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Introduzione

Uno spettro si aggira nella teoria della rappresentazione. E lo spettro
della geometria, il cui crescente utilizzo negli ultimi vent’anni ha portato a
risultati straordinari. Non si puo ridurre questo fenomeno all’utilizzo dei
fasci perversi e del teorema di decomposizione, che pure ne sono stati gli
attori principali e spesso cruciali, sembra che una filosofia generale sia an-
data affermandosi, filosofia che fa uso di molti altre strutture geometriche e
che viene genericamente indicata con “geometric methods”, o “new geometric
methods”, in teoria della rappresentazione. Uno dei suoi aspetti fondamentali
consiste nella sorprendente possibilita di descrivere la teoria delle rappresen-
tazioni di alcune algebre di natura geometrica. Puo quindi essere utile ed in
alcuni casi risolutivo riuscire a dare una descrizione in termini geometrici delle
algebre che si vogliono studiare. Malgrado si sia riusciti ad ottenere questa
descrizione in vari casi importanti, questa rimane una operazione misteriosa.
A lungo sono state utilizzate a questo scopo varieta naturalmente connesse
con i gruppi di cui si volevano studiare le rappresentazioni: il gruppo stesso
e le sue classi coniugate, la varieta delle bandiere prima totale e poi parziale,
la fibra di Springer e la varieta di Steinberg. Poi si € cominciato ad utiliz-
zare la versione “affine” delle varieta appena elencate che pur continuando
ad essere varieta naturali sono tecnicamente molto pitt complicate. Ma an-
cora manca l’algoritmo per costruire la varieta giusta per ogni problema. In
particolare sembrava mancare una varieta adatta per i quantum groups: fin
dall’inizio di questo decennio si & cominciato a fare dei tentativi, ed e piano
piano cresciuto l'interesse verso varieta meno naturali. Le quiver varieties
sono una nuova di classe di varieta che sembra particolarmente interessante.
Queste varieta sono state introdotte intorno al 1993-1994 da Hiraku Naka-
jima come generalizzazione dello spazio dei moduli degli instantoni su uno
spazio ALE, il quale si era gia dimostrato particolarmente adatto in connes-
sione con un altro problema che andava in cerca di varieta: la costruzione di
strutture hyperKahleriane. Malgrado la loro costruzione possa sembrare pitt
artificiosa queste varieta si sono dimostrate particolarmente interessanti dal
punto di vista della teoria della rappresentazione.

1. Quiver varieties e quantum groups

I quantum groups sono stati introdotti da Drinfeld [3] e Jimbo [9] me-
diante generatori e relazioni. Un problema naturale che si e subito posto e
stato quindi quello di dare una descrizione alternativa in termini di strutture
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4 INTRODUZIONE

geometriche. Questa ricerca va naturalmente di pari passo con la ricerca di
basi speciali di queste algebre e delle loro rappresentazioni.

1.1. La costruzione di U,(gl,) di Beilinson, Lusztig e MacPher-
son. Uno dei primi risultati nella costruzione geometrica dei quantum groups
¢ stato ottenuto nel caso di GL,, da Beilinson, Lusztig e MacPherson in [1].
Riassumiamo brevemente questo risultato.

Sia F(k,d) l'insieme delle n-bandiere parziali di uno spazio vettoriale di
dimensione d sul campo k. Le GL(k, d) - orbite di F(k,d) x F(k, d) sono un
insieme finito che indichiamo con ©, indipendente dal campo k. Sia inoltre
K, il Q(v)-modulo libero con base gli elementi di ©,4. Fissiamo ora k = F,
un campo finito e per A, B,C € O, e (F', ") € C definiamo

capcg=card{F € F(k,d) : (F',F) € Aand (F,F") € B}.

E ovvio che la la definizione non dipende dalla scelta di (F, F”) € C. Os-
serviamo inoltre che esistono polinomi ¢§ 5 € Z[v] tali che per ogni ¢ si

abbia capcq = ¢4 5(y/7). Beilinson, Lusztig e MacPherson dimostravano

quindi che 'algebra associativa K, definita prendendo per costanti di strut-
tura questi polinomi ¢ un quoziente di U,(gl,,) .

THEOREM 0.1. Il prodotto definito da A* B = ) cq cg,BC’ definisce

su Ky una struttura di algebra associativa e esiste un morfismo di algebre
surgettivo da U (gl,) a K.

A questo punto per costruire U,(gl,) mandavano d all'infinito. For-
malmente la costruzione funziona nel seguente modo. Sia © = gl(n,N),
© C gl(n,Z) l'insieme delle matrici con coefficienti non negativi fuori della
diagonale e 0 : © — Z la funzione che associa ad ogni matrice la somma dei
suoi coefficienti. Osserviamo che ©, ¢ in bigezione con o~ '(d). Definiamo
inoltre per A € ©

CO(A) (E Aily e ey by &in)a
’I“Z(A) :(E Ajy e -y b am-).

Sia ora
K = {EAG(:) faAe Q(v)@é : Vo € Z" gli insiemi degli
elementi A€ © : f4 #0 and ri(A) = x e degli
clementi A € © : f4 # 0 and co(A) = x sono ﬁniti}

Vogliamo estendere la struttura di algebra a K. Per fare cid abbiamo bisogno
della seguente proposizione ([1] Proposition 4.2).

PROPOSITION 0.2. Sia r > 2 e siano Ay, ..., A, € © tali che co(4A;)
ri(Aip1) peri=1,...,7 — 1. Allora esistono s,po € N e Zy,...,Zs € O ¢
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G1,...,Gs € Qv)[V'] tali che per ognip > py A; +pl € O e

(Ay+pl) x---x (A, +pl) = ZG (v, v P)(Z; + pI)

Possiamo quindi estendere il prodotto * a tutto K mediante la formula:

Ak A — {Zi:l Gi(v,1)Z; se co(A;) =ri(Ayq) fori=1,...,r—1,

0 altrimenti.

Definiamo ora il Q(v)-sottomodulo U di K generato dagli elementi

Ad,j = Z At tengn (A + di@g(zl, RN Zn))
(#1,..02n)EL™ : B zi=d—0(A)

dove d € N, A € © & una matrice con la diagonale nulla, j = (j1,...,7,) € N”
e diag(zy,. .., z,) € lamatrice diagonale che ha i coefficienti lungo la diagonale
uguali a zq,..., 2,.

THEOREM 0.3. Il prodotto x definisce una struttura di algebra associativa
su K e U é una sottoalgebra isomorfa a Uy(gl,).

Entrambi questi teoremi vengono dimostrati individuando dei generatori di
queste algebre che soddisfano le relazioni dei generatori standard dei quantum
groups.

1.2. La costruzione geometrica di Ginzburg di sl,. Prendendo
spunto dalla costruzione di Beilinson, Lusztig e MacPherson, Ginzburg diede
una costruzione di sl,, che non fa uso della geometria sui campi finiti e che ha
rappresentato il modello anche per la costruzione di Nakajima delle algebre di
Kac-Moody. In particolare uno dei risultati di questa tesi e la dimostrazione
dell’equivalenza della costruzione di Ginzburg con la costruzione di Nakajima
nel caso del quiver di tipo A. Riassumiamo quindi il risultato di Ginzburg
annunciato in [6] e che si pud trovare in tutti i dettagli in [2]. Nel seguito n
¢ fissato e Ny @ il cono nilpotente in gl(N).

DEFINITION 0.4. Se N ¢ un numero naturale e a = (aq,...,a,) una
partizione di N, diciamo che una successione F' : {0} = [, C F} C --- C
F, = CV di sottospazi di CV & una bandiera parziale di tipo a se dim F; —
dim F;_; = a;. Indichiamo con F, la GL(N)-varieta omogenea delle bandiere
parziali di tipo a. Definiamo inoltre

N, =TF, = {(u,F) € gl(W) x F, tale che u(F;) C F;_,},
[ N « — N la proiezione sul secondo fattore,

.K/’N:H./T/’a e,uN:H,UJai./T/’N—>NN

a-N a-N
Zy =N, X/\/NNa e Zn =Ny XNNNN
A, C Fq, x F, la diagonale.
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Definiamo inoltre F, = @ se a = (ay,...,a,) € Z" e esiste i tale che
i itl
a; <0,¢,=(...,0,1,-1,0,...) einfineperi=1,...,.n—1leakt N:

Vi ={(F.F) € Faye, x Fo : Fj=Fjse j#ieF;DFj}
K‘;:{(RF/)E}—a—qX}—aIF}:Ffsej;ﬁieFiCFi’}

Su HBM(Zy) = @,y HPM(Z,) & definita una struttura di algebra di
convoluzione e & facile vedere che in questo caso H2) (Zy) = @, x HiY' (Za)
€ una sottoalgebra.

Il risultato principale dell’articolo [6] ¢ il seguente:

THEOREM 0.5. Siano e;, fi, h; generatori di Chevalley di Ul(sl,) allora

possiamo definire un morfismo di algebre ©: U(sl,) — Ht]gé\/[(ZN) mediante:

hi— Y (a; — ai)[TA, (Fa x Fa)),

€ — Z[T;it(}—a%—ei x Fa)l,

a-N

fi— Z[T;;i; (Faee, X Fa)l.

aFN
Inoltre:

(1) © ¢é surgettiva,

(2) Se x € Ny e consideriamo l'usale struttura di HPM (Zy)-modulo
sull’omologia HBM(N ) della fibra di Springer generalizzata N
py (z) C Ny abbiamo che:

(a) H££4(Nx) ¢ un HEM(Zy) sottomodulo irriducibile

(b) Hgy(/\/’gg) visto come rappresentazione di sl, € il modulo ir-
riducile associato alla partizione di > dy--- > d,, con d; =

dim ker 2 — dim ker 2.

1.3. Quiver varieties e costruzione geometrica delle algebre di
Kac-Moody. Generalizzando la descrizione dello spazio dei moduli degli
istantoni sulle risoluzioni delle singolarita razionali bidimensionali A,D,E
data da Kronheimer e Nakajima in [14], e ispirato dai lavori di Ginzburg
sulla costruzione di U(sl(n)) e di Lusztig sulla costruzione geometrica delle
basi canoniche [15, 16], Nakajima ha introdotto una nuova classe di varieta
associate ad un grafo, ad un elemento del reticolo del reticolo dei pesi d
dell’algebra associata al grafo e ad un elemento del reticolo delle radici v.
Nakajima ha chiamato queste varieta quiver varieties ma che forse sarebbe
stato meglio chiamare Nakajima’s quiver varieties perché differiscono da al-
tre varieta assocate al grafo definite in precedenza. Daremo un cenno della
costruzione nel seguito di questa tesi, limitiamoci quindi a descrivere con
qualche veniale imprecisione uno dei risultati principali di Nakajima. Con-
sideriamo una algebra di Kac-Moody simmetrica g dove fissiamo una base
di Chevalley e un sistema di radici. Ad un peso d e un elemento del reticolo
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delle radici v associamo una varieta liscia M (d, v), una singolare M°(d) e una
mappa propria:
Tao: M(d,v) — M°(d).

Fissiamo ora d e consideriamo 1'unione disgiunta M (d) delle varieta M (d, v)
al variare di v e il prodotto fibrato Z(d) di M(d) su M°(d). In virtt di una
costruzione molto generale 'omologia di Borel-Moore di Z(d) aquista una
struttura di algebra di convoluzione [2] e I'omologia delle fibre M(d), =
U, T (@) aquista una struttura di H,(Z(d)) modulo. Osserviamo infine che
in M°(d) esiste un punto speciale che chiamiamo 0.

