
v(k)

(
AΩv

(l) − v(l)
)

+
∑

k<l−1

t
v(k)

(
AΩv

(l) − v(l)
)

3. A result of H.Nakajima

In a lecture given at the IAS in Princeton Nakajima proved the following
result on the homology of M(d, v). Here Ai(X) is the Chow group of i-
dimensional cycle and clX : Ai(X) −→ H2i(X) is the cycle map ([5] ch. 19).

Theorem 2.5. 1) H2i+1

(
L(d, v),Z

)
= 0 for all i.

2) cl : Ai(X) −→ H2i(X,Z) is an isomorphism and H2i(X,Z) has no torsion
for all i.

Since a proof is not yet available in literature we will prove this result. In
the sequel we will need only point 1), but since the result seems to me very
nice and the proof furnishes the two properties almost together we will prove
also point 2). We need the following lemma of Ellingsrud and Strømme [4].

Lemma 2.6. Let X be a smooth projective variety, ∆: X →֒ X ×X the
diagonal embedding and X∆ its image, p1, p2 the projection from X × X to
X and q the projection from X to a point.

Suppose there exist αi, βi ∈ A∗(X) such that:

[X∆] =
∑

i

p∗1(αi) · p∗2(βi) (17)

and suppose also that {αi} is a set of minimal cardinality with this property,
then:

(1) αi generates A∗(X),
(2) A∗(X) is without torsion and αi is a Z-basis of A∗(X),
(3) q∗(αi · βj) = δij,
(4) cl : A∗(X) −→ H∗(X,Z) is an isomorphism (in particular Hodd(X,Z) =

0).

Proof. Let α ∈ A∗(X). We observe that

[X∆] · p∗2α = ∆∗∆
∗p∗2(α) = ∆∗∆

∗p∗1(α) = [X∆] · p∗1α.
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Hence

α = [X] · α = p1∗∆∗([X]) · α = p1∗([X∆] · p∗1(α)) = p1∗([X∆] · p∗2(α)) =

=
∑

i

p1∗(p
∗
1(αi) · p∗2(βi) · p∗2(α)) =

∑

i

αi · p1∗(p
∗
2(βi · α)).

Now by base chage we observe that p1∗p
∗
2(σ) = q∗q∗(σ) = q∗(σ)[X] where

q∗(σ) ∈ Z = A∗({•}), hence

α =
∑

i

αi · [X]q∗(βi · α) =
∑

i

q∗(βi · α)αi. (18)

So we proved 1). To prove 2) we observe that if mα = 0 then mq∗(βi ·α) = 0
for all i hence q∗(βi · α) = 0 and α = 0 by (18). Now by the condition
of minimal cardinality it follows that αi is a Z-basis of A∗(X). Moreover
applying formula (18) to α = αi we obtain 3).

To prove 4) we observe that if apply the cycle map to (17) we obtain

cl[X∆] =
∑

i

p∗1(cl(αi)) · p∗2(cl(βi)) (19)

and using the same argument as before we obtain that for all α ∈ H∗(X,Z)
we have α =

∑
i q∗(cl(βi) ∩ α)cl(αi). Hence H∗(X,Z) has no torsion, cl(αi)

generates H∗(X,Z) and by point 3) q∗(cl(αi) ∩ cl(βj)) = δij. Moreover if∑
aicl(αi) = 0 then 0 =

∑
i aiq∗(cl(αi) ∩ cl(βj) = ai. Hence cl(αi) is a basis

for H∗(X,Z) and cl is an isomorphism. �

Remark 2.7. The same result holds in K-theory.

Proof of theorem 2.5. First step. If H2i+1(Fixτ ,Z) = 0 for all i and
all τ , Hi(Fixτ ,Z) has no torsion for all i and all τ , and and cl : Ai(Fixτ ) −→
H2i(Fixτ ,Z) is an isomorphism for all i and all τ then the theorem is true.

We prove this claim by induction in the following way. We observe that
by equivariance the closures of the strata F−

τ is a union of strata F−
τ ′ of

smaller dimension. So we can give a complete order 4 to the index set {τ}
in such a way that Zτ =

⋃
τ ′4τ F−

τ ′ is closed. Since by properness of L(d, v)
the number of connected component of the fixed point locus is finite the
claim in the first step is a consequence of the following two remarks:

(1) p−∗
τ : Hj(Fixτ ,Z) −→ Hj+2r−τ

(F−
τ ,Z) and p−∗

τ : Aj(Fixτ ) −→ Aj+r−τ (F−
τ )

are isomorphisms commuting with the cycle map
(2) If Z is a closed subvarieties of Y and U = Y −Z then if Hodd(Z,Z) =

Hodd(U,Z) = 0, clU , clZ are isomorphisms and H∗(Z,Z) = H∗(U,Z)
are without torsion then the same is true for Y .

1. is a consequence of Proposition 2.7.8 in [11] and Theorem 3.3.1 in [5]. To
prove 2. we observe that if iZ and iU are the immersions of Z,U in Y then
we have a long exact sequence: Hi(Z,Z) −→ Hi(Y,Z) −→ Hi(U,Z) −→
Hi+1(Z,Z) . . . . Hence if Hodd(Z,Z) = Hodd(U,Z) = 0 then Hodd(Y,Z) = 0.
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Moreover we have the following commutative diagram with exact rows:

Ai(Z)
iZ∗

//

clZ
��

Ai(Y )
i∗U

//

clY
��

Ai(U) //

clU
��

0

0 // H2i(Z,Z)
iZ∗

// H2i(Y,Z)
i∗U

// H2i(U,Z) // 0

from which point 2. follows.
Second step. We call p1, p2 : M(d, v)×M(d, v) −→ M(d, v) the projections

on the first and the second factor. There exist an equivariant complex of C∗-
equivariant vector bundles on M(d, v)×M(d, v):

L(1) ρ−−−→ L(2) ψ−−−→ L(3) (20)

such that:

(1) L(j) =
⊕

k p
∗
1A

(j)
k ⊗ p∗2B

(j)
k and A

(j)
k , B

(j)
k are C∗ equivariant vector

bundles on M(d, v),
(2) ρp is injective and ψp is surjective for all p, and ψρ = 0,
(3) there exists an equivariant section ν of F = kerψ/ Im ρ such that

Zero(ν) is the diagonal ∆(d, v) ⊂ M(d, v) × M(d, v) and dνp :
TpM(d, v)× TpM(d, v) −→ Fp is surjective for all p ∈ ∆(d, v).

The existence of these object is proved in [22] §5.
Now we apply this fact and Lemma 2.6 to prove that Hodd(Fixτ ,Z) = 0,

that H∗(Fixτ ,Z) has no torsion and that cl : A∗(Fixτ ) −→ H∗(Fixτ ,Z) is
an isomorphism.

We restrict the complex (20) to Fixτ × Fixτ . If p ∈ Fixτ × Fixτ (resp.
Fixτ ) and E is a C∗-equivariant vector bundle on M(d, v) ×M(d, v) (resp.
M(d, v)) then there is an action of C∗ on Ep, so it makes sense to consider the
trivial part with respect to the C∗ action of the restriction of E to Fixτ×Fixτ
(resp. Fixτ ): we call this bundle E0. Hence we have a sequence of vector
bundles on Fixτ × Fixτ :

(
L(1)

)0 ρ0−−−→
(
L(2)

)0 ψ0

−−−→
(
L(3)

)0
.

moreover we observe that

(1)
(
L(j)

)0
=
⊕

k

(
p∗1A

(j)
k

)0 ⊗
(
p∗2B

(j)
k

)0
,

(2) ρ0
p is injective and ψ0

p is surjective for all p, and ψ0ρ0 = 0,

(3)
(
F
)0

= kerψ0/ Im ρ0

(4) ν
∣∣
F ixτ×F ixτ

: Fixτ × Fixτ −→ F 0,

(5) Zero(s0) is the diagonal ∆τ of Fixτ × Fixτ ,
(6) dν0 : TpFixτ × TpFixτ −→ F 0 is surjective.

1, 2 , 3 are clear. To prove 4. we observe that if p ∈ Fixτ × Fixτ then
t · ν(p) = ν(t · p) = ν(p). Now 5. follows from 4. and to prove 6. we ob-
serve that since dν is equivariant it respects the weight decomposition: dν =
⊕

l∈Z
dνp :

⊕
l∈Z

(
TpM(d, v)⊕Tp(M(d, v))

)l
−→ F l

p and since it is surjective
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it follows that: dνp :
(
Tp(M(d, v)×M(d, v))

)0

= Tp(Fixτ × Fixτ −→ F 0
p is

also surjective.
As a consequence of 4, 5, 6 we obtain that

ctop(F
0) = [∆τ ] ∈ A∗(Fixτ × Fixτ ).