Uno dei risultati principali di Nakajima si puo cosiriassumere.

THEOREM 0.6. Esiste un morfismo di algebre ®: U(g) — Hiop(Z(d))
e in particolare H,(M(d)o) ha una struttura di U(g-modulo. e Hyy,(M(d)o)
¢ un suo U(g)-sottomodulo . Inoltre Hy,,(M(d)o) € la rappresentazione ir-
riducibile di peso piu alto d e la decomposizione

Huop(M(d)o) = @D Hiop(M(d, v)o)

fornisce la decomposizione in pesi di Hi,,(M(d)o): pit precisamente il sot-
tospazio Hyoy(M(d,v)o) ha peso d —v.

1.4. Quiver varieties e la costruzione geometrica dei quantum
groups. Nakajima ha annunciato di poter utilizzare le quiver varieties per
dare una costruzione geometrica dei quantum groups. Nel caso di A,, lo stesso
risultato era stato gia ottenuto da Varagnolo e Vasserot [27].

2. Questa tesi

La geometria puo essere spesso una utile guida, quando non € uno stru-
mento insostituibile, nello studio della teoria delle rappresentazioni.

In particolare, il risultato di Nakajima mostra che lo studio della ge-
ometria delle varieta quiver puo fornire informazioni sulla teoria delle rap-
presentazioni delle algebre di Kac-Moody: per esempio fornisce immediata-
mente una base canonica, costituita dalle componenti irriducibili della va-
rieta M(d,v)g, delle rappresentazioni integrali e irriducibili delle algebre di
Kac Moody. In questa tesi affronto lo studio di alcune proprieta delle varieta
quiver.

Il primo capitolo e principalmente un capitolo di rassegna. Nella prima
sezione vengono definite le quiver varieties come varieta hyerkahleriane. Ad
un grafo con n vertici e a due ennuple di naturali d,v viene associata una
varieta hyperkéhleriana 9t:(d,v) dipendente da un parametro continuo (.
Questa ¢ la definizione originale che Nakajima da in [21]. Ho inserito una
dimostrazione alla fine di questa sezione in quanto leggermente diversa da
quella originale.

Nella seconda sezione ricordo alcune generalita sul collegamento tra la
costruzione dei quozienti via mappe momento e la costruzione del quoziente
dei punti semistabili. Il caso che ci interessa e leggermente diverso da quello
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che si utilizza usualmente ed ho quindi riportato alcune dimostrazioni. Purtroppo
non sono riuscito a dimostrare in questa generalita un risultato altrettanto
soddisfacente di quello usuale.

Nella terza sezione definisco le quiver varieties come varieta algebriche
e introduciamo una serie di risultati e notazioni che saranno necessari nel
seguito.

Nella quarta sezione ricordiamo un risultato di Nakajima sull’azione del
gruppo di Weyl sulle quiver varieties lisce. Dimostriamo anche un analogo
di questo risultato per la varieta singolare M° che mi sembra essere nuovo.

Nella quinta sezione enunciamo il risultato di Nakajima sulla costruzione
delle rappresentazioni delle algebre di Kac-Moody ricordato sopra.

Questo capitolo puo forse apparire un po‘ disomogeneo. In particolare
non tutti i risultati che ricordo saranno effettivamente utilizzati nel seguito
della tesi, e altri invece importanti non sono stati ricordati. Questo e dovuto
al fatto che ho dato maggior rilievo ai risultati che penso possano essere
preliminari nello studio di altri problemi connessi con le varieta quiver. In
particolare il quarto paragrafo va interpretato in questo senso. Analogamente
puo apparire un po superflua la costruzione delle varieta quiver come varieta
hyperKhéleriane. In realta penso che questa costruzione e utile per costruire
una azione del gruppo di Weyl simile a quella costruita da Slodowy nel caso
della varieta delle bandiere ([25]).

Il secondo capitolo ¢ dedicato ad alcune osservazioni sulla omologia delle
quiver varieties. Nell'ultima sezione (§4) viene dimostrata la seguente pro-
prieta dell’omologia delle quiver varities:

H,(M(d+d')) = H,(M(d)) ® H, (M(d')).

Il risultato sulla moltiplicativita avrebbe da una parte lo scopo di ridurre
lo studio dell’omologia delle quiver varieties al caso dei pesi fondamentali,
dall’altro suggerisce una via per una interpretazione geometrica della formula
di Littlewood-Richardson. Soprattutto da questo secondo punto di vista
il risultato sulla moltiplicativita si puo considerare incompleto. Non viene
dimostrato infatti che I'isomorfismo in questione € di g-moduli. Nell'ultima
parte del capitolo dimostro una proprieta da cui la g-equivarianza potrebbe
seguire.

Il risultato sulla moltiplicativita (§4) dell’lomologia delle quiver varieties
e il calcolo degli indici di contrazione (§2) penso che siano nuovi. Nello stesso
capitolo riporto la dimostrazione di un risultato di Nakajima sulla omologia
delle varieta quiver che utilizzo e di cui non e disponibile un riferimento
bibliografico.

Nel capitolo terzo fornisco una descrizione completa delle quiver varieties
in termine delle varieta di Slodowy, nel caso dei grafi di tipo A. Questo
risultato era stato congetturato da Nakajima in [21] §8 e come & spiegato
nello stesso paragrafo non sembra avere una naturale generalizzazione agli
altri grafi finiti: D e E. Un’altra distinzione tra il caso A e i casi D, FE ¢ dato
dalla seguente osservazione: nel caso A,_; se prendiamo d = (n,0,...,0) e
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v=(n—1n-2,...,1) otteniamo che la varietd M(d,v) & isomorfa alla
varieta delle bandiere complete in C". E forse inutile ricordare che questa
varieta gioca un rulo importantissimo nella teoria delle rappresentazioni di
SL(n) e di S,. Se C & la matrice di Cartan associata al grafo di tipo A,
all’interno del “linguaggio” delle quiver varieties si puo caratterizzare questa
varieta come una varieta M (d,v) per la quale d — Cv = 0 e M(d, v)o ha una
sola componente irriducibile. Ci si puo chiedere allora se esiste sempre una
varieta del genere e se ha anche negli altri casi un particolare ruolo. E‘ facile
vedere che gia nel caso D4 una varieta di questo tipo non esiste.

Esistono altri aspetti del caso A che invece almeno congetturalmente si
potrebbero estendere agli altri casi. La costruzione dell’isomorfismo tra le
varieta di Slodowy e le varieta quiver di tipo A data nel terzo capitolo mostra
come ogni fibra della mappa

7 M(d,v) — M°(d,v)

sia isomorfa ad una fibra M(d’, v")y per una varieta quiver per lo stesso grafo
e per opportuni d’,v’. Nel caso dei grafi di tipo finito questa ipotesi ¢ sup-
portata dalla descrizione delle quiver varieties come spazio dei moduli degli
istantoni sulle risoluzioni minimali delle superfici C?/T".

Ma l’aspetto che sarebbe piu interessante generalizzare ¢ legato al cal-
colo dell’omologia delle quiver varieties e quindi, grazie al risultato di Naka-
jima, dei caratteri delle rappresentazioni irriducibili al quale accenniamo
nell’osservazione 3.1. L’omologia delle quiver varieties di tipo A, si puo
infatti studiare utilizzando un procedimento induttivo. Spaltenstein ha in-
fatti utilizzato questo procedimento per dare una cellurarizzazione delle fibre
di Springer generalizzate. Il punto essenziale ¢ che data una fibra di Springer
di tipo A,, (cio¢ una fibra della proiezione di una varieta delle bandiere ad
n passi) esiste una mappa in una grassmaniana le cui fibre sono fibre di
Springer di tipo A,_;. Questa mappa si puo descrivere naturalmente nel
linguaggio delle quiver varieties e ci si puo chiedere se questo procedimento
si possa estendere a situazioni piu generali. Nel caso Dy, per esempio, si pos-
sono utilizzare metodi simili per calcolare I’omologia delle quiver varieties nel
caso dei pesi fondamentali, e quindi grazie ai risultati del capitolo 2 di ogni
quiver variety. Non e chiaro pero se sia possibile organizzare questi metodi in
modo organico. Io penso che questo sia collegato a capire meglio la struttura
dell’algebra R associata al grafo (vedi la definizione 1.17).

3. Ringraziamenti

Ringrazio Corrado De Concini e Claudio Procesi per le numerose dis-
cussioni e per avermi suggerito di studiare le varieta quiver. Voglio in-
oltre ringraziare Ilaria Damiani, Domenico Fiorenza, George Lusztig, Luca
Migliorini, Ivan Mirkovic, Hiraku Nakajima, Kieran O‘Grady, Georges Pa-
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General conventions

N:={0,1,2,...}
ol g, g E = @D, Ei and F = (P, I are complex vector spaces and
¢ € Homc(F, E) then

[@]Ei,FJ- = TE; ©P O,

where 7, is the projection of E on E; with kernel equal to €, i By
and 15, is the inclusion of F; in F. When the decompositions of
the sapces will be clear from the contest we will use this convention
without specifing the spaces E;, Fj.

v>ulv>ulrif o= (v,...,0,), u=(uy,...,u,) € R" we say that
v>wu[v>ulif v > v [v; > ) for all i

dim: otherwise stated with dim we mean the complex dimension of a
vector space, a manifold or an algebraic variety

H;(X),HS(X): H;(X) is the Borel-Moore homology group with coef-
ficient in a field of characteristic 0 and H¢(X) is the singular ho-
mology group with coefficient in a field of characteristic O .
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CHAPTER 1

General properties of quiver varieties

In this chapter we define quiver varieties and we describe some general
properties of these varieties.

1. Notations and definitions

In this section we give the definition of quiver varieties. Except some mi-
nor change in section 1.7 all definition, results and proofs are due to Nakajima
(21, 22].

1.1. The graph. Let (I, H) be a finite oriented graph: [ is the set
of vertices that we suppose of cardinality n, H the set of arrows and the
orientation is given by the two maps

h+—— hy and h — Iy

from H to I. We suppose also that:

(1) Vhe H hg # hy,

(2) an involution h +— h of H without fixed points and satisfying hy = h;
is fixed,

(3) a subset 2 of H is given satisfying:
(a) QNQ =g and QUO = H,
(b) it does not exist n > 0 and M, ..., A" € Q such that A"’ =

R fori=1,...,n—1and A" = n{Y,

we define e : H — {—1,1} by

e(h) = 1 %fheg,
-1 ifhe.

We observe that given a symmetric graph without loops is always possible
to define €2, ¢ and an involution ~ as above.

1.2. The Cartan matrix and the Weyl group. Let A be the matrix
whose entries are the numbers
a;j =card{h € H : hyg =14 and hy = j}.

We define a generalized symmetric Cartan matrix by C' = 21 — A. Following
[17] an X, Y-regular root datum (I, X, XV, <, >) with Cartan matrix equal
to C'is defined in the following way:
(1) XV and X are finetely generated free abelian groups,
(2) <,>: X x XV — Z is a perfect bilinear pairing,
13
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(3) two linearly independent sets IT = {o; : ¢ € I} C X and IIY =
{af i €I} C XV are fixed and we set @ = (IT) and Q¥ = (IV),
(4) <oy ,Oé;-/>: Cij,
(5) (nonstandard) rank X = rank XV = 2n — rank C,
(6) (nonstandard) a linearly independent set {w; : i € I} of X such
that <w;, Oé;-/>: 6ij is fixed.
Once C' is given it is easy to construct a data as above. We call b the
complexification of XV and we observe that through the bilinear pairing
< ,> we can identify h* with the complexification of X. We observe also
that the triple (h,II,IIV) is a realization of the Cartan matrix C' ([10] pg.1).
The Weyl group W attached to C'is defined as the subgroup of Aut(X) C
GL(H*) generated by the reflections

S X — T— <, > a. (1)

We observe that the dual action is given by s;(y) = y— <ay,y> « and
that the lattices () and @V are stable for these actions. So the annihilator

QV ={r e X :<z,y>= 0Vy € @V} is also stable by W and we can

consider the action of Won the lattice P = X / QY ~ Homgz(Q,Z) and we
call z — T the projection from X to P. We observe also that this projection
is an isomorphism from the lattice P, that is not W-stable, spanned by
{w; : i € I} and P. Finally we observe that

@i: E Cijwj.

Jjel

1.3. The algebras U and U. We call U the enveloping algebra of the
Kac-Moody algebra attached to the Cartan matrix C' ([10] ch.1) and U the
specialization at ¢ = 1 of the algebra introduced in [17] ch.23. Since the
matrix C' is symmetric we can describe the algebra U as the algebra with
unity generated by {e;, f; : ¢ € I} and b with the following relations ([10]
Th. 9.11):

[h,h']=0 for h,h' € b, (2a)
[h, €] = <a;, h> e; for i€ [ and h € b, (2b)
[h, fi] = — <oy, h> fi fori eI and h € b, (2¢)
e, fi] = dija) fori,5 € I, (2d)
(ade;)' " ie; = 0 fori#jel, (2¢)
(ad f;)'"9if; =0 fori+#jel. (2f)

We call Ut the subalgebra with unity of U generated by {e; : i € I}, U°
the subalgebra with unity generated by f and U~ the subalgebra with unity
generated by {f; : ¢ € I'}. We recall that we have the following triangular
decomposition of the algebra U:

U=U U2 U".
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and we remark that U° ~ S(f) ~ C[X @z C] with multiplication given by
the usual multiplication of functions. The algebra U is an algebra (without
unity) that has the following triangular decomposition:

U=U @U°xU",

where U% = {f : X — C : f(z) =0 for all but a finete number of z € X}.
If 1)(2) = 05, then the set {1, : A € X} is a basis of U® and we can define
a product on U through the formulas:

lyei = el o, for N\ e X and i € I, (3a)
1, fi = [ilxta, for \e X andi eI, (3b)
[ei, fj]]-)\ = (Sij <)\,Oé;/> 1, for A € X and Z,] el (3C)

To be more precise there is not an element e; or f; in U but only elements
e; 1y, so the formulas above are a little bit sloppy: for example the first one
should be written 1)(e; ® 1, @ u™) = dr—qa; u(€; ® Li_o, @ u7).

1.4. d,v and the space of all matrices. We begin now to define the
varieties attached to the graph which should be the geometric counterparts
of the algebra just defined. For the exposition it will be usefull to identify
the set I with the set of integers {1,...,n}.

In this thesis d = (dy, . ..,d,) and v = (vy, ..., v,) will be two n-tuples of
nonnegative integers. We also think of d, v as elements of X in the following

way:
d= Z dw; and v = Z ;0 (4)
iel iel
and through these identifications we define also an action of W on u,v. We
define also vV = >, ;v € QY. Once d,v are fixed we fix also complex

vector spaces D; and V; of dimensions d; and v; and we define the following
spaces of maps:

Sa(d,v) = @) Hom(D;, Vi) & @ Hom(Vi,, Vi, ),

el heQ
Sa(d,v) = @) Hom(V;, D;) & ) Hom(Viy, Vi, ).,
iel heQ

S(d,v) = Sq(d,v) ® Sq(d,v).

More often, when it will not be ambiguous we will write Sg, Sg and S instead
of Sq(d,v), Sg(d,v) and S(d,v).

As a general convention we will call 4, an element of Hom(D;, V), ¢; an
element of Hom(V;, D;) and By, an element of Hom(V},,, V4,), and we will use
v for (y1,...,7,), 0 for (61,...,9,) and B for (By)nen-
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Once D;, V; and an element (B,~,0) of S are fixed we define also:

T,=D;® @ Vi, (5a)
h:h1=1

a; = ai(Ba e 5) = (6“ (B}_L)h:hlzi) : ‘/Z B 71 ) (5b)

bi = bZ(B,’}/,(S) - (727 (E(h)Bh)hihlii) : E - ‘/Z : (5C)

In this thesis we will identify the dual of space of the C-linear maps
Hom(E, F) between two finite dimensional vector spaces with Hom(F, E)
through the pairing < ¢, 9 >= Tr(p o). So we can describe S also as
Sq @ S5 = T*Sq and we observe that a natural symplectic structure w is
defined over S by

w((sQ, Sﬁ), (tQ, tﬁ)) =<sq, tg> — <tq, sg> -

If we want to describe this structure explicitely in terms of maps (B, ,d) we
have:

heH iel
iel
1.5. Hermitian and hyperKahler structure on S. We suppose now
that the spaces D;, V; are endowed with hermitian metrics. So we can speak

of the adjoint ¢* of a linear map between these spaces, and we have a positive
definite hermitian structure h on S with explicit formula:

h(B.7,9),(B.7,0)) = > Te(BiB;) + Y Te(vA; +8;8) (1)

heH el
el

Moreover we can define a structure of hyperKahler manifold on the real
riemannian manifold (S,Reh): that is the datum of three covariant constant
orthogonal automorphisms 7, J and K of the tangent bundle which satisfy:

P=r=K=IJK=-1
In our case I, J and K are defined as follows:

I is the usual multiplication by i = v/—1,

J(B,7,8) = (e(h) B}, —51,77), or J(sa, sq) = (—s5, 55),

K(B,7,0) = (e(h)i By, —=i6;,i77) or K(sq, sq) = (—isg, isg).
We define also the real symplectic forms w;, w;, wx by the formulas:
wr(s,t) = Reh(Is,t), wy(s,t) = Reh(Js,t), wi(s,t) = Reh(Ks,t).
We observe that w;,w;, wg are closed forms and that

wr=—Imh and (w; +iwk)(z,y) = h(y, Jz) = w(z,y).
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In particular —wy is a Kahler form on S.

1.6. Group actions and moment maps. We can define an action of
the groups G = GL(V) = [[GL(V;) and GL(D) = [[ GL(D;) on the set S
in the following way:

9(Bn, 7> 0:) = (9ny Bugny » 975, 0ig; 1) for g = (g:) € GL(V),  (8)
9(Bn, 7, 6:) = (Bn,vi9;  9i0:) for g = (¢:) € GL(D).  (9)

We observe that these actions commute, that w is GL(V') invariant, and that
they commute with the action of I. Moreover if U = U(V') = [[U(V;) is the
group of unitary trasformations in GL(V') we have that U(V') commute with
J, K and that wy,wy,wk, h are U(V) invariant.

We want to define moment maps for these actions. We use the definition
of moment map given in [22], which differs from the one in [20] ch.8 for a
sign: if (M, n) is a (real or complex) symplectic manifold and o: K x M — M
is an action of a Lie group which preserves the symplectic form 7 then a map
w: M — € is said a moment map if:

p(km) = Ad, pu(m) for k € K and m € M,
<z, dp,,(v)>=n(o.(m),v), forme M, v e T, M and x € ¢,

where o,(m) = doq,m)lz,0].
In the case that (M, n) is a real symplectic vector space we observe that
the map 1 : M — € defined by:

<n(m), z>= sn(x - m,m) form e M and z € ¢ (10)

is moment map for the action of K. In our case we identify g* = Homc(g, C)
with g = @gl(V;) through the pairing <(z;), (y;)>= >_, Tr(z;y;). Since if
z,y € u then <x,y>€ R we can use the same pairing to identify u* =
Hompg(u, R) with u. Moreover we observe that g = u @ iu. The i-component
of the moment maps p, p;: S — g = ®gl(V;) defined as in (10) have the
following explicit formulas:

pi(B,7,0) = Z e(h)BrBy, + v;0i = bia,

heH :hi=t

Hri(B, 7y, 0) = 5 ( > BuB; - BBy + 7,7 — 6, 51-) = 5 (b} — ajay),
heH :h1=1

we observe that p is a moment map for the action of G on the symplectic
manifold (S,w) and that p; is a moment map for the action of U on the
symplectic manifold (S, w;). Since w = w j+iw we observe that u = p;+ipg
splits in the sum of the two moment maps for the action of U on (S,w;) and
(S,wk). It is common to group all these moment maps together and to define
an hyperKahler moment map

p=(p,p):S—udg=RaC)ru



18 1. GENERAL PROPERTIES OF QUIVER VARIETIES

Finally we want to identify the 3 = Zy & Zg = Zy(u) & Zg(g) =
@®;iRIdy, ® &; ClIdy, with R” & C" and with (R & C) ®z P through:

iel iel
In particular we consider an action of the Weyl group W on 3 through this
identification.

1.7. Quiver varieties as hyperKahler quotients. The equations p; =
¢ and p = X are called ADHM equations. For ( = (£, \) € 3, we define:

Le(d,v) ={s €5 : puls) = (}

and we observe that it is stable for the action of U, so, at least as a topological
Hausdorf space we can define the quiver variety of type ¢ as

M (d,v) = Le(d,v)/UV).

It will be convenient to define also M, (d, v) = @ if d,v € Z" and there exists
¢ such that v; < 0 or d; < 0. We want now to give a sufficient condition on
¢ for the smoothness of M.

LEMMA 1.1. Let i(s) = ¢ € 3 then
dpi, is surjective <= dpu, is surjective <= Stabg{s} = {1¢}

PROOF. 3) = 2) is a general fact: indeed if dpu, is not epi there exists
x € g such that <z, dp,(v)>= 0 for each v € T,S. But since p is a moment
map this is equivalent to o,(s) = 0 and this implies exp(tz)s = s for each
teC.

2) = 3). Let g = (¢;) € G such that gs = s and set X; = g; — Idy;, and
r = (X;) € g. By explicit formula we can check ¢,(s) = 0 and <Imdpu,, x>,
sox=0and g =1g.

1) = 2) is trivial.

3) = 1) is a general fact: let ¢ = (£, ) and set N = p~(\). Since dp, is
an epimorphism in a neighborhood of s (N,Reh) is a smooth riemmannian
manifold and TN = ker du, is stable by the action of I, so w;|7,n is a non
degenerate symplectic form. Now working as in 3) = 2) we see that dyu; |~
is surjective from which 1) follows. O

REMARK 1.2. We observe that for 1) = 2) <= 3) we don’t need
i(s) € 3 and that for 3) = 1) it’s enough that pu(s) € Zg(g).

DEFINITION 1.3. Let now H = {( = ({,\) € 3 : Ju € N"—{0} such that
0<wu; <wv;and <€,u’>=<\,u’>=0}. H is a union of a finite number of
real subspace of 3 of codimension 3.

LEMMA 1.4. If( € 3 —H and j1(s) = ¢ then Stabg{s} = 1¢.