As a consequence of 1, 2, 3, we obtain that there exist αi, βi ∈ A∗(Fixτ )
such that:

ctop(F
0) =

∑

i

p∗1(αi) · p∗2(βi)

If we apply Lemma 2.6 the Theorem follows. �

If we analyize the proof we observe that we proved the following usefull
and well known result.

Lemma 2.8. Let {Yτ}τ be a finite partition of the variety X in locally
closed subvariety such that:

(1) Yτ ′ ∩ Yτ 6= ∅⇒ Yτ ′ ⊂ Yτ ,
(2) for each τ there exist Zτ a closed subvariety of Yτ and an affine

bundle omomorphism pτ : Zτ −→ Yτ of rank rτ that is the identity
map on Zτ .

Then:

(1) Hodd(X,Z) = 0 ⇐⇒ Hodd(Zτ ,Z) = 0 for all τ ,
(2) Hodd(X) = 0 ⇐⇒ Hodd(Zτ ) = 0 for all τ ,
(3) If the condition in 1) is verified then H∗(X,Z) has no torsion if and

only if H∗(Zτ ,Z) has no torsion for all τ ,
(4) If conditions 1) and 3) are verified then

Hi(X,Z) =
⊕

τ

Hi−rτ (Zτ ,Z),

(5) If condition 2) is verified then

Hi(X) =
⊕

τ

Hi−rτ (Zτ ).

As a corollary of Nakajima’s theorem we obtain also:

Corollary 2.9.

Hc
i (M(d, v),Z) = Hi(L(d, v),Z) =

⊕

τ

Hi−r−τ
(Fixτ ,Z),

Hi(M(d, v),Z) =
⊕

τ

Hi−r+τ
(Fixτ ,Z).
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4. Multiplicativity

Let d′, d′′ ∈ Nn and d = d′ + d′′; in this section we prove the following
multiplicativity formula:

H∗(L(d)) = H∗(L(d′))⊗H∗(L(d′′)). (21)

I wish to tank I. Mirkovic for suggesting to me that such a property could
hold and that it should be proved using a C∗ action.

4.1. The embedding. Let d′, d′′, v′, v′′ ∈ Nn and d = d′+d′′, v = v′+v′′.
We fix vector spaces D′

i, D
′′
i , V

′
i , V

′′
i of dimensions d′i, d

′′
i , v

′
i, v

′′
i respectively and

we set Di = D′
i ⊕D′′

i and Vi = V ′
i ⊕ V ′′

i . We define

η̃ = η̃v′,v′′ : Λ0(d
′, v′)× Λ0(d

′′, v′′) −→ Λ0(d, v)

through the formula

η̃ ((B′, γ′, δ′), (B′′, γ′′, δ′′)) =

((
B′ 0
0 B′′

)
,

(
γ′ 0
0 γ′′

)
,

(
δ′ 0
0 δ′′

))
.

It’s clear that this map enducuce maps η, η0 as in the following commutative
diagram

M(d′, v′)×M(d′′, v′′)
η−−−→ M(d, v)

πd′,v′×πd′′,v′′

y πd,v

y

M0(d′, v′)×M0(d′′, v′′)
η0−−−→ M0(d, v)

Lemma 2.10. 1) η is injective.
2) If G(v′)s′ is a closed orbit in Λ0(d

′, v′) and G(v′′)s′′ is a closed orbit
in Λ0(d

′′, v′′) then G(v)η̃(s′, s′′) is a closed orbit in Λ0(d, v).
3) η0(s′, s′′) = 0⇒ (s′, s′′) = (0, 0) ∈M0(d′, v′)×M0(d′′, v′′).
4) η̃(t · x) = t · η̃(x), η(t · p) = t · η(p) and η0(t · p) = t · η0(p).
5) If η(s′, s′′) ∈ Fix(d, v)⇒ (s′, s′′) ∈ Fix(d′, v′)× Fix(d′′, v′′).
Proof. 1) It’s enough to prove that if x = (s′, s′′), x̄ = (s̄′, s̄′′) ∈ Λ+

0 (d′, v′)
×Λ+

0 (d′′, v′′) and if g ∈ G(V ) is such that g · η̃(x) = η̃(x̄), then g(V ′) ⊂ V ′

and g(V ′′) ⊂ V ′′. By the +-stability condition for s′ we have that for all
u′ ∈ V ′

i there exist elements dα ∈ D′
α0

such that u′ =
∑

α1=i α(s′)γ′α0
(dα).

Hence

g(u′) =
∑

α1=i

α(s̄′)γ̄′α0
(dα) ∈ V ′

i .

The same arguments works for V ′′.
2) and 3) are clear by proposition 1.23.
4) is trivial.
5) is a consequence of 4) and 1). �

Remark 2.11. We want to do some remark about the injectivity of η0.
Let

η♯ : C[Λ0(d, v)]
G(v) −→ C[Λ0(d

′, v′)]G(v′) ⊗C[Λ0(d
′′, v′′)]G(v′′)
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the adjoint map of η0. We observe that we have

Tr(α(·)) η♯

7−→ Tr(α(·))⊗ 1 + 1⊗ Tr(α(·)) ∀ α closed B-path ,

ϕ(β(·)) η♯

7−→ ϕ0(β(·))⊗ 1 + 1⊗ ϕ1(β(·)) ∀ β admissible path ,

and ∀ ϕ = (ϕ0, ϕ1, ϕ2, ϕ4) ∈
(
Hom(D′

β0
, D′

β1
)
)∗
⊕
(
Hom(D′′

β0
, D′′

β1
)
)∗
⊕

⊕
(
Hom(D′

β0
, D′′

β1
)
)∗
⊕
(
Hom(D′′

β0
, D′

β1
)
)∗

. In the case of graph of type A

η♯ is surjective since the invariants of type ϕ(β(·)) generates the rings of
invariants (see ch. 2), but in general this is not true. In the case of graph
of finite type (A,D,E) it follows by a result of Lusztig ([18]) on the rings of
invariants that η0 is injective and finite. The injectivity is also clear by point
2) in lemma 2.10 and remark 1.24. Finally, still using 2.10 point 2), it is easy
to show that in the general case η0 is not even injective.

4.2. Big dot C∗ action. Let d, d′, d′′, D,D′, D′′ as above. If t ∈ C∗ then
we define an element gt ∈ G(D) through:

(gt)i =

(
IdD′

i
0

0 t IdD′′

i
.

)

We can define the big dot action of C∗ on S: t • s = gt · s. We observe
that this action commutes with the action of GL(v) and leaves Λ0(d, v) and
Λ+

0 (d, v) stable. Hence it induces action on M(d, v) and M0(d, v) commuting
with the map π.

Proposition 2.12. If (v′, v′′) 6= (u′, u′′) then

ηv′,v′′(M(d′, v′)×M(d′′, v′′)) ∩ ηu′,u′′(M(d′, u′)×M(d′′, u′′)) = ∅, (22)

and moreover the set of the point fixed by the big dot action decomposes as
below:

M(d, v)C∗,• =
∐

v′+v′′=v

ηv′,v′′(M(d′, v′)×M(d′′, v′′)). (23)

Proof. We prove (22) and (23) together. First of all we observe that it
is clear that the image of the maps η is contained in the fixed point set of
the big dot C∗ action.

Now let s = (B, γ, δ) ∈ Λ0(d, v) and p(s) ∈M(d, v)C∗,•, we define

V ′
i
s
=

∑

α a B-path
α1=i

α(s)γα0
(D′

i) (24a)

V ′′
i
s
=

∑

α a B-path
α1=i

α(s)γα0
(D′′

i ) (24b)

We have V ′
i
s +V ′′

i
s = Vi by the stability condition and V ′ and V ′′ B− stable

by definition. We want to prove V ′
i
s ∩V ′′

i
s = 0. Let x ∈ V ′

i
s ∩V ′′

i
s then there
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exist yα ∈ D′
α0

and zα ∈ D′′
α0

such that:

x =
∑

α :α1=i

α(s)γα0
(yα) =

∑

α :α1=i

α(s)γα0
(zα).

Now for any t ∈ mC∗ there exists g ∈ GL(V ) such that t • s = g · s. Hence

gix =
∑

α :α1=i

giα(s)γα0
(yα) =

∑

α :α1=i

α(g · s)gα0γα0
(yα)

=
∑

α :α1=i

α(t • s)γα0
(g−1
t yα) =

∑

α :α1=i

α(s)γα0
(yα) = x.

In the same way using x =
∑

α :α1=i α(s)γα0
(zα) we obtain gix = t−1x. Hence

x = 0 and V = V ′s ⊕ V ′′s and if v′, v′′ are the dimension vector of V ′s and
V ′′s it is clear that s is in the image of η̃v′,v′′ and p(s) in the image of ηv′,v′′ .