PROOF. For the lemma above it’s enough to prove that dpu, is an epimor-
phism. Let s = (B, 7, ) and suppose that dy it’s not an epimorphism. As
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we saw above this is equivalent to the existence of a nontrivial x = (X;) € g
such that o,(s) = 0: in our case this is equivalent to the following equations:

XZ"}/Z- =0 61Xz =0 and XhlBh = BhXho‘ (12)

Now we divide the proof in two cases according to the nilpotency of the maps
Xi-

First case: X; nilpotent for each i. Since X solve the same equations
we can assume that X? = 0. We can choose an an orthogonal decomposition
Vi=P, & Q; ® R; such that P, ~ ); ~ U; and Xi‘Pi = Xi‘Ri =0 and Xi}Qi
it’s the identity map from @; = U; to P; = U;. From equations (12) it follows
that respect this decomposition the maps By, 7;, ; have the following shape:

b b2 o 7
By=(0 b 0], v=|0]and §,=(0 & &)
0 2 b %

If u; = dime U; and &1dy, = —2ip; ,(s) we have that

i=1 i=1
_ Z T ( S" [BuB; - BiBil oy + 17 - 5;.*52-]%)

h:h1=t
=) Tr (babj, + b0y + 03707 — biby + i)

heH

= Tr (5252 + b +yiylT) =0

i
heH

since Tr(pe*) > 0 for any ¢. On the same way we see that

zn:flul = zn: Tr (fiIdVi}Qi) Z Tr 12* _ b:lng*sz _ (5?*(5?) <0
=1 =1

S0 Y icr & = 0. Finally if A\; = p;(s) we have that

Sren (om0 (5 o]
i=1 i=1 h:hi=i

- ZTr ( Z )Bh’ Bj, P-) = ZTr (e(h)Bh PABB

P ! heH ‘

) 0
p;
h:hi=1

So if u = (uy,...,u,) we have that u # 0, 0 < u; < v; and that
<& uV>=<\,u’'>=0.

Second case: there exists ig such that X, is not nilpotent. Let {ay, ..., ay,}
the set of the eigenvalues of the maps X; and let oy # 0. Taking a power of
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X we can assume also that a? # 042 if i # 7. Let &, \; as in the first step
and V; = @aeaV o the spectral decomposition of V;. We observe that:

By(Vig.a) C Vo, Imny; CVig and V;, C kerd; if a # 0.
We have that

dGT(X)) =D Tr (Xi ( > BB — BiBi+77; — 62‘&) XZ->
iel iel hihi=i
= Tr(BuXp,BiXn,) — > Tr (X, By Xy, By) =0
heH heH
In the same way we obtain Y, ;& Tr(X?") = 0. Now let u;; = dim(Vg,),
we have that

0= Z@ Tr(X?) = Z& <Z uij(Jz?T) = Z <Z &u”) oz?r

iel iel j=1 \iel

for any r > 0, and since o # o if i # j we obtain Y, _; §us = 0. Working
as in the first step we obtain also ), ; \ju;; = 0 and so if u = (uyy, ..., up)
we have that u # 0, 0 < u; < v; and that <€, uV>=<\,uV>= 0. O

As a consequence of the above lemma and general results on on hy-
perKéhler manifolds (for example [7] or [8]) we obtain the following corollary.

COROLLARY 1.5. If ( € 3—H then if it is not empty M (d, v) is a smooth
hyperKdhler manifold of real dimension 2 <2d — v,v">.

2. Geometric invariant theory and moment map

In this section we explain the relation between the moment map and the
GIT quotient proved by Kempf, Ness [12], Kirwan [20] and others. Since I
couldn’t find a perfect reference for our purpose I prefere to give proofs of
these facts.

Let X be an affine variety over C and G a reductive group acting on X.
We can assume that X is a closed subvariety of a vector space V' where G
acts linearly. Let h be an hermitian form on V invariant by the action of
a maximal compact group U of G and define a real U-invariant symplectic
form on V' by

n(z,y) = Reh(iz, y).
Then we can define a moment map p: V' — u* = Homg(u, R) as in (10):

<p(x),u>= 3n(u -z, x).

We observe that the real symplectic form 7 resctricted to a complex subman-
ifold is always non degenerate and that u restricted to the non singular locus
of X is a moment map for the action of U on X.

Now let x be a multiplicative character of G. We observe that for all
g € U we have |x(g)] = 1 so idy : v — R. In particular we can think to
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idy as an element of u*. Morover we observe that it is invariant by the dual
adjoint action, hence it makes sense to consider the quotient:

M= p~ (idx)/U.

On the other side we can consider the GIT quotient. We remind the
definition. If ¢ is a character of G we consider the line bundle L, =V x C
on V with the following G-linearization:

g(w,2) = (g 2,90(g)2).

An invariant section of L, is an algebraic function f : V' — C such that
flgz) = ¢(g9)f(x) for all ¢ € G and z € V. We use the same symbol L,
also for the restriction of L, to X. Given a rational action of G on C-vector
space A we define

Appn={a€A:g-a=¢ "(g)aforall g e G},

oo
A, = @ A,, asagraded vector space.

n=0

Hence we have that H(X, L,)¢ = C[X],1. We observe that if I is the ideal
of algebraic function on V' vanishing on X then

¢ H(V.L,)°
kel

;1

H(X, L)

This last fact can be proved easily for example averaging a ¢ equivariant
function f on X in the following way:

F(vo) = / o\ (W) f(u - v) du.

DEFINITION 1.6. A point x of X is said to be x-semistable if there exist
n>0and f € H(X,LY")% such that f(z) # 0. We observe that by the
remark above a point of X is y-semistable if and only if is y-semistable as a
point of V. We call X7 (resp. V;**) the open subset of x-semistable points
of X (resp. V).

We observe that we have an isomorphism Z ~ Hom(C*,C*) given by
m — {t — t™}. Hence we can define a perfect pairing <, >: Hom(C*, G) x
Hom(G,C*) — Z by <A, x>= x o \.

The following lemmas are a consequence of Hilbert-Mumford criterion
and they are completely similar to the ones in [24].

LEMMA 1.7. 1) A point x of X is x-semistable if and only if G(z,1) C
L,-1 does not intersect X x {0} C Ly-1.

2) A point x of X is x-semistable if and only if for all one parameter
subgroup \ : C* — G if there exists the limit lim; o A(t)-x then <\, x>> 0.
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LEMMA 1.8. Let x,y € X then

1) Gz is a closed orbit in X3° if and only if G(x,1) is closed in Ly if
and only if for all one parameter subgroup A : C* — G such that <\, x>= 0
if there exists the limit lim; o \(t) - x = y then y € Gz.

2) Gz N Gy N X3 # @ if and only if there exists « € C* such that

Gz, 1) NGy, ) # @.

LEMMA 1.9. There exists a good quotient of X3* by the action of G and
we have that

X7*//G = Proj C[X],.
Moreover Proj C[X], is a finetely generated C-algebra and a projective map

m: X¥/)G — X//G = Spec C[X]°.

In the case of x = 1 the following fact is well known:
Proj C[X], = Spec C[X]® = 1~ 1(0)/U.

We want generalize this result for a general x. Our construction coincide
with the one in [12] in the case xy = 1.
If v is an element of V' we define a map p,: G — R:

po(g) = llg - v|I* — 4log|x(g)|.
where |[v||? = h(v,v). It is clear that p, is U-invariant.
LEMMA 1.10.
dp,(9) =0 <= p(gv) = idyx.

Proor. Let R, the right multiplication for g on G and let x = y + iz an
element of g = u @ .

dpy(9)[Ry«x] = %h(exp(wf)g -v;exp(ex)g - v) — 4log|x(g)]

=2n(zgv,gv) —4 <dy,iz>

e=0

=4 <p(gv) —idy, z>
and the thesis follows. O

If z € u we consider the function a : R — R defined by:

a(s) = pu(exp(izs)).

Since h is U-invariant there exist an orthonormal basis and real numbers
bi, ..., b, such that

by 0 ... 0

1z =

0 0 ... bn
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Hence in this basis we have the following explicit formulas:

a(s) = Z e?%|v;|? — 4 <dx,iz> s

=1
m

a’(s) =4 Z b?e%js\vj\Q.
=1

From these formulas the following lemma follows easily.

LeEmMMA 1.11. 1) If g is a critical point of p, then it is a global minimum.
2) If g,¢" are critical point of p, then

g €U -g-Stabg{v}.
3) Stabg{v} is the complexification of Staby{v}.

PROOF. Let’s prove 2): the proof of 1) and 3) are completely similar. We
can assume g = e and g’ = kexp(iz) where k € U and z € u. Moreover since
Py is U-invariant we can also assume k£ = e. Then we have that the function
a(s) defined above as a critical point in s = 0 and s = 1. Since a” > 0 for all
s it follows that a” = 0 between 0 and 1 . Then b;|v;| = 0 for all j. Hence
exp(iz) € Stabg{v}. O

LEMMA 1.12. If p, has a minimum then Guv is a closed orbit in X3*.

PrROOF. It is clearly enough to study the case X = V and we can assume
also that the minimum is obtained in e € G.
First step: v € V2°. By absurd and lemma 1.7 suppose that (z,0) €

G(v,1) C Ly-1. Then there is a sequence g, of element of G such that
gn(v,1) — (2,0). Then p,(g,) — —o0

Second step: if G = T is a torus then the theorem is true. By lemma
1.8 we must prove that if A is a one parameter subgroup of GG such that
<A, x>= 0 and there exists the limit x of A(t) - v for ¢ — 0 then z € Guv.
First of all I observe that in T' there is a unique maximal compact subgroup
U= {geT: {gis compact }. Hence A(S') C U and there exist an

othonormal basis of V' and integers number b, ..., b,, such that
tr 0 ... 0
b2
=" " X
0 0 £om

Since there exists the limit x = lim;_o A(t) - v then b; > 0 if the i-component
of v is different from 0, Moreover if x # v there exist ¢ such that the -
component of v is different from 0 and b; > 0. Hence h(z,z) < h(v,v) and
limy—opu(A(t)v) < py(e) against the minimality of p, in e.

We can now prove the theorem in the general case. We use the Cartan
decomposition G = UTU where T' is an algebraic maximal torus in G that
is the complexification of a maximal compact subtorus of U. By absurd and
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lemma 1.8 we can assume that G(z, «) is the closed orbit in G(v,1) C Ly
and that (z,a) ¢ G(v,1). Since G(z, «) is closed there exists a T" closed orbit
in L, -1 contained in G(x, o). Without loss of generality we can assume that
this is precisely the orbit of (x, ). Moreover by the first step we have o # 0.

Now observe that by U-invariance of p, for all z € Uv the function p,
has a minimum in e. By the result claimed in the second step T'(z, ) is
a closed orbit in L,-1 for all 3 # 0. Then for all Z € U(v,1) there exists
[z € C[Ly-1]" such that f:(2) =1 and f;(w,«) =0 . Let set

Us={j§ €L :|fz(9)] >3}

The collection of open sets {U;} covers the compact set U(v,1). Then there
exist Z1,...,2y € U(v, 1) such that U(v,1) C Uz, U---UUs,. Let now f(y) =
S| fz(5)| then by T-invariance |f(7)] > & on TU(v,1) and f(w,a) = 0.
Then

TU(v,1)NG(w,a) = @
and since the action U x V' — V' is proper and G(w, «) is obviously U stable
it follows that

Gv,)NG(w,a) CUTU(v,1) N G(w, ) = &
and we have obtained an absurd. O

LEMMA 1.13 (Neeman [23]). Let us consider the map ¢: V — V//G xR
given by

p(v) = (m(v), [u(v)]).