Finally we observe that once s ∈ η̃(Λ+
0 (d′, v′)×Λ+

0 (d′′, v′′) we have V ′s ≃
V ′ and V ′′s ≃ V ′′ so (22) and (23) are proved. �

Since M(d, v)C∗,• is a smooth variety we have proved also the following
fact.

Corollary 2.13. ηv′,v′′ is an isomorphism with its image.

4.3. Contraction index for the big dot action. Let d, d′, d′′, D,D′, D′′

as above. We will use Proposition 2.12 to describe the homology of M(d, v)
in terms of the homology of M(d′, v′) and of M(d′′, v′′). By Lemma 2.8 and
Proposition 2.12 we have the following sequence of isomorphisms which do
not preserve the degree and implies (21):

H∗(L(d, v)) =
⊕

τ

H∗(Fixτ (d, v)) =

=
⊕

v′+v′′=v
τ ′,τ ′′

H∗(Fixτ ′(d
′, v′))⊗H∗(Fixτ ′′(d

′′, v′′)) = (25)

=
⊕

v′+v′′=v

H∗(L(d′, v′))⊗H∗(L(d′′, v′′))

In this section we want understand the behaviour of the degrees through
these isomorphisms.

One way to compute the shift in the degrees in the isomorphism 25 is
to compute the dimension of the cells in Fixτ ′×τ ′′(d, v) which contract to a
point of η(Fixτ ′(d

′, v′)×Fixτ ′′(d′′, v′′)). We procees in a sligtly different but
equivalent way.. We define a new C∗-action on S:

t � s = t2 · (t • s)).
We call this action the square action and we observe that it commutes with
the G(V ) action, leaves Λ0(d, v),Λ

+
0 (d, v) stable and therefore induces actions

on M0(d, v) and M(d, v) commuting with the projection π.
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Lemma 2.14. 1) ∀ p ∈M0(d, v) there exists limt→0 t � p = 0.
2) For all p ∈M(d, v) there exists limt→0 t � p ∈ L(d, v).
3) If p ∈M0(d, v) and there exists limt→∞ t � p then p = 0.
4) For all p ∈M(d, v) there exists limt→∞ t � p if and only if p ∈ L(d, v).
5) η̃(t2 · s′, t2 · s′′) = t � η̃(s′, s′′) for all s′ ∈ S(d′, v′) and s′′ ∈ S(d′′, v′′), hence
η(Fixτ ′(d

′, v′)×Fixτ ′′(d′′, v′′)) is in the fixed point locus of the square action.
6) If p is fixed by the square action then there exist v′, v′′ : v′ + v′′ = v, τ ′, τ ′′

and (p′, p′′) ∈ Fixτ ′(d′, v′)× Fixτ ′′(d′′, v′′) such that p = η(p′, p′′). Hence

M(d, v)C∗,� =
∐

v′+v′′=v
τ ′,τ ′′

ηv′,v′′(Fixτ ′(d
′, v′)× Fixτ ′′(d′′, v′′)). (26)

Proof. 1), 2), 3), 4), 5) are easy. We prove 6). If t � p(s) = p(s) for all
s we define:

V
(j)
i

′
=

∑

α a B-path
α1=i ℓ(α)=j

α(s)γα0
(D′

i) ,

V
(j)
i

′′
=

∑

α a B-path
α1=i ℓ(α)=j

α(s)γα0
(D′′

i ) .

Let g ∈ G(V ) such that g · s = t � s then if g ∈ V
(j)
i

′
(resp. V

(j)
i

′′
) then

g · s = t2jv (resp. g · s = t2j+1v). Hence if V ′
i =

⊕
j V

(j)
i

′
and V ′′

i =
⊕

j V
(j)
i

′′

we have V = V ′
i ⊕ V ′′

i and we conclude as in Proposition 2.12. �

Let now

G+
τ ′τ ′′ = {p ∈M(d, v) : lim

t→0
t � p ∈ η(Fixτ ′ × Fixτ ′′)},

G−τ ′,τ ′′ = {p ∈M(d, v) : lim
t→∞

t � p ∈ η(Fixτ ′ × Fixτ ′′)}.

If p ∈ η(Fixτ ′ × Fixτ ′′) we define m−
τ ′,τ ′′ = dim (TpM(d, v))−, m0

τ ′,τ ′′ =

dim (TpM(d, v))0, and m+
τ ′,τ ′′ = dim (TpM(d, v))+ as in (15).

Let v = v′+v′′ and V = V ′⊕V ′′ as in 4.1. Let p(s′) ∈ Fixτ ′(d′, v′), p(s′′) ∈
Fixτ ′′(d

′′, v′′) and s = η̃(s′, s′′). Let ϕ′ : C∗ −→ GL(V ′) and ϕ′′ : C∗ −→
GL(V ′′) the homomorphisms constructed as in (16), then we define ϕ : C∗ −→
GL(V ) by

(
ϕ(t)

)
i
=

(
ϕ′
i(t

2) 0
0 t ϕ′′

i (t
2)

)

with respect to the decomposition V = V ′
i ⊕V ′′

i . We observe that ϕ(t)t �s = s
for all t ∈ C∗. We set also χ(t) = t2 and we observe that ω(t � u, u′) =
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χ(t)ω(u, t−1 � u′). for all u, u′ ∈ S. If we apply Lemma 2.3 we obtain

m−
τ ′,τ ′′ = r−τ ′ + r−τ ′′ + d′′v′ + d′(v′′ − v′′(0)) + v′′Av′ − 2v′′v′+

−
∑

k

v′′
(k)
AΩv

′(k) −
∑

k

v′
(k)
AΩv

′′(k+1)
+
∑

k

v′′
(k)
v′

(k)
+
∑

k

v′
(k)
v′′

(k+1)

m0
τ ′,τ ′′ = r0

τ ′ + r0
τ ′′ ,

m+
τ ′,τ ′′ = r+

τ ′ + r+
τ ′′ + d′′v′ + d′(v′′ + v′′

(0)
) + v′′Av′ − 2v′′v′+

+
∑

k

v′′
(k)
AΩv

′(k) +
∑

k

v′
(k)
AΩv

′′(k+1) −
∑

k

v′′
(k)
v′

(k) −
∑

k

v′
(k)
v′′

(k+1)
.

Hence we obtain the followin refinement of isomorphism (25):

Hi(L(d, v)) =
⊕

v′+v′′=v
τ ′,τ ′′

j

Hi−m−

τ ′,τ ′′
−j(Fixτ ′(d

′, v′))⊗Hj(Fixτ ′′(d
′′, v′′)).

4.4. U-equivariance. We would like to prove that the isomorphism
(21) is an isomorphism of U-modules. I believe that the U-equivariance
should follow from the following fact:

Pi(d, v) ∩ Im η = η(Pi(d
′, v′)×M(d′′, v′′)).

We explain the notation and we give a proof of this formula.
Let d, d′, d′′, v, v′, v′′, D,D′, D′′, V, V ′, V ′′ as in section 4.1. Let also v̄ =

v−αi, v̄′ = v′−αi, v̄′′ = v′′−αi and fix vector spaces V
′
and V

′′
of dimension

v̄′, v̄′′ respectively. We have maps

η̃1 : S(d′, V
′
)× S(d′, V ′)× S(d′′, V ′′) −→ S(d, V

′ ⊕ V ′′)× S(d, V ′ ⊕ V ′′),

η̃2 : S(d′, V ′)× S(d′′, V
′′
)× S(d′′, V ′′) −→ S(d, V ′ ⊕ V ′′

)× S(d, V ′ ⊕ V ′′)

defined by

η̃1(s̄
′, s′, s′′) = (η̃v̄′,v′′(s̄

′, s′), η̃v′,v′′(s
′, s′′)),

η̃2(s
′, s̄′′, s′′) = (η̃v′,v̄′′(s

′, s̄′′), η̃v′,v′′(s
′, s′′)).

These two maps define similar maps η1, η2, η
0
1, η

0
2 between varieties of type

M+ and M0. In particular it makes sense to consider

η1(Pi(d
′, v′)×M(d′′, v′′)) ⊂M(d, v̄)×M(d, v)

η2(M(d′, v′)× Pi(d′′, v′′)) ⊂M(d, v̄)×M(d, v).

Lemma 2.15. Let i ∈ I then
1) Pi(d, v) ∩ Image η1 = η1(Pi(d

′, v′)×M(d′′, v′′)),
2) Pi(d, v) ∩ Image η2 = η2(M(d′, v′)× Pi(d′′, v′′)).

Proof. We prove only 1). The ⊃ part is easy. We prove ⊂ Let s̄′ ∈
Λ+

0 (d′, v̄′), s′ ∈ Λ+
0 (d′, v′), s̄′′ ∈ Λ+

0 (d′′, v̄′′), s′′ ∈ Λ+
0 (d′′, v′′), s̄ = η̃(s̄′, s′′) =
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(B, γ̄, δ̄) and s = η̃(s′, s′′) = (B, γ, δ). Suppose that (p(s̄, s′′), p(s′, s′′)) ∈
Pi(d, v) and let ϕi : V

′
i ⊕ V ′′

i −→ V
′

i ⊕ V ′′
i be such that

ϕh1
Bh = Bhϕh0

ϕiγi = γ̄i δi = δ̄iϕi

Now we observe that the thesis follows from

ϕi(V
′
i ) = V

′

i and ϕi(V
′′
i ) = V ′′

i .

Since the proof of this fact is very similar to other proofs in this chapter we
skip it. �



CHAPTER 3

Quiver varieties of type A

In this chapter we prove a conjecture of Nakajima describing the relation
between the geometry of quiver varieties of type A and the geometry of
partial flags varieties and of the nilpotent variety. I want to thank Corrado
De Concini who pointed out to me this problem and Hiraku Nakajima who
pointed out an error and the solution to it in the original proof.

1. Nakajima’s conjecture

We recall some definition and fix some notation on quiver varieties of type
An−1 and on partial flags varieties.

1.1. Convention for quiver varieties of type An−1. We choose Ω
and the numbering of the vertices and of the edges of Ω of the (doubled)
graph of type An−1 in the following way:

1 −−−→
1

2 −−−→
2

3 · · · n− 2 −−−→
n−2

n− 1.

If h ∈ Ω we call Ah the map associated to h and Bh the map associated to
h̄. So our conventions can be summarized in the following diagram:

D1

γ1

��

D2

γ2

��

Dn−2

γn−2

��

Dn−1

γn−1

��

V1

δ1
��

A1

44 V2

δ2
��

A2

44

B1
tt · · ·

B2
tt

Vn−2

δn−2

��

An−2

22 Vn−1

γn−1

��

Bn−2
rr

D1 D2 Dn−2 Dn−1

and instead of speaking of the triple (B, γ, δ) we will speak of the quadruple
(A,B, γ, δ) where A = (A1, . . . , An−2), B = (B1, . . . , Bn−2), γ = (γ1, . . . , γn−1)
and δ = (δ1, . . . , δn−1). With these conventions the ADHM equation µ = 0
can be written in the following way:

B1A1 = γ1δ1,

BiAi = Ai−1Bi−1 + γiδi for 2 ≤ i ≤ n− 2,

0 = An−2Bn−2 + γn−1δn−1.

In this chapter we will call M1(d, v) the image of π, which is closed since π
is projective, with the reduced structure.

49
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We will use also the following notations: γj→i = Bi . . . Bj−1γj and δj→i =
δiAi−1 . . . Aj and we consider the admissible path [δℓ→jγi→ℓ] with the nota-
tions expalined in definition 1.17.

Lemma 3.1. 1) The algebra of admissible path is generated by the follow-
ing set

P = {[δl→jγi→l] : i, j ∈ {1, . . . , n− 1} and l ≤ min(i, j)}. (27)

2) C[Λ0]
G is generated by the polynomials:

s 7−→ ϕ(β(s)) for β ∈ P and ϕ ∈
(
Hom(Dβ0

, Dβ1
)
)∗
.

3) If (A,B, γ, δ) ∈ Λ0 then it is an element of Λ+
0 iff for all 1 ≤ i ≤ n−1

ImAi−1 +
n−1∑

j=i

Im γj→i = Vi.

Proof. 1) and 3) are easy. 2) is a consequence of 1) and Proposition
1.19 �

Lemma 3.2. If σ ∈W is such that σ(d− v) is dominant and v′ = σ(v −
d) + d then

M(d, v) 6= ∅ ⇐⇒ v′i ≥ 0 for i = 1, . . . , n.

Proof. This follows from Nakajima’s theorem 1.37. �

1.2. The Slodowy’s variety. In this section we recall some definitions
on the nilpotent variety and on the partial flag variety.

Definition 3.3. If N is a natural number and D is a vector space of
dimension N we define N = NN to be the variety of nilpotent elements in
gl(D). Counting the dimensions of the Jordan blocks of an element of N we
obtain a partion of N , and this give us a parametrization of the orbits Oλ,
for λ a partion of N , of the action of GL(D) on N . If x ∈ N and x, y, h is a
sl2 triple in gl(D) we define the transversal slice to the orbit of x in N in
the point x as:

Sx = {u ∈ N such that [u− x, y] = 0}.
Here and in the sequel, using a non standard convention, we admit 0, 0, 0 as
an sl2 triple, so that in the case of x = 0 we have S0 = N .

Definition 3.4. For N an natural number , a = (a1, . . . , an) a vector
of nonnegative integers such that a1 + · · · + an = N , D a vector space of
dimension N we define a partial flag of type a of D to be an increasing
sequence F : {0} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = D of subspaces of D such that
dimFi − dimFi−1 = ai. We define Fa to be the GL(D)-homogenous variety
of partial flags of type a. We define also

Ñ a = T ∗Fa ∼= {(u, F ) ∈ gl(D)× Fa such that u(Fi) ⊂ Fi−1},
µa : Ñ a −→ N the projection onto the first factor, and

Fxa = µ−1
a (x) for x ∈ N .
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For N , a, D as above let α = (α1 ≥ α2 ≥ · · · ≥ αn) be a permutation of a
and define the partition λa = 1α1−α22α2−α3 · · ·nαn . λa is a partition of N and

it is known that if (u, F ) is in Ñ a then u is in the closure of Oλa . Moreover
the map

µa : Ñ a −→ Oλa

is a resolution of singularity and it is an isomorphism over Oλa . We define

Sa,x = Sx ∩ Oλa , S̃a,x = µ−1
a (Sa,x).

We call S̃a,x the Slodowy’s variety.

The following proposition is well known.

Proposition 3.5. Let x ∈ NN of type 1d12d2 . . . (n − 1)dn−1 and a =
(a1, . . . , an) a partition of N then:

1) S̃a,x 6= ∅ ⇐⇒ x ∈ Oλa ⇐⇒ ∀ 1 ≤ k ≤ n and ∀ 1 ≤ i1 < i2 < · · · <
ik ≤ n the following enequality holds:

d1 + 2d2 + · · ·+ kdk + · · ·+ kdn−1 ≥ ai1 + · · ·+ aik (28)

2) If S̃a,x 6= ∅ then it is a smooth variety of dimension dimZgl(x) −
dimZgl(ua), where ua is an element of Oλa.

1.3. Nakajima’s conjecture. If d = (d1, . . . , dn) and v = (v1, . . . , vn)
are two n−1-tuples of integers we define the n-tuple a = a(d, v) = (a1, . . . , an)
by:

a1 = d1 + · · ·+ dn−1 − v1, an = vn−1,

and ai = di + · · ·+ dn−1 − vi + vi−1 for i = 2, . . . , n− 1.

We observe that
∑n

i=1 ai = N =
∑n−1

i=1 idi. Moreover we observe that once
d is fixed the map a gives a bijection between n− 1-tuples of integers v and
n-tuples of integers a such that

∑
ai = N . Indeed we have that

vn−1 = an vi = an+· · ·+ai+1−di+1−2di+2 · · ·−(n−i−1)dn−1 for i = 1, . . . , n−2.

Now we can state the main proposition of this chapter. We recall that
M(d, v) = M1(d, v) = ∅ if vi < 0 for some i and S̃a,x = Sa,x = ∅ if ai < 0
for some i (see definition 1.16). The theorem was conjectured by Nakajima
in [21].

Theorem 3.6. Let v, d, N , a = a(d, v) as above. Let x ∈ N be a
nilpotent element of type 1d1 · · · · · (n− 1)dn−1 then there exist isomorphisms

of algebraic varieties ϕ̃ between M(d, v) and S̃a,x, and ϕ1 between M1(d, v)
and Sa,x such that 0 ∈ M1(d, v) goes to x ∈ Sd,x and the following diagram
commutes:

M(d, v)
eϕ−−−→ S̃d,x

π

y µd

y

M1(d, v)
ϕ1−−−→ Sd,x

(29)
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Remark 3.7. If M(d, v) 6= ∅ then it is easy to see that 0 ∈ M1(d, v):
anyway this will be a consequence of the proof.

We begin the proof of the theorem with some remarks on the degenerate

cases and on the dimension of the varieties M(d, v) and S̃a,x. W = Sn is the
Weyl group.

Lemma 3.8. Let d, v,N, a as above and let σ ∈ D such that σ(d − v) is
dominant and v′ = σ(v − d) + d then:

1) If there exists i such that vi < 0 then there exists i such that v′i < 0.
2) If there exists i such that ai < 0 then M(d, v) = ∅.

3) If there exists i such that vi < 0 then S̃a,x = ∅.