The map ¢ s proper.

PROOF. Let fi,..., f. be homogenous generators of the algebra C[V]“ of
positive degree. Define the map f = (fi,..., f.) between V and C" and the
map ¢ = (f,u): V. — C" xR. It is clearly enough to prove that 1 is proper.
By absurd suppose that there exists a sequence z,, such that ||z,| — +o0
and ¢ (z,) — y. Let y,, = z,,/||xx||. Since ||y,|| = 1 for all n we can assume
(eventually we take a subsequence) that y, — y. By the homogeneity of u
and of the polinomials f; we have that ¢ (y) = lim¢(y,,) = 0. Hence ¥)(y) = 0
and by standard properties of V//G we have that 0 € Gy. Moreover lemmas
1.10,1.12 p(y) = 0 implies that Gy is a closed orbit in V}** = V. Hence
lyll = 1, and Gy is a closed orbit in V and 0 € Guv which is cleraly an
absurd. U

PROPOSITION 1.14. The inclusion p~'(idy) C X3¥ induces a closed em-
bedding
p7 () U — X3/ /G.

PROOF. By lemmas 1.10 and 1.11 Z = p~(idy) = {z € X : p, has a
minimum in e}. Moreover by lemma 1.12 Z C {z € X3° : G is closed in
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X;S}. Then there exist continous maps 7, such tha the following diagram
commute:

7 c X;S

pol X lpl
Z)U —% X2/ /G

Now we observe that by lemma 1.13, and the fact that the projection the
maps 7,1 are proper. So it is enough to prove that ¢ is injective.

Let z,y be elements of Z such that 7w(z) = 7(y). Then Gx N Gy =
GrnGyn X7 # @. Then y = gx and the function p, has a minimum in g
and by lemma 1.11 y € Uz. Hence po(x) = po(y).

O

REMARK 1.15. In the case y = 1 it is easy to prove that the map ¢ :
Z|U — X3°/ /G is surjective. In general the following are equivalent:

(1) ¢ is surjective,
(2) if G is a closed orbit in X7?° then p, has a minimum,
(3) if v € X3* then idy € uGo.

In the case of the 1-dimensional torus it is easy to prove the general statement
but I was not able to prove the surjectivity in general.

3. Quiver varieties as algebraic varieties

In this section following [22] we introduce the varieties M°(d, v), M(d,v)
and M~ (d,v) that will be the main object of study in this thesis. More in
general for xy: G — C* a character and for A € Z = Z5(g) we will define a
variety M, \(d,v) and we will set

M= Mg M=M"= Mo and M~ = My, 1,

where det is the character of G defined by det(g;) = [[det(g;). As we
will shortly explain the construction of M, ) is an algebraic version of the
construction described in section 1.7.

DEFINITION 1.16. For A € Z = Zg(g) and y a character of G we define
Ax(d,v) = p~H(\) C S with reduced structure,

Ryxn=A{f €CA\] : f(gs) =x"(9)f(s)} and R, )= @ Ry s,

n=0
My (d,v) = My = Proj Ryx = (M) //G,
T\ - MXJ\ — ML)\ = AA//G

Also in this case will be convenient to define M, y = @ if d,v € Z" and there
exists 7 such that v; < 0 or d; < 0.
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3.1. The coordinate ring of M°. As we have just seen M? is the affine
variety Ag//G. A set of generator of its coordinate ring was given by Lusztig
in [18] theorem 1.3. In this section we describe his result and we introduce
some notation.

DEFINITION 1.17. A B-path o in our graph is a sequence h(™ ... h(!)
such that A € H and hgi) = h(()iﬂ) for i = 1,...,m — 1. We define also
oy = hél), o = hgm) and we say that the degree of a is m. If ay = a; we
say that o is a closed B-path. The product of path is defined in the obvious
way.

An admissible path [3] in our graph is a sequence [i; 5 a™irm oM,
that we write between square brackets such that i; € I, al) are B-path,
r; € N and aéj) = 1; and agj) = 141 for j = 1,...,m. We consider also
the “empty” admissible paths indiced by elements of I: [&;]. We define
[ﬁ]o = il, [6]1 = im+1 and [QZ]O = [@2]1 = 4. The degree of [ﬁ] is 2+
Z;”jll rj+ > 1 degree(a?) and the product of paths is defined by:

0 if 61 # [Blo
[6i57] i [671 = [Blo = i

Given a B-path o = h(™ ... h() and an admissible path 8 = [irmmjfoz(m) e
...i1"] we define an evaluation of o and § on S in the following way: if
s = (B,v,0) € S then

a(s) — Bh(m) O---0 Bh(l) & Hom(va07 Val)

6(3) = 6im+1 e} (rYim+l e} 6im+1)rm+l o Oé(m)(S) o (fyzm o (5im)rm 0O---0
0-+-0 a(l)(s) o (7, ©905,)™ o, € Hom(Dg,, Dg,).

18] - 18 = {

For this reason sometimes instead of writing v = A ... h()) we will write
o= By - -+ By and if 8 =[5, dp'| we will write 8, (75, 0iyy) ™
... ryll .

The algebra R is the vector space spanned by the admissible path with
the product induced by the product of path described above. Finally once
A= (A1,...,\y) is fixed we define the associative algebra Ry = R/I, of ad-
missible polynomials where Z ) is the bisided ideal generated by the elements
[af;a/] — \;[ad/] where «a, o’ are B-path such that oy =i = o] and

0;= Y e(h)[hh] +[i].

h:hi1=1
If f is an element of R or R, and there exist 7, 7 € I such that:
f= > alf]
ﬁ:ﬂozi ,31:j

we say that f is of type (i, 7).
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REMARK 1.18. We observe that the evaluation on S is a morphism of
algebra from R to the algebra defined by the morphisms of the category of
vector spaces. We observe also that the evaluation of R, on elements of
Ay is well defined. Moreover if f is of type (i,7) we observe that f(s) €
HOIH(DZ‘, Dj)

THEOREM 1.19 (Lusztig, [18] theorem 1.3). The ring C[S]% is generated
by the polynomaials:

s — Tr(a(s)) for a a closed B-path
s+ @ (B(s))  for B an admissible path and ¢ € (Hom(Dg,, Dg,))"

3.2. GIT description of M, ). Given a character x of G we say that
a point s € S is x-semistable if there exist n > 0 and f € R, », such that
f(s) # 0. If Xis a central element A we define:

Ay ={s €A, : sis xy — semistable}
For x = det, det™! we will use the following notation:
Aj\— - Adet’)\ and A; — Adet_l,)\'

As we explained in section 2 we have that M, ) is a good quotient of the set
A,y of x-semistable points of Ay. In this section we want to give a more
explicit description of these points. We call

DPxa: Ax,)\ I Mx,)\
the quotient map and we set p® = p1,, p = p" = Paer0 and p~ = Pdet—1,0-

DEFINITION 1.20. Let s = (B,~,9) € S.

Let for each i € I U; C V; alinear subspace. We say that U = (Uy,...,U,)
is B-stable if Bj,(Up,) C Uy,.

We define V' = V*(s) as the smaller B-stable subspace of V' containing
Im~. It is easy to see that

V= Z Im a(5)74,-

a a B—path
a1=1

We define define V=~ = V~(s) as the bigger B-stable subspace of V' con-
tained in ker d. It is easy to see that

W:ker{ [ Swats):Vi— ] Dal}.

a a B—path a a B—path
Q=1 ap=1t

We say that s is stable if its G-orbit is closed in S and Stabs{s} = {1}
and we define

A ={s e A, : sisstable }.

We say that s is +stable if Vt = V.
We say that s is —stable if V— = 0.
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LEMMA 1.21. Let s = (B,,06) € S then:
1) s is +stable <= s is det-semistable,
2) s is —stable <= s is det™‘-semistable,
3) s is stable <= s is + and —stable,
4) If s is + or — stable then Stabg{s} =1

DEFINITION 1.22. Let H = {\ € Z : Ju € N" — {0} such that 0 <
u; < v;and <A,u¥>= 0}. H is a union of a finite number of complex
hyperplanes of Z = Za(g).

As for the hyperKéhler case it follows that if A € Z — H then M (d,v)
and M (d,v) are two smooth variety of complex dimension

ProrosITION 1.23 ([21, 22]). 1) Let s = (B,7,0) € Ay then Gs is a
closed orbit in S if and only if there exists a deconposition V = @Tzo %%
such that
) VU is B-stable for any j,

) Imy C VO and VU C kerd for j #0,

) ( B}v(o)v’% 5“/(0) Areg(d v® ),

) s; = B}V(]),O 0) € Ax(0,v9)) for j # 0 and describes a closed orbit
in Ax(0,v9)), moreover

(a) Stabguy{s;} = C

(b) Zh:hlziImBh = Z» for any i € 1.

2) Let s = (B,7,0) € Ay and s' € Ay and suppose that Gs' is closed
in S, then mw(p(s)) = p°(s') if and only if there exist g € GL(v) and a B-
stable filtration with respect to s: 0 = V™ c V=D c vy cyO =y
such that V) C ker 6 and s' = g - gr(s), where gr(s) € Ay is defined in the
following way:

(1
(2
(3
(4

m—1
gr(s) = (s, sW . smmy € AT9(q, VO W) x H Ay (0, V0) /G
=1
and s, s9) are enduced by s.

REMARK 1.24. In the case of graph of finite type it is not difficult to see
that the only closed orbit in Ay(0,v) is O (see [18] or [22]). The same result
is true also for Ay (0,v) (see [19]).

REMARK 1.25 (De Concini). In the case d = 0 we can look at the space
S(0,v) as representation of the graph (I, H). It is easy to see that Gs is a
closed orbit if and only if s is the direct sum of simple representation of this
graph.

3.3. HyperKahler description of M, . If we apply the results of
section 2 we obtain:

Mo =~ My,
midx,)\ — MXJ\
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Moreover proposition 3.5 in [21] proved that we have isomorphisms also in
the case of y = det and x = det ™.

4. Weyl group action and reduction to the dominant case

It is easy to check that if v € ) and d € P then for all w € W we
have that w(v — d) +d € @. So it makes sense to consider the variety
My (d, w(v —d) +d). In [21] §9 Nakajima proved the following theorem in
the case of graph of finite type (we say that a graph is of finite type if C' is
the Cartan matrix of a Dynkin diagram of type A,D E).

THEOREM 1.26. If¢ € 3—H and w € W then there exists an isomorphism
of differential manifolds:

Dy Me(d,v) — Mye(d, w(v —d) + d).
Moreover @y ¢ © Poy ¢ = Py -

The proof of Nakajima is purely analytic but he suggests that the same
result can be achieved for a general graph using reflections functors. These
methods were also used by Lusztig in [19] to obtain a very similar result.

4.1. Reduction to the dominant case for M. As we saw above we
can reduce the study of topological properties of M(d,v) to the case d — v
dominant. Although we don’t have an action of the Weyl group in the case
of MP°, is still true that we can reduce the study of M° to the dominant
case. Moreover in this case our construction will be algebraic and not only
of C°°-manifold.

To prove this result we consider the following general construction: let
v < v (that is v} < v; for each i) and fix an embedding V;/ — V; and a
complement U; of V' in V;, then we can define a map J: S(d,v") — S(d, v)

through:
w0 - ((50). (7). o) (13

where the matrices of the new triple represents the maps described through
the decomposition V; = V/ @ U;. It is easy to see that this map enduces a
map U = 7: M°(d,v") — M°(d,v).

LEMMA 1.27. 7 is a closed immersion

PRrROOF. We prove that the map j* : C[Aq(d, v)]9®) — C[Ao(d,v")]¢™)
is surjective. By proposition 1.19 this follows by the following two identities:

Tr(a(y(s))) = Tr(a(s)) and 3(y(s)) = 5(s)
for each B-path «a and for each admissible path (. O

LEMMA 1.28. If 2v; > d; + >
isomorphism of algebraic varieties

! _ i .
jer QijU; and v' = v — «a; then j is an
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PROOF. It’s enough to prove that j is surjective. Let s = (B,~v,0) €
Ao(d,v) and consider the sequence (see (5) for the notation) :

b;

T; Vi —— T,
Since b;a; = 0 and 2dim V; > dim T; we have that b; is not surjective or that
a; is not injective.
Suppose that b; is not surjective, then up to the action of G(V') we can
assume that Imb; C V. Then, for ¢t € C* consider ¢; = (g;:) € G(V') with

gi = (Idovi/ t()l) and g; = Idy, for j # .

Then
(1) gi4Byn = By, if hy =i and g;y; = 7, since Im By, Im~, C Imb; C V,
(2) 3 lim;_ Bhg;t1 = By, if hg =i and d;g; ' = §;

So 3 lim;_og:s = s and it is clear that s’ € 7(Ag(d,v")) and that po(s) =

po(s') € Im .
If b, is surjective and a; is not injective the argument is similar. U

Applyng this lemma repetedly we obtain the following result.

PROPOSITION 1.29. Vv F0' such that M°(d,v) ~ M°(d,v") and d — v’ is
dominant.

REMARK 1.30. This result seems to be new.

5. Nakajima’s construction

In this section we describe Nakajima’s construction of integrable highest

weight representation of the algebra U. All the results of this section are due
to Nakajima [22].

5.1. Some remark on M". We observe that if v < v/ < v” then the
embeddings j%, : M°(d,v) < MP°(d,v') defined in section 4.1 satisfy ;% 0j% =
Jur- S0, at least as a set we can define:

MO(d) = lim M°(d, v).
v
We observe that in the case of graphs of finite type (A,D,E), as a consequence
of lemma 1.28 there exists v such that M°(d,v) = M°(d). In the general case
although this limit has not a structure of an algebraic variety we will use
for example the notation M(d,v) x o) M(d,v") to mean M(d,v) X proq,um)
M(d,v") with v" > v, v'.

We observe also that working as in [22] Lemma 3.27 it is easy to prove
that Vd and Vo € M°(d) there exists a smallest v such that z € M°(d,v).
We call this minimal dimension vector vmin(z).

If we fix d,v we define also M), (d,v) as the (geometric!) quotient of
Ay by G. Tt is an open set (possibly empty) of M°(d,v). We define also
M. (d) = U, M (d,v) and we observe that the last union is a disjoint

sreg eg
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union and that more precisely: © € M2 _ (d) < z € M2 (d,vmin(z)).

sreg reg

By remark 1.24 in the case of a graph of finite type we have M°(d) = M? _ (d).

sreg

5.2. The convolution algebra. We fix the vector d. Given v and v’
we define:

A(d,v) is the diagonal in M(d,v) x M(d,v),
Z(d,v,v") = M(d,v) X o M(d,v"),
Zyreg(d,v,0") = Z — {(x1,20) € Z : (1) & Msrey(d)},

using the convention explained in the previous section.

DEFINITION 1.31. Since we can have an infinite number of components,
in order to define the convolution algebra H,(Z) some special care has to be
taken. We define B

H.(Z(d)) = Il H.(Z(d,v,"))

where TI,, A(v,v") = {(ayy) € [, A, v) @ Vva,, = 0 for all but
finitely many ¢ and Vv’ a,, = 0 for all but finetely many v}. If a €
H(Z(d,v,v")) and 8 € H;(Z(d,v',v")) we can define

a* = pig. (Pla(a) Np33(8)) € Hitjadimm(dw)(Z(d,v,0"))

with the usual convention (see for example [2]). We observe now that

(QU,U’)v,v/ * (ﬁvm’)v,v/ - (Z Qiy gt * ﬂy”,y’) (14)

U//

defines an associative algebra structure with unity on H,(Z(d)).
If 2 € M°(d,v) we define M(d,v), = n~1(x) C M(d,v) and

H,(M(d),) = @ H.(M(d,v),)
and we observe that the usual convolution

Hi(Z(dﬂ),U/)) X Hj(M(d> U/):c) —_— i+j72dimM(d,v’)(M(da'U)x)

extend to an action of H,(Z(d)) on H.(M*(d),). In the case z = 0 we will
use L(d,v) for the fiber M(d,v)y. We define also

Hyop(Z(d)) = UI::II), Haim M(d,0)+dim M(d,w) (Z(d, v, V"))
Htop(M(d)x) = @ Hgim M (d,v)—dim M(d,vmin(z))(M(da U)x)
Hyop—i(M(d),) = @ H i M (d,0)—dim M (d,omin(z))—i (M (d, v)z)
REMARK 1.32. If © ¢ M,.4(d) then the right definition of top should be

different from the one given above (but in this thesis we are not interested
in this case).
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PROPOSITION 1.33 ([22]). 1) Let x € M, (d,v°) C M°(d,v) then if it
is not empty M(d,v), is of pure dimension 3 (dim M(d,v) — dim M (d, v°))
and it is a lagrangian subvariety of M(d,v).

2) Z is lagrangian.

8) Zyeg(d,v,0') is of pure dimension 3 (dim M(d,v) + dim M(d,v")).

4) L(d,v) x L(d,v") C Zeq(d,v,0").

5) A(d,v) the diagonal of M (d,v)x M(d,v) is a component of Z(d,v,v) of
dimension dim M (d,v) and 14 =Y, [A(d, v)] is the unit element of H,(Z(d)).

6) Hiop(Z(d)) is a subalgebra of H.(Z(d)) and Hyop(M(d)) and Hiop—i(M(d))
are Hioy(Z(d))-submodules of H.(M(d)).

5.3. The action of the enveloping algebra. To define the action of
U or U we have to define some special subvarieties of Z(d) called Hecke
correspondences. In the following we fix the vector d.

Let v/ = v — ; and set

Pi(d,v) = {((B',v',é'), (B,%c;)) € M(d,v") x M(d,v) : Jp,;: V; — Vj'

such that ¢, By = Byg,, ;7 =7; 0;= (53-90]-}
Pi(d,v) = {(s,8") € M(d,v) x M(d,) : (s',5) € P,(d,v)}.
LEMMA 1.34. Pi(d,v) is a closed nonsingular lagrangian subvariety of
M(d,v — a;) x M(d,v) contained in Z(d,v,v").
We define
E; =Y [P(d,v)] € Hypy(Z(d))

v

Fr =Y (=)o B(d, v)] € Hip(Z(d))

v

for i € I and
g — [A(d,v)] fv=d—)XeQ
AT 0 otherwise
for A € X.

THEOREM 1.35. There exists a unique algebra homomorphism U —
Hi,,(Z(d)) such that :

e — E; fir— F, h — Z <d — v, h> [A(d,v)]

foriv el and h €.

THEOREM 1.36. There exists a unique algebra homomorphism U —
Hi,,(Z(d)) such that :

eily — B x Ay Lifi— Ay x E; 1, — Ay
foriel and A € X.
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5.4. The construction of the integrable highest weight modules.
By the results described in the section above, for any d, and for any x €
M?O(d,v) we have an action of the algebra U (or U) on H,(M(d),). In the
case x = 0 we call this module Nakajima’s module. We observe that we have
the following natural decompositions of this module:

H.(M(d).) = D H.(M(d,v).) and H.(M(d).) = €D Hiop-5(M(d)..)

The first decomposition is the weight space decomposition and more precisely
H,.(M(d,v),) is the weight space of weight d —v. The second decomposition
is a decomposition in U (or U) submodules.

In [22] the following theorem is proved.

THEOREM 1.37. If @ € M), (d,v°) C M(d) then Hyp,(M(d),) is the

reg
irreducible module of heighest weight space d — v° and with highest vector

[MO(d,v°),].






CHAPTER 2

The homology of quiver varieties

In this chapter I describe some results on the homology of quiver varieties.

1. The dot action
In this section I follow [21]. Let’s set on S the following C*-action:

1—e(h)
t- (Bhuviu(si) = (t 2 Bh/yz?tfsz)

We call this action the dot action. This action commutes with the action
of GL(v) and leaves Ag and A, stable, so it induces actions on M° and M
commuting with the projection 7. Recall that L(d,v) = #~1(0) C M(d,v)
and denote by Fiz(d,v) the subvariety of the fixed points under this action.
The following lemmas are easy to prove ([21]).

LEMMA 2.1. 1)V p € M°(d,v) there exists lim; ot -p = 0.
2) For all p € M(d,v) there ezists lim;_ot-p € L(d,v).
3) If p € M°(d,v) and there exists lim;_,oot - p then p = 0.
4) For all p € M(d,v) there ezists limy_o t - p if and only if p € L(d,v).

COROLLARY 2.2. There is a deformation retraction of M(d,v) on L(d,v),
hence HE(M(d,v)) = Hf(L(d,v)).

We consider now the connected component Fiz,(d,v) of the variety
Fix(d,v) of fixed points under the C*-action on M(d,v)® (here 7 is just
an index). Since C* is reductive Fiz.(d, v) is a smooth subvariety of L(d, v).
Let

Fr={pe M) : Pr%t -p € Fiz,},
F.={pe M(d,v) : tlimt-p € Fix,}.
By lemma 2.1 {F'}, and {F}, are respectively partitions of M(d,v) and
L(d,v) in locally closed algebraic subvarieties. If p € Fix, we have a C*
action on T, M (d,v) and a decomposition T, M(d,v) = (T,M)” @ (T,M)° &
(T,M)" in C* submodules such that C* acts with negative weights on (T, M),
trivially on (7, M)° and with positive weights on (7,M)". Then
rr =dim(T,M)” 0 =dim(T,M)° rf=dm(T,M)" (15
35
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are independent of the choice of p in Fix, and we have that

0 o . .
r. = dim Fiz,,

pf =lim: FI — Fiz, is a vector bundle of rank 7 on Fiz,,

t—0

p, = lim : 7 — Flix; is a vector bundle of rank r~ on Fizx,.
t—o00

We will use these partitions in order to get information on the homology of
M(d,v).

2. The contraction index for the dot action

In this section we will compute the numbers r, 72 and 7. We approach
the problem from a more general point of view which will prove usefull later
on. Let (X,w) be a smooth complex symplectic manifold and o: G x X —
X a free action of a reductive group GG on X, with respect to which w is
invariant and with moment map p : X — g*. Let Z = p~1(0) and p: Z —
M = Z/G the canonical projection. Since the action is free, as we saw in
lemma 1.1, Z and M are two smooth varieties of dimension dim X — dim g
and dim X — 2 dim g respectively. Suppose now that another reductive group
H acts on X and that the actions of the two groups commute. If 7 is H-
stable then the action of H on X induces a similar action on M (hence on
TM). Let now m = p(z) € M is fixed by this action. Then we have a linear
action of H on T,,M which is the object of our interest. In case we can find
a group homomorphism ¢: H — G such that @(h)h-z = z for all h € H,
then we can define a new action 7: H x X — X as 7(h,p) = @(h)h - p.
The H action on M induced by 7 is equal to the one enduced by the original
action of H. Moreover 7(h, z) = z for all h, hence we get a linear action of H
on 1, X. To avoid possible confusion in the future computation we emphasize

the role of ¢ and we write T, X, to denote this representation.