4) If S̃a,x 6= ∅ then M(d, v) 6= ∅ and they are two smooth varieties of the
same dimension.

Proof. 1) This is an easy consequence of the following well known prop-
erty: if u, d are dominant and d− u ≥ 0 (that is d− u ∈∑Z≥0αi) then for
any σ ∈ W we have d− σu ≥ 0 (Ilaria Damiani).

2) Is an easy consequence of lemma 3.1 point 3).
3) If vi < 0 then we have

N − (a1 + · · ·+ ai) = an + · · ·+ ai+1 <

< di+1 + 2di+2 · · ·+ (n− i− 1)dn−1 = N − (d1 + · · ·+ idi + · · ·+ idn).

So a1 + · · ·+ ai > d1 + · · ·+ idi + · · ·+ idn and S̃a,x is empty by lemma 3.5.
4) We observe that the Weyl group Sn acts by permutation on the n-tuple

a and that :

(1) S̃σ(a),x 6= ∅ ⇐⇒ S̃a,x 6= ∅,
(2) a(d, σ(v − d) + d) = σ(a(d, v)).

The first property is clear from proposition 3.5 (indeed with a little more

effort can be checked that S̃σ(a),x ≃ S̃a,x but we don’t need this result). The
second property is a computation that can easily checked for σ = (i, i + 1).

So by proposition it is enough to prove that S̃a,x 6= ∅⇒ M(d, v) 6= ∅ when
d − v is dominant. If we set i1 = 1, . . . , ik = k in the inequality (28) we
obtain vk ≥ 0 for k = 1, . . . , n− 1 and by lemma 3.2 M(d, v) 6= ∅.

The equality of dimensions is an easy computations using proposition 1.5
and proposition 3.5. �

2. Definition of the map

In this section we will define the maps ϕ1 and ϕ̃ in the case vi, ai ≥ 0 for
each i.

Lemma 3.9 (Nakajima, [21]). If N ≥ v1 ≥ · · · ≥ vn−1 and if d =
(N, 0, . . . , 0) then the conjecture is true. In this case we have D = D1

and M(d, v) ≃ Ñ a and M1(d, v) ≃ Oλa and M0(d, v) is the closure of a
nilpotent orbit.
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Proof. The proof is given in [21], but in that case Nakajima took the
inverse condition of stability so we remind the definition of the isomorphism
in our case and we give a sketch of the proof. The isomorophism between
M(d, v) and Fa is given by:

(A,B, γ, δ) 7−→ (δ1γ1, {0} ⊂ ker γ1 ⊂ kerA1γ1 ⊂ · · · ⊂ kerAn−1 · · ·A1γ1)

The map between M1(d, v) and Oλa or between M0(d, v) and N is given by
(A,B, γ, δ) 7→ δ1γ1. Once the map on M(d, v) is defined it is easy to check
that it is bijective and that it is GL(D) equivariant. Now we know that the
map µa is a resolution of singularity and that it is an isomorphism over Oλa

which is a homogenous space. Now by bijectivity and equivariance we see
that the map we have defined must be a isomorphism over this set. Now
we can proove the lemma by Zarisky main theorem and the normality of the
closures of nilpotent orbits proved by Kraft and Procesi [13] . �

Now to treat the general case we use the lemma above in the following

way. Let d, v, a, λa be given as in theorem 3.6 and define d̃i = 0 if i > 1

and d̃1 = N =
∑n−1

j=1 jdj , ṽi = vi +
∑n−1

j=i+1(j − i)dj . We observe that by the

lemma above M(ṽ, d̃) = T ∗Fa and M1(ṽ, d̃) = Oλa . So we can think Sa,x
and S̃a,x as subvarieties of M1(ṽ, d̃) and M(ṽ, d̃):

Sa,x = p0

({
(Ã, B̃, γ̃, δ̃) ∈ Λ0(ṽ, d̃) : [̃δ1γ̃1 − x, y] = 0

})
∩M1(ṽ, d̃),

S̃a,x = p
({

(Ã, B̃, γ̃, δ̃) ∈ Λ+
0 (ṽ, d̃) | [̃δ1γ̃1 − x, y] = 0

})
.

So we can construct our map by giving a map from Λ0(d, v) to Λ0(ṽ, d̃). Let

us begin with the definition of Ṽ and D̃. Let D
(j)
i be an isomorphic copy of

Di. We define:

D̃1 = D̃ =
⊕

1≤k≤j≤n−1

D
(k)
j

Ṽi = Vi ⊕
⊕

1≤k≤j−i≤n−i−1

D
(k)
j

So We will use also the following conventions: Ṽ0 = D̃1, Ã0 = γ̃1, B̃0 = δ̃1

and we define the following subspaces of Ṽi:

D′
i =

⊕

i+1≤j≤n−1
1≤k≤j−i

D
(k)
j D+

i =
⊕

i+2≤j≤n−1
2≤k≤j−i

D
(k)
j D−

i =
⊕

i+2≤j≤n−1
1≤k≤j−i−1

D
(k)
j

We consider the group GL(V ) as the subgroup of GL(Ṽ ) acting as the iden-
tity map on D′

i and mapping Vi into Vi. We will always think at the maps

Ãi, B̃i as a block-matrix with respect to the given decomposition of Ṽ , D̃
and when we use a projection on one of our subspaces, it will be a projection
with respect to the given decompositions (30). We give also a name to the
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blocks:

π
D

(h)
j

Ãi|D(h′)

j′

= tj
′,h′

i,j,h π
D

(h)
j

B̃i|D(h′)

j′

= sj
′,h′

i,j,h

π
D

(h)
j

Ãi|Vi
= tVi,j,h π

D
(h)
j

B̃i|Vi+1
= sVi,j,h

πVi+1
Ãi|D(h′)

j′

= tj
′,h′

i,V πVi
B̃i|D(h′)

j′

= sj
′,h′

i,V

πVi+1
Ãi|Vi

= ai πVi
B̃i|Vi+1

= bi

(31)

We define also (xi, yi, [xi, yi]) to be the following special sl2 triples of
sl(D′

i):

xi|D(1)
j

= 0,

xi|D(h)
j

= IdDj
: D

(h)
j → D

(h−1)
j ,

yi|D(j−i)
j

= 0,

yi|D(h)
j

= h(j − i− h)IdDj
: D

(h)
j → D

(h+1)
j ,

and we observe that x = x0 y = y0, [x, y] is an sl2 triple in sl(D̃) of the type
required in the theorem.

We want now to introduce a subset of Λ0(ṽ, d̃). To do it we give a formal
degree to the block of our matrices. Indeed we define two different kind of
degrees, deg and grad, in the following way:

deg(tj
′,h′

i,j,h) = min(h− h′ + 1, h− h′ + 1 + j′ − j),
grad(tj

′,h′

i,j,h) = 2h− 2h′ + 2 + j′ − j,
deg(sj

′,h′

i,j,h) = min(h− h′, h− h′ + j′ − j),
grad(sj

′,h′

i,j,h) = 2h− 2h′ + j′ − j.
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Definition 3.10. An element (Ã, B̃, γ̃, δ̃) of Λ0(ṽ, d̃) is called transversal
if it satisfies the following relations for 0 ≤ i ≤ n− 2:

tj
′,h′

i,j,h = 0 if deg(tj
′,h′

i,j,h) < 0

tj
′,h′

i,j,h = 0 if deg(tj
′,h′

i,j,h) = 0 and (j′, h′) 6= (j, h+ 1)

tj
′,h′

i,j,h = IdDj
if deg(tj

′,h′

i,j,h) = 0 and (j′, h′) = (j, h+ 1)

tVi,j,h = 0

tj
′,h′

i,V = 0 if h′ 6= 1

sj
′,h′

i,j,h = 0 if deg(sj
′,h′

i,j,h) < 0

sj
′,h′

i,j,h = 0 if deg(sj
′,h′

i,j,h) = 0 and (j′, h′) 6= (j, h)

sj
′,h′

i,j,h = IdDj
if deg(sj

′,h′

i,j,h) = 0 and (j′, h′) = (j, h)

sVi,j,h = 0 if h 6= j − i
sj

′,h′

i,V = 0

(32)

and finally if for each 0 ≤ i ≤ n− 2:

[πD′

i
B̃iÃi|D′

i
− xi, yi] = 0.

We call T the set of transversal data and we call T+ the set of +stable data
which are also transversal.

We observe that p(T+) ⊂ S̃a,x and p0(T ) ∩M1(ṽ, d̃) ⊂ Sa,x and we ob-
serve also that T and T+ are GL(V ) invariant closed subset of Λ0 and Λ+

0

respectively.
We will define our maps ϕ̃, ϕ by giving a GL(V ) equivariant map Φ

from Λ0(d, v) to T . If (A,B, γ, δ) ∈ Λ(d, v) its image under Φ is an element

(Ã, B̃, γ̃, δ̃) of T such that:

ai = Ai bi = Bi (33a)

tj
′,1
i,V = γj′→i+1 sVi,j,j−i = δi+1→j (33b)

tj
′,h′

i,j,h = T j
′,h′

i,j,h (A,B, γ, δ) sj
′,h′

i,j,h = Sj
′,h′

i,j,h (A,B, γ, δ) (33c)

where Sj
′,h′

i,j,h and T j
′,h′

i,j,h are admissible polinomials of type (j′, j) (see definition
1.17).

Remark 3.11. The conditions tj
′,1
i,V = γj′→i+1 for j′ > i+ 1 and sVi,j,j−i =

δi+1→j for j > i+1 are reduntant. Indeed it is easy to see that if (Ã, B̃, γ̃, δ̃) ∈
T and ai = Ai, bi = Bi and ti+1,1

i,V = γi+1, s
V
i,i+1,i = δi+1 then (33b) is

satisfied. We do not give the details of this simple fact becouse the argument
is comptely similar (but much more simple) to the proof of the next lemma.

Lemma 3.12. There exist uniquely determined admissible polinomials T j
′,h′

i,j,h

and Sj
′,h′

i,j,h in (A,B, γ, δ) such that (Ã, B̃, γ̃, δ̃) ∈ T . Moreover for deg > 0 they
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result to be homogeneous polinomials of degree equal to grad of the following
form:

T j
′,h′

i,j,h = λj
′,h′

i,j,hδr→jγj′→r +Qj′,h′

i,j,h

Sj
′,h′

i,j,h = µj
′,h′

i,j,hδr→jγj′→r +Rj′,h′

i,j,h

where r = j + h′ − h and P and Q are admissible polinomials that can
be expressed as a linear combination of products of admissible polinomials of
degree strictly less than grad (at least each monomial of P and Q is a product

of two admissible polinomials of positive degree) and λj
′,h′

i,j,h, µ
j′,h′

i,j,h are rational
numbers.

2) Moreover for i = 0, . . . , n − 2 and deg > 0 the following inequalities
hold:

λj
′,h′

i,j,h > 0

for h′ = 1, i+ 2 ≤ j′ ≤ n− 1 and 1 ≤ h ≤ j − i− 1 ≤ n− i− 2,

λj
′,h′

i,j,h + µj
′,h′−1
i,j,h > 0

for 1 < h′ ≤ j′ − i− 1 ≤ n− i− 2 and 1 ≤ h ≤ j − i− 1 ≤ n− i− 2,

µj
′,h′

i,j,h > 0

for 1 ≤ h′ ≤ j′ − i− 1 ≤ n− i− 2, h = j − i and i+ 1 ≤ j ≤ n− 1.

Proof. We prove this lemma by decreasing induction on i. To be more
precise we prove something slightly stronger of what claimed above. We prove
that once (A,B, γ, δ) ∈ Λ0(d, v) is fixed then there exist a unique element

(Ã, B̃, γ̃, δ̃) ∈ T such that (33a) and (33b) are satisfied. Moreover we give an
inductive formula for the computation of this element and from this formula
will be clear that there exist admissible polynomials as claimed in the lemma.

For i = n−2 we have that Ãn−2 and B̃n−2 are already completely defined

by relations (33) and they verify the relation Ãn−2B̃n−2 = 0. Now we assume
to have constructed T ∗,∗

j,∗,∗ and S∗,∗
j,∗,∗ for j ≥ i+1 as stated in the lemma such

that Ãj , B̃j verify the relations requested to be in T . We prove that there
exist unique T ∗,∗

i,∗,∗ and S∗,∗
i,∗,∗ such that:

[πD′

i
B̃iÃi|D′

i
− xi, yi] = 0 and ÃiB̃i = B̃i+1Ãi+1, (34)

and we prove also that they have the required form. First we observe that
the following equations are satisfied by relations (32) and (33):

π|Vi+1
ÃiB̃i|Vi+1

= AiBi + γi+1δi+1 = Bi+1Ai+1 = π|Vi+1
B̃i+1Ãi+1|Vi+1

π|Vi+1
ÃiB̃i|D(h)

j

= δh,1γj→i+1 = Bi+1γj→i+2 = π|Vi+1
B̃i+1Ãi+1|D(h)

j

π|
D

(h)
j

ÃiB̃i|Vi+1
= δh,1δi+1→j = δi+2→jAi+1 = π|

D
(h)
j

B̃i+1Ãi+1|Vi+1
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Let L = B̃i+1Ãi+1, M = ÃiB̃i and N = πD′

i
B̃iÃi|D′

i
− xi, and as we have

done in (31) we define the blocks Lj
′,h′

j,h , M j′,h′

j,h and N j′,h′

j,h . So we can give the
following formulation to equations (34):

M j′,h′

j,h = Lj
′,h′

j,h (35)

for 1 ≤ h′ ≤ j′ − i− 1 ≤ n− i− 2 and 1 ≤ h ≤ j − i− 1 ≤ n− i− 2,

N j′,j′−i
j,h = 0 (36)

for 1 + i ≤ j′ ≤ n− 1 and 1 ≤ h ≤ j − i− 1 ≤ n− i− 2,

N j′,h′

j,1 = 0 (37)

for 1 + i ≤ j ≤ n− 1 and 2 ≤ h′ ≤ j′ − i ≤ n− i− 1, and

h′(j′ − i− h′)N j′,h′+1
j,h+1 = h(j − i− h)N j′,h′

j,h (38)

for 1 ≤ h′ ≤ j′ − i− 1 ≤ n− i− 2 and 1 ≤ h ≤ j − i− 1 ≤ n− i− 2.
Now we give a degree deg and a degree grad also to these new blocks, in

the following way:

deg(Lj
′,h′

j,h ) = deg(M j′,h′

j,h ) = deg(N j′,h′

j,h ) = min(h− h′ + 1, h− h′ + 1 + j′ − j),

grad(Lj
′,h′

j,h ) = grad(M j′,h′

j,h ) = grad(N j′,h′

j,h ) = 2h− 2h′ + 2 + j′ − j.
Since min(m − h′ + 1, m − h′ + 1 + j′ − j) + min(h −m, h −m + l − j) ≤
min(h−h′ +1, h−h′ +1+ j′− j) and min(m−h′, m−h′ + j′− j)+min(h−
m+ 1, h−m+ 1 + l− j) ≤ min(h− h′ + 1, h− h′ + 1 + j′ − j) we have that
deg and grad behaves well under composition; that is:

deg(Sl,mi+1,j,h) + deg(T j
′,h′

i+1,l,m) ≤ deg(Lj
′,h′

j,h )

deg(T l,mi,j,h) + deg(Sj
′,h′

i,l,m) ≤ deg(M j′,h′

j,h )

deg(Sl,mi,j,h) + deg(T j
′,h′

i,l,m) ≤ deg(N j′,h′

j,h )

grad(Sl,mi+1,j,h) + grad(T j
′,h′

i+1,l,m) = grad(Lj
′,h′

j,h )

grad(T l,mi,j,h) + grad(Sj
′,h′

i,l,m) = grad(M j′,h′

j,h )

grad(Sl,mi,j,h) + grad(T j
′,h′

i,l,m) = grad(N j′,h′

j,h )

(We observe that in the N -case the term −xi respects these rules). So if the
blocks have deg strictly less than 0 they vanish identically, and if deg = 0
then to be different from zero we must have j = j′ and h = h′ − 1 and it is
straight forward that also in this case all the equations are satisfied. In this
way we see that the equations (36) and (37) are always satisfied.