LEMMA 2.3. Let X, Z,p, M,G, H,w,z,m as above. Let x: H — C* be
a character of H and ¢: H — G a group homomorphism such that

(1) w(h-u,v) = x(h)w(u, h™'-v) for any h € H and for any u,v € TM,
(2) ¢(h)h -z =z for any h € H.

Then in the representation ring of H we have
[T M] = [T.X,] — [x ® ¢ * (g7)] — [¢"(g)]-
Proor. Consider the following two exact sequences:

0 — T.Z — T.X, 5 y@g — 0,

0 —— g = 1.7 — T,M —— 0.
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where 0 (x) = do(1g, 2)[x,0]. If we prove that o, and du, are H-equivariant
we have proved the lemma. Let v € g, uw € T. X, and h € H then:

e=0

d
o.(h-x)= e exp(e Adym )z

= gy expler)o(h )z

<dpiy (h(w)), 2> = w(o4(2), h(w)) = w(04(z), 9(h)ha (1)
— (B (), 1) = x(Rw(o (k- ), u) =
— () A gy (h(w)), >

2.1. Computation of the index. Now we want to use lemma 2.3 to

compute the numbers 7, 7% r.

DEFINITION 2.4. If o = A .. A is a B-path we define:

((a) = card{j : K9 € Q}.

IF s = (B,v,d) € Af(d,v), p(s) € Fiz,, j € Nand i € I we define

V;(j) = Z Im a(5) 7,4, -
a a B-path
Ya)=j ar=i

We observe that by the stability condition for s we have ) i Vi(j ) = V; for

any 4.
If t € C* then 3¢9 € G(V) such that ¢ - s = g -s. We observe also that if

v E Vi(j) then:

g~v=g~( 3 a(S)vao(daO: S g oy g () =

aa B path a a B-path
la)=7 a1=1 L(a)=j a1=i
- Z (t ' 8)7010 (da) = tj O‘(S)F)/ao (da) = tj v
a a B-path a a B-path
Ya)=j ar=i a)=j ar=i

Hence V = @, VY and

(1) Im~ C V(O
(2) Bp(VY ) V(J if h € Q,
3) Ba(,Y) © v(ﬂ+1 if h e,
(4) 0 = 0.
We have just proved 1), 2), 3). To prove 4) we observe that for any s € Ay
such that p°(s) = 0 we have § = 0 . Indeed if 6;(v;) # 0 then by the stability
= Zoq:i Oé(S)’}/aO (dao)‘

condition there exist elements d, € D,, such that v;
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So we have 6;(v;) = >, _; 0;a(8)7,4,(day) and ;a(s)7,, = [a](s) = 0 (since

p°(s) =0). Now for t € C* we define ¢(t) € G(V) by:

and we observe that ¢: C* — G(V) is a group homomorphism and that
o(t)t-s=s forany t € C. (16)

We also set x () =t and we observe that w(t - s',s") = x(t)w(s', t71 - s").
Now we apply lemma 2.3 to this situation. In this case S is a vector space
on which G, C* acts lineraly and g* is canonically identified with g. To avoid
confusion we call S, the representation of C* defined by 7(h,s) = ¢(h)h - s.
The decomposition V = @ ; V) induces the following decomposition on
S, g

Sy = @ Hom <Di, V;(k)> ® @ Hom (V;(k), Di) @

ielk ielk
P tom (v, Vi) & @ Hom (Vv
heQ k.l heQ,k,l
g =P Hom <Vz-(k), Vi(l))
el k

Moreover this decompositions result to be a weight decompositions with re-
spect the C*-action and

Hom <DZ-, V(k)) has weight % Vi € I and Vk,

Hom <Vi(k), DZ-) has weight t*** Vi € I and V&,
Hom (V,ff), Vh(j’) has weight *~' VA € Q and Vk, I,
Hom (V;ff g V,ff’) has weight "~ Vh € Q and Vk, 1,

Hom (vf’“), vi(”) has weight t*~1 Wi € I and Vk, L.

Now set v*) the dimension vector of V*) and:

aj; = card{h € Q : hg =i and hy = j}, and Ao = (a33),
a_ a9 b — — o= (a2
a;; = card{h € Q1 : hg =i and hy = j}, and Ag (am>m.€1‘
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Applyng lemma 2.3 we obtain:

0) (k41 k) (k k) (k41
T, —Zdv( +th0vh1 ho h1 )—Zvi()vf)—Zvi()vi( )

icl heQk hetk i€ Lk i€lk
= 'dv® 4 Z AQU + AgulFtD) — k) v(k+1))
rf="dv+ Z ) (Age® —o®) + 57 0 (A5u® — o)
k>l k>l
ro = "d(v— v(© )+ Z AQU (l)) + Z ) (Aﬁv(l) — v(l))
k<l k<i-1

3. A result of H.Nakajima

In a lecture given at the IAS in Princeton Nakajima proved the following
result on the homology of M(d,v). Here A;(X) is the Chow group of i-
dimensional cycle and clx: A;(X) — Hy(X) is the cycle map ([5] ch. 19).

THEOREM 2.5. 1) Haiy1(L(d,v),Z) =0 for all i.
2) cl: Aj(X) — Hou(X,Z) is an isomorphism and Hyi(X,Z) has no torsion
for all 1.

Since a proof is not yet available in literature we will prove this result. In
the sequel we will need only point 1), but since the result seems to me very
nice and the proof furnishes the two properties almost together we will prove
also point 2). We need the following lemma of Ellingsrud and Strgmme [4].

LEMMA 2.6. Let X be a smooth projective variety, A: X — X x X the
diagonal embedding and X its image, p1, ps the projection from X x X to
X and q the projection from X to a point.

Suppose there exist oy, 3; € A.(X) such that:

Xal = Y pite0) - 13(8) (17)

and suppose also that {c,} is a set of minimal cardinality with this property,
then:

i generates A, (X),
(X) is without torsion and «; is a Z-basis of A.(X),

(v - ﬁj) = 045,
cl: A(X) — H.(X,Z) is an isomorphism (in particular Hyqq(X, Z) =
PROOF. Let a € A,(X). We observe that

[Xa] - pra = AL A p3 () = ALA™pl (o) = [Xa] - pla.
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Hence
a=[X] -a=p.A, ([X])'O‘:pl*([XA]' pi(a)) = pi([Xa] - p3(a)) =

- Zpl* pl az p2( Zaz D1« p2 ))

Now by base chage we observe that p1.p5(c) = ¢*q.(0) = ¢.(0)[X] where
q:(0) € Z = A.({e}), hence

a:Zai-[ q.(5; - Zq* . : (18)

So we proved 1). To prove 2) we observe that if m a = 0 then mq.(3;-a) =0
for all ¢ hence ¢.(3; - o) = 0 and o = 0 by (18). Now by the condition
of minimal cardinality it follows that «; is a Z-basis of A,(X). Moreover
applying formula (18) to a = «; we obtain 3).

To prove 4) we observe that if apply the cycle map to (17) we obtain

ZZH (cl(as)) - p3(cl(B;)) (19)

and using the same argument as before we obtain that for all « € H,(X,Z)
we have a = >, ¢.(cl(8;) N a)cl(cy). Hence H,(X,Z) has no torsion, cl(a;)
generates H,(X,Z) and by point 3) q.(cl(a;) N cl(B;)) = 6;5. Moreover if
>_aicl(a;) = 0 then 0 =}, a;q.(cl(c;) Ncl(B;) = a;. Hence cl(a) is a basis
for H,(X,Z) and ¢l is an isomorphism. O

REMARK 2.7. The same result holds in K-theory.

PROOF OF THEOREM 2.5. First step. If Ho;yq(Fiz,,Z) = 0 for all i and
all 7, H;(Fix,,Z) has no torsion for all ¢ and all 7, and and ¢l: A;(Fix,) —
Hy;(Fiz,,7Z) is an isomorphism for all 7 and all 7 then the theorem is true.

We prove this claim by induction in the following way. We observe that
by equivariance the closures of the strata F_ is a union of strata F_ of
smaller dimension. So we can give a complete order < to the index set {7}
in such a way that Z, = (J.._ F, is closed. Since by properness of L(d,v)
the number of connected component of the fixed point locus is finite the
claim in the first step is a consequence of the following two remarks:

(1) pr: Hy(Fize, Z) — H,yp (F7,Z) and po*: Ay(Fiz,) — A, (F7)
are isomorphisms commuting with the cycle map

(2) If Z is a closed subvarieties of Y and U = Y — Z then if Hy4q(Z,72) =
H,u(U,Z) = 0, cly, clz are isomorphisms and H.(Z,Z) = H.(U,7Z)

are without torsion then the same is true for Y.

1. is a consequence of Proposition 2.7.8 in [11] and Theorem 3.3.1 in [5]. To
prove 2. we observe that if 75 and iy are the immersions of Z,U in Y then
we have a long exact sequence: H;(Z,Z) — H;(Y,Z) — H;(U,Z) —
HZ'+1(Z’ Z) .... Hence if Hodd(Z> Z) = Hodd(U> Z) = (0 then Hodd(Y> Z) = 0.
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Moreover we have the following commutative diagram with exact rows:

A7) —2 e A (Y — e A (U) ——0

clzl clyl clUl/

0— Hyu(Z,7Z) AN Hy;(Y,Z) — Hy(U,Z) — 0

from which point 2. follows.

Second step. We call py, pa: M(d,v)xM(d,v) — M(d, v) the projections
on the first and the second factor. There exist an equivariant complex of C*-
equivariant vector bundles on M(d,v) x M(d,v):

)G N ¢ ) RN ) (20)
such that:

(1) LD = @, piAY @ p3BY) and AP BY) are C* equivariant vector
bundles on M(d,v),

(2) p, is injective and 1), is surjective for all p, and ¢p = 0,

(3) there exists an equivariant section v of F' = ker/Imp such that
Zero(v) is the diagonal A(d,v) C M(d,v) x M(d,v) and dv, :
T,M(d,v) x T,M(d,v) — F, is surjective for all p € A(d,v).

The existence of these object is proved in [22] §5.

Now we apply this fact and Lemma 2.6 to prove that H,qq(Fiz,,Z) =0,
that H.(Fiz,,Z) has no torsion and that ¢l : A.(Fiz,;) — H.(Fix,,Z) is
an isomorphism.

We restrict the complex (20) to Fix, x Fiz,. If p € Fixz, x Fix, (resp.
Fix;) and E is a C*-equivariant vector bundle on M (d,v) x M(d,v) (resp.
M(d, v)) then there is an action of C* on E,,, so it makes sense to consider the
trivial part with respect to the C* action of the restriction of F to Fiz, X Fix,
(resp. Fiz,): we call this bundle E°. Hence we have a sequence of vector
bundles on Fix, X Fiz,:

(L)° " (L®)° AN (L®)°,
moreover we observe that
( ) ( A(j )0 ( *B(J‘))O
py is 1nJect1ve and 1/) is surjective for all p, and ¥°p° = 0,
(F ) = ker ¢)°/ Im p"
meFm : Fiz, x Fix, — F9,

( 9) is the diagonal A, of Fiz, x Fiz, ,
: TyFix, x T,Fix, — F" is surjective.