Now we argue by induction on d = deg > 0 in the following way: we

assume to have constructed T j
′,h′

i,j,h and Sj
′,h′

i,j,h for the blocks with deg < d such
that all the relations (35) and (38) for blocks with deg < d are satisfied and

we prove that T j
′,h′

i,j,h and Sj
′,h′

i,j,h for blocks of deg = d are uniquely determined
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by the equations (35) and (38) for blocks of deg = d. So we have the following
relations:

M j′,h′

j,h = Lj
′,h′

j,h

h′(j′ − i− h′)N j′,h′+1
j,h+1 = h(j − i− h)N j′,h′

j,h

for 1 ≤ h′ ≤ j′ − i − 1 ≤ n − i − 2 and 1 ≤ h ≤ j − i − 1 ≤ n − i − 2 and
min(h−h′ +1, h−h′ +1+ j′− j) = d > 0. By induction hypothesis we have
under this assumptions on j, j′, h, h′, d the following formulas:

Lj
′,h′

j,h = νhδr→jγj′→r + Cj′,h′

j,h

M j′,h′

j,h = Sj
′,h′

i,j,h+1 + T j
′,h′

i,j,h +Dj′,h′

j,h

N j′,h′

j,h = Ej′,h′

j,h +

{
T j

′,h′

i,j,h if h′ = 1

T j
′,h′

i,j,h + Sj
′,h′−1
i,j,h if 1 < h′ ≤ j′ − i− 1

N j′,h′+1
j,h+1 = F j′,h′

j,h +

{
Sj

′,h′

i,j,h+1 if h = j − i− 1

T j
′,h′+1

i,j,h+1 + Sj
′,h′

i,j,h+1 if 1 ≤ h < j − i− 1

where r = j+h′−h, Cj′,h′

j,h , Dj′,h′

j,h , Ej′,h′

j,h , F j′,h′

j,h are admissible polinomials that
by induction we already know and that are a linear combination of products
of admissible polinomials of degree strictly less than grad, and

νh =





1 if h′ = 1 and h = j − i− 1

λj
′,h′

i+1,j,h if h′ = 1 and h < j − i− 1

µj
′,h′−1
i+1,j,h if h = j − i− 1 and h′ > 1

λj
′,h′

i+1,j,h + µj
′,h′−1
i+1,j,h if h′ > 1 and h < j − i− 1

In any case by induction hypothesis we see that νh is a positive rational
number. We observe that also the numbers h′(j′ − i − h′) = αh, and h(j −
i − h) = βh are positive rational numbers. Now we group together all the
equations with the same j and the same j′ and we solve them altogether.
Once we have fixed j and j′ the relations between indeces can be written in
this form: h0 ≤ h ≤ h1 and h′ = k + h, where h1 = j − i− 1 and:

h0 =

{
d if j′ ≥ j

d+ j − j′ if j′ < j
, k =

{
1− d if j′ ≥ j

1 + j′ − j − d if j′ < j

We observe also that once j, j′, d are fixed also r = j + h′ − h is fixed.
Now to write our sistems of equations in a more readable way we introduce

the following variables: Xh = T j
′,h′

i,j,h and Yh = Sj
′,h′

i,j,h+1; and we observe that

variables involved exhaust all the unknown blocks of type T j
′,∗

i,j,∗ and Sj
′,∗
i,j,∗ of

deg = d that is what we we want to construct. So we can write the equations
(35) and (38) in the following way:

Xh0 + Yh0 = νh0δr→jγj′→r + P1,h0

. . .

Xh1 + Yh1 = νh1δr→jγj′→r + P1,h1

(39)
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and
αh0(Yh0 +Xh0+1) = βh0Xh0 + P2,h0

αh0+1(Yh0+1 +Xh0+2) = βh0+1(Yh0 +Xh0+1) + P2,h0+1

. . .

αh1−1(Yh1−1 +Xh1) = βh1−1(Yh1−2 +Xh1−1) + P2,h1−1

αh1Yh1 = βh1(Yh1−1 +Xh1) + P2,h1

(40)

where P∗,∗ are known polinomials of degree equal to the grad = 2 deg +|j−j′|
of our blocks and that are a linear combination of products of polinomials
that have degree strictly less than grad. This system has a unique solution:
first we use the equations (40) to give an expression of Yh1 +Xh1+1 in terms of
Xh0 then we sum all the equations (39) and we obtain a formula for Xh0 and
then we see that we can determine all the others Xh and Yh. We observe also
that equations (39) and (40) give an inductive formula for the coefficients

λj
′,h′

i,j,h and µj
′,h′

i,j,h. Indeed they are the coefficient of the term δr→jγj′→r in the

polinomials T j
′,h′

i,j,h and Sj
′,h′

i,j,h above so they solve the same systems (39) and
(40) but with the costant coefficients P∗,∗ equal to zero. So if we use the same
variables X and Y for λ and µ, we obtain from system (40) the following
formulas:

Yh0 +Xh0+1 = ρh0Xh0

. . .

Yh1−1 +Xh1 = ρh1−1Xh0

Yh1 = ρh1Xh0

where ρh are positive rational numbers. We observe that the coefficients
of the point 2) of the lemma are just, with our convention Xh0, (Yh0 +
Xh0+1), . . . , Yh1. So it is enough to prove that Xh0 > 0. But summing
the equations in system (39) we obtain:

Xh0 =
νh0 + · · ·+ νh1

1 + ρh0 + · · ·+ ρh1

which is a positive rational number and we have proved the lemma. �

Remark 3.13. The lemma above show, how is possible to define the map
Φ from Λ0(d, v) to T . An inverse of Φ is given in the following way. Take

(Ã, B̃, γ̃ = Ã0, δ̃ = B̃0) ∈ T and define Φ−1(Ã, B̃, γ̃, δ̃) = (A,B, γ, δ), where

Ai = πVi+1
Ãi|Vi

, Bi = πVi
B̃i|Vi+1

, γi = πVi
Ãi−1|D(1)

i

and δi = π
D

(1)
i

B̃i−1|Vi
. It is

clear that the new data is in Λ0(d, v) and it also clear that Φ−1◦Φ = IdΛ0(d,v).
The relation Φ ◦ Φ−1 = IdT follows from the unicity proved in the lemma.
To be more precise it follows from the unicity explained at the beinning of
the proof of the lemma and remark 3.11.

Lemma 3.14. 1) Φ : Λ0(d, v) −→ T is a GL(V )-equivariant isomorphism.
2) Φ(z) ∈ T+ ⇐⇒ z ∈ Λ+

0 (d, v) and Φ|SZ : Λ+
0 (d, v) −→ T+ is a

GL(V )-equivariant isomorphism
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Proof. We have just proved 1). To prove 2) we observe that in the

case of (ṽ, d̃) the stability condition is equivalent to Ãi is an epimorphism for

i = 0, . . . , n− 2. We observe also that if (Ã, B̃, γ̃, δ̃) = Φ(A,B, γ, δ) ∈ T we

have that Ãi|D+
i

is an isomorphism onto D′
i+1. Since Vi ⊕D(1)

i+1 ⊕ · · · ⊕D(1)
n−1

is a complementary space of D+
i and that Vi+1 is a complementary space of

D′
i+1, we conclude, by (32) and (33), that the stability condition in our case

is equivalent to Ai⊕γi+1⊕· · ·⊕γn−1→i+1 : Vi⊕D(1)
i+1⊕· · ·⊕D(1)

n−1 −→ Vi+1 is
an epimorhpism for i = 0, . . . , n−2; which is exactly the condition of lemma
3.1 point 3) for the stability of (A,B, γ, δ). �

Definition 3.15. As observed Φ is a GL(V )-equivariant morphism, so
we can define ϕ0 and ϕ̃ as the maps making the following diagrams commute:

Λ0(d, v)
Φ−−−→ T

p0

y p0

y

M0(d, v)
ϕ0−−−→ M0(ṽ, d̃)

Λ+
0 (d, v)

Φ−−−→ T+

p

y p

y

M(d, v)
eϕ−−−→ S̃a,x

and if we set ϕ1 = ϕ0|M1(d,v) we observe that by definition the diagram (29)

commutes, and that iϕ1 ⊂ µd(S̃a,x) = Sa,x.
Corollary 3.16. Let a, d, v, N as in section 1.3 then

M(d, v) = ∅ ⇐⇒ S̃a,x = ∅

Proof. After lemma 3.8 we have only to prove that M(d, v) 6= ∅ ⇒
S̃a,x 6= ∅ but this is clear since we have constructed a map from M(d, v) to

S̃a,x. �

3. Proof of Theorem 3.6

Lemma 3.17. Let (Ã, B̃, γ̃, δ̃) ∈ T and g̃ ∈ GL(Ṽ ) then

g̃(Ã, B̃, γ̃, δ̃) ∈ T =⇒ ∃g ∈ GL(V ) such that g̃(Ã, B̃, γ̃, δ̃) = g(Ã, B̃, γ̃, δ̃)

Proof. We prove first that g̃i(Vi) = Vi and g̃i(D
′
i) = D′

i. To prove it we
introduce for i = 0, . . . , n− 2, l = 0, . . . , n− 2− i and h = 0, . . . , n− 2− i− l
the following subspaces of Ṽi:

D
l,(h)
i =

⊕

0≤h′≤h
i+1+l+h′≤j≤n−1

D
(j−i−h′)
j .

We prove that g̃i(D
l,(h)
i ) = D

l,(h)
i . Indeed we observe that if (Ã, B̃, γ̃, δ̃) ∈ T

then Ãi|Dl,(h)
i

is an isomorphism onto D
l−1,(h)
i+1 for l ≥ 1. So we can argue by in-

duction on i, taking as first step the trivial case i = 0, that g̃i(D
l,(h)
i ) = D

l,(h)
i .

We observe thatD
0,(n−i−2)
i = D′

i and so the we have proved g̃i(D
′
i) = D′

i. Now

we observe that if (Ã, B̃, γ̃, δ̃) ∈ T then πD−

i
B̃i|D′

i+1
is an isomorphism and

that B̃i(Vi+1) ⊂ D
0,(0)
i ⊕ Vi. Since D−

i ⊕ Vi is the complementary subspace,
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respect our decomposition, of D
0,(0)
i and g̃i(D

0,(0)
i ) = D

0,(0)
i we can conclude

that g̃i+1(Vi+1) = Vi+1.

Now we consider gi = g̃i|Vi
and we prove that g̃(Ã, B̃, γ̃, δ̃) = g(Ã, B̃, γ̃, δ̃).

Arguing as in remark 3.13 we see that it is enough to prove that the ai, bi
and ti+1,1

i,V and sVi,i,1 of the two elements of T are equal. By construction
we have already proved the equality of the ai and bi block. To prove the
equality for the t and the s block we observe that it’s enough to prove that

g̃i|D(1)
i+1 = Id

D
(1)
i+1

. To prove it we observe that Ãi|Dl,(0)
i

is the identity map

from D
l,(0)
i to D

l−1,(0)
i+1 . So arguing by induction as above we conclude that

g̃i|Dl,(0)
i

is the identity map, and finally we observe that D
(1)
i+1 ⊂ D

l,(0)
i . �

Remark 3.18. By direct computation we can prove that g̃(Ã, B̃, γ̃, δ̃) ∈
T ⇐⇒ g̃ ∈ GL(V ) but we don’t need this result.

Lemma 3.19. ϕ0 and ϕ1 are closed immersions.

Proof. It is enough to prove that ϕ0 is a closed immersion. We observe

that M0(d, v) and M0(ṽ, d̃) are affine varieties whose coordinate ring is de-
scribed in lemma 3.1. We will prove that the associate map ϕ0

♯ between these
rings is surjective by showing that is it possible to obtain the polinamials in

P(d, v) from the admissible polinomials for (d̃, ṽ) through the map ϕ0. Let
us introduce the following deg on the set P(v, d):

deg(δr→j′γj→r) = min(j − r + 1, j′ − r + 1)

and de observe that usual degree is given by grad(δr→j′γj→r) = 2 deg +|j′−j|.
We will prove the statement by induction on d = deg. If d ≤ 0 then r ≥ j+1
or r ≥ j′ +1 and so there are no polinomial in the set P in this case, and the
statement is proved. If d > 0 we consider the following blocks of degree d:

(δ̃1γ̃1)
j′,1
j,h = (B̃0Ã0)

j′,1
j,h = R +

{
1 · δj+1−h→jγj′→j+1−h if j = h

λj
′,1

0,j,h · δj+1−h→jγj′→j+1−h if j > h

where by induction and lemma 3.1 R is a linear combination of products
of monomials with a smaller deg. Since by lemma 3.12 the coefficient of
δj+1−h→jγj′→j+1−h is different from zero we obtain that for any 1 ≤ h ≤ j
the element of P(v, d), δj+1−h→jγj′→j+1−h, can be obtained as claimed. But
now we observe that this element has deg = d and that all the elements in P
of deg equal to d can be obtained in this way for a good choice of h between
1 and j. �

Proof of theorem 3.6. By the lemma above and the fact that µd and π
are projective we see that ϕ̃ is proper. By lemmas 3.14 and 3.17, since by

a result of Nakajima ([21] [22]) all the orbits in Λ+
0 (v, d) and Λ+

0 (d̃, ṽ) are

closed we see that ϕ̃ is also injective. Since by lemma 3.8 M(v, d) and S̃a,x
are smooth varieties of the same dimension and S̃a,x is connected we have
proved that it is an isomorphism of holomorphic varieties and by consequence
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is also an algebraic isomorphism. In particular ϕ̃ is surjective and µd is also
surjective, so also ϕ1 is surjective, but since it is a closed immersion of reduced
varieties over C it must be an isomorphism of algebraic varieties. Finally
ϕ0(0) = x ∈ Sa,x, so by the previous lemma 0 ∈ M1(v, d) and ϕ1(0) = x.
QED

Remark 3.20. The map ϕ̃ restricted to L(v, d) take a more explicit and
simple form. Indeed it is easy to see that in this case δ vanishes so we have
that all the polynomials T and S vanish also, and we have an explicit formula
for ϕ̃.

Remark 3.21. In [21] is observed that the conjecture does not generalize
to diagrams of type E and D. But it is an interesting and more general fact
(see for example the stratification of quiver varieties constructed by Nakajima
[21], [22] or the remark above) that some subvarieties can be described as
an another quiver variety. From this point of vied we want to point out that

it is possible to give an explicit pairs of injective maps ψ̃ and ψ from M(v, d)

to M(d̃, ṽ) and from M0(v, w) to M0(d̃, ṽ) respectively such that the diagram
(29) commute and ψ(0) = x. As we said they have an explicit formula and
so they look more simple than ϕ̃ and ϕ1 but their image is not contained in

S̃a,x and Sa,x respectively, they ”describe” different subvarieties.

3.1. Spaltenstein map. To understand the geometry of the general-
ized Springer fiber of type An−1 Fxa is very usefull (see for example [26]) to
consider the following map α : Fxa → Gra1(ker x) defined by

α(0 ⊂ F1 ⊂ · · ·Fn−1 ⊂ D) = F1.

If H ∈ Gra1(ker x) it is very easy to see that α−1(H) is isomorphic to a

Springer fiber Fx′a′ of type An−2 where a′ = (a2, . . . , an) and x′ depends on H .
This fact suggest a way to study Fxa by induction. For example it is a well
known fact that we can use this map to prove that the number of irreducible
component of Fxa is equal to the number of a-semistandard Young tableaux
of shape x. To avoid misleading interpretaion of this sentence we only say
that if x is of type 12 · 21 · 32 and a = (3, 4, 0, 3) then

1 1
2 2 2
4 4 4 2 1

is a a-semistandard Young tableaux of shape x.
It is intersting to observe that the map α can be described easily in

the language of quiver varieties. First of all observe that Gra1(ker x) ≃
Gr(a1, a1 + · · · + an) is isomorphic to {map of maximal rank in Hom(D1 ⊕
· · · ⊕Dn, V1)}/GL(V1). The define

α : L(d, v) −→ {map of maximal rank in Hom(D1 ⊕ · · · ⊕Dn, V1)}/GL(V1)

α(A,B, γ, 0) = (γ1 ⊕ · · · ⊕ γn−1→1).
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The fibers of this map can be described easily as varieties L(d′, v′) for a graph
of type An−2 without using the theorem proved inthis chapter. Now using the
computation above of the number of irreducible component of Springer fibers
and Nakajima’s theorem 1.37 we obtain the following well known formula for
the character of the irreducible sln module of highest weight d:

chd =
∑

T semistandard Young tableaux

of shape 1d
1 ·...(n−1)dn−1

eweight(T )

where the weight of a tableaux of type a is
∑n−1

i=1 (ai − ai+1)ωi.
We don’t give the (easy) details becouse they don’t give nothing new but

we hope that this explain the remark at the of the introduction.

3.2. sln-equivariance and equivalence with Ginzburg’s construc-

tion. We showed that the varieties constructed by Nakajima appears as
special subvarieties of partial flag varieties, but we didn’t check if also the
costruction of representation is equivalent. By the very definition and Lemma
3.9 in the case d = (N, 0, . . . , 0) is clear that Nakajima’s construction coin-
cide with Ginzburg’s construction. For general d, v we saw that L(d, v) =

M (̃(d), (̃v))x for an appropriate choice of x, hence we have an isomorphism:

H∗(L(d, v)) ≃ H∗(M(d̃, ṽ)x).

We would like to prove that this is an isomorphism of sln modules. More in
general the problem of sln-equivariance can be stated as follows. Consider
the embedding

ψZ = ϕ× ϕ : Z(d, v′, v) −→ Z(d̃, ṽ′, ṽ)

we have homorphism of algebra:

U(sln) −→ Htop

(
Z(d)

)
,

U(sln) −→ Htop

(
Z(d̃)

)
.

then problem of equivariance can be stated as follows: the embedding ψ
induces an homomorphism of algebra H(ψZ) such that the following diagram
commute:

U(sln) //

%%J

J

J

J

J

J

J

J

J

J

J

Htop

(
Z(d̃)

)

H(ψZ )
��

Htop

(
(Z(d)

)

I believe that this fact should follow from some regularity condition plus the
following Lemma:
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Lemma 3.22. Let ψ = ϕ×ϕ : M(d, v−αi)×M(d, v) −→ M(d̃, ṽ−αi)×
M(d̃, ṽ) then

Pi(d̃, ṽ) ∩ Imψ = ψ(Pi(d, v)).

Proof. The proof is equal to the proof of Lemma 3.17. �
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