(2)
(3)
(4) v
(5) Z
(6) d

1, 2, 3 are clear. To prove 4. we observe that if p € Fix, X Fix, then
t-v(p) =v(t-p) = v(p). Now 5. follows from 4. and to prove 6. we ob-
serve that since dv is equivariant it respects the weight decomposition: dv =

!
Dz dvy: Dy <T M(d,v)eT,(M(d, v))) — F} and since it is surjective
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0
it follows that: dv,: <Tp(M(d,v) X M(d,v))) = Ty(Fiz, X Fiz, — F)) is
also surjective.

As a consequence of 4, 5, 6 we obtain that

ciop(F°) = [A;] € A (Fiz, x Fiz,).

As a consequence of 1, 2, 3, we obtain that there exist «;, 3, € A.(Fix,)

such that:
Cop(F*) =Y pilcs) - 3(8;)
If we apply Lemma 2.6 the Theorem follows. U

If we analyize the proof we observe that we proved the following usefull
and well known result.

LEMMA 2.8. Let {Y.}, be a finite partition of the variety X in locally
closed subvariety such that:

) YonY, 4@ =>Y, CY,,

(2) for each T there exist Z, a closed subvariety of Y, and an affine
bundle omomorphism p,: Z, — Y, of rank r, that is the identity
map on Z.

Then:

(1) Hoaa(X,Z) =0 <= Hoqa(Z;,Z) =0 for all T,

(2) Hoaa(X) =0 <= Hoga(Z;) =0 for all 7,

(3) If the condition in 1) is verified then H.(X,7Z) has no torsion if and
only if H.(Z.,7) has no torsion for all T,

(4) If conditions 1) and 3) are verified then

= @ Hifr-,—(ZTa Z)>
(5) If condition 2) is verified then

=P H..(Z

As a corollary of Nakajima’s theorem we obtain also:

COROLLARY 2.9.

HE(M(d,v),Z) = Hy(L @H (Fix,,Z),

Hi(M @H (Fix,, 7).



4. MULTIPLICATIVITY 43

4. Multiplicativity

Let d',d” € N* and d = d’' + d”; in this section we prove the following
multiplicativity formula:

H.(L(d)) = H.(L(d)) ® H.(L(d")). (21)

I wish to tank I. Mirkovic for suggesting to me that such a property could
hold and that it should be proved using a C* action.

4.1. The embedding. Let d',d",v',v" € N" and d = d’—l—d” v=v+v".
We fix vector spaces D., DY V! V! of dlmensmns d., d!, vl v! respectively and

17 71 T 1) ) ’L7 Z

we set D; = D, & DY and V.=V ® V. We define
=y No(d,v") x Ag(d",v") — Ao(d,v)
through the formula

~ / / ! " " 1! B/ O ! O 6/ O
a oo =((5 5).(0 w) (0 »)

It’s clear that this map enducuce maps 7, 7" as in the following commutative
diagram
M(d'v') x M(d",v") —1— M(d,v)

ﬂ'd/,v/Xﬂ'd”,v”J( ﬂ'd,ul

MO(d',v") x M°(d",v") ", MO(d,v)

LEMMA 2.10. 1) n is injective.

2) If G( ")s' is a closed orbit in No(d',v") and G(v")s" is a closed orbit
in No(d”,v") then G(v)n(s',s") is a closed orbit in No(d,v).

3)n°(s',s") =0= (s,5")=(0,0) € M°(d',v") x M°(d",v").

4)n(t-x)=t-1(x), nt-p)=t-n(p) and n’(t-p) =1t -n°(p).

5) If n(s',s") € Fix(d,v) = (s',s") € Fiz(d,v'") x Fiz(d",v").

PROOF. 1) It’s enough to prove that if z = (s, s"),z = (5,5") € A$ (d', ')
xAg (d";v") and if g € G(V) is such that g - f(x) = 7(z), then g(V') C V'
and g(V") C V”. By the +-stability condition for s’ we have that for all
u' € V] there exist elements d, € D, such that v’ = >  _ a(s')v,,(da).

Hence
o) = 3 a7l (da) € V.
a1=1
The same arguments works for V.
2) and 3) are clear by proposition 1.23.
4) is trivial.
5) is a consequence of 4) and 1). O

REMARK 2.11. We want to do some remark about the injectivity of n°.
Let

0z C[Ag(d, v)]9) — ClAg(d',v")] %) @ C[Ag(d", 0"
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the adjoint map of n°. We observe that we have
Tr(a(-)) N Tr(a() ®@14+1®Tr(a(-)) Va closed B-path ,
u . .
P(B() == @o(B(-) ®1+1® ¢ (A(-)) ¥ admissible path

and V¢ = (0, 01 2. 1) € (Hom(Dj . Dj)) & (Hom(Dfy . D)) @

o (Hom(D’ﬁo, Dgl)) ® (Hom(DgO, D/’gl)) . In the case of graph of type A
n* is surjective since the invariants of type o(8(+)) generates the rings of
invariants (see ch. 2), but in general this is not true. In the case of graph
of finite type (A,D,E) it follows by a result of Lusztig ([18]) on the rings of
invariants that n° is injective and finite. The injectivity is also clear by point

2) in lemma 2.10 and remark 1.24. Finally, still using 2.10 point 2), it is easy
to show that in the general case n° is not even injective.

4.2. Big dot C* action. Let d,d’,d", D, D’, D" as above. If t € C* then
we define an element g; € G(D) through:

(0); = dp 0
gi=1\"g tIdpy.

We can define the big dot action of C* on S: tes = g, -s. We observe
that this action commutes with the action of GL(v) and leaves Ay(d, v) and
AJ (d,v) stable. Hence it induces action on M (d,v) and M°(d,v) commuting
with the map 7.

PROPOSITION 2.12. If (V/,v") # (u/,u”) then
’f]v/,y//(M(d,, U/) X M(d”, U”)) N nu’,u”(M(dla U/) X M(d”, u”)) =y, (22)

and moreover the set of the point fized by the big dot action decomposes as
below:
M(d, )" = [ mwwr(M(d,0') x M(d", ")), (23)

v 4o’ =v

PRrOOF. We prove (22) and (23) together. First of all we observe that it
is clear that the image of the maps 7 is contained in the fixed point set of
the big dot C* action.

Now let s = (B,7,0) € Ao(d,v) and p(s) € M(d,v)*"*, we define

Vii= ) als)ve, (D) (24a)

« a B-path
a1=1

V= ) als)7a, (D)) (24b)

« a B-path
a1=1

We have V/* 4+ V/* =V, by the stability condition and V' and V" B — stable
by definition. We want to prove V/* NV/* = 0. Let € V/*NV/* then there
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exist y, € Dy, and 2z, € D/, such that:

r= 3 ) ate) = Y )70 (20):

a1 =1t a:ol=1

Now for any t € mC* there exists g € GL(V') such that t e s = g-s. Hence

gt =Y 6i()VaeWa) = D> g 5)9anVaoYa)

o=t o=t
— Z ot ®5)7,, (9 'a) = Z (5) Yoo Ya) = T
o=t o=t

In the same way using © = Y., _; @(5)7,,(2a) We obtain gz = t~'x. Hence
x=0and V =V"® V" and if v/,v” are the dimension vector of V'* and
V" it is clear that s is in the image of 7,/ ,» and p(s) in the image of 7,/ ,».

Finally we observe that once s € 7j(Ag (d',v') x A (d”,v") we have V'* ~
V' and V"* ~ V" s0 (22) and (23) are proved. O

Since M (d,v)®"* is a smooth variety we have proved also the following
fact.

COROLLARY 2.13. 1y 15 an isomorphism with its image.

4.3. Contraction index for the big dot action. Let d,d’,d", D, D', D"
as above. We will use Proposition 2.12 to describe the homology of M (d,v)
in terms of the homology of M (d',v") and of M(d”,v"”). By Lemma 2.8 and
Proposition 2.12 we have the following sequence of isomorphisms which do
not preserve the degree and implies (21):

H,(L(d,v)) = P H.(Fiz.(d,v)) =

= P H.(Fiz(d',v) ® H,(Fiz(d"")) = (25)

v v =v
TI,T//

= P H.(L(d. V)@ HLd" V"))

v 4o’ =v

In this section we want understand the behaviour of the degrees through
these isomorphisms.

One way to compute the shift in the degrees in the isomorphism 25 is
to compute the dimension of the cells in Fiz, v~ (d,v) which contract to a
point of n(Fixz.(d,v") x Fix.(d",v")). We procees in a sligtly different but
equivalent way.. We define a new C*-action on S:

tes=1"-(tes)).

We call this action the square action and we observe that it commutes with
the G(V) action, leaves Ag(d,v), Ad (d,v) stable and therefore induces actions
on M°(d,v) and M(d,v) commuting with the projection .
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LEMMA 2.14. 1)V p € M°(d,v) there exists lim; ot .p = 0.
2) For all p € M(d,v) there exists lim; .ot .p € L(d,v).
3) If p e M°(d,v) and there exists lim; .ot «p then p = 0.
4) For all p € M(d,v) there exists limy_o t«p if and only if p € L(d,v).
5)ntr-s,t2-8") =t.n(s,s") for all 8 € S(d',v') and s” € S(d”,v"), hence
N(Fiz.(d,v") x Fiz.»(d",v")) is in the fized point locus of the square action.
6) If p is fized by the square action then there exist v',v" : v'+v" = v, 7/, 7"
and (p',p") € Fixy (d,v'") X Fix,(d",v") such that p=n(p',p"). Hence

M(d, )" = [ nww(Fiza(d, o) x Fiz.(d',v")). (26)

PROOF. 1), 2), 3), 4), 5) are easy. We prove 6). If t.p(s) = p(s) for all
s we define:

V9= 3T a(s)7,, (D))

« a B-path
ai=i (a)=j

aV/A
V"= ST als)a, (D).

« a B-path
a1=i L(a)=j

Let ¢ € G(V) such that g-s = t.s then if g € Vi(j)/ (resp. Vi(j)”) then

g-s=1t"v (vesp. g-s=1""v). Hence if V/ = P, Vi(j)/ and V" = P, Vi(j)//
we have V = V/ @& V/” and we conclude as in Proposition 2.12. O

Let now

Gl ={pe M) : lim#.p € n(Fizy, X Fiz)},
G =1{p€ M(d,v) : tlim tvep € n(Fiz, x Fix.n)}.

If p € n(Fizy x Fizyn) we define m_, = dim (T,M(d,v))", mJ,
dim (T,M(d, v))°, and m, ., = dim (T, M (d, v))" as in (15).

Let v =0 +v" and V = V'@V" asin4.1. Let p(s’) € Fiz.(d',v'), p(s”) €
Fizn(d";v") and s = 7(s',s"). Let ¢': C* — GL(V’') and ¢": C* —
GL(V") the homomorphisms constructed as in (16), then we define ¢: C* —

GL(V) by
L(t? 0
0= (5 1)

with respect to the decomposition V' = V/@® V). We observe that ¢(t)t.s = s
for all t € C*. We set also x(t) = t* and we observe that w(t.u,u') =

T
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X(®)w(u, t7t '), for all u,u’ € S. If we apply Lemma 2.3 we obtain
+ 7“7.// d”l)/ + d/(U” . U”(O)) 4+ VAV — 2UHUI+

B n( _ k) /(k) 1(k+1) n( /(k V" (k+1)
Z o ag™ =3 T '+ Z + Z
k k

0 0 0
mT/ﬂ_// =T + T,

m-

,7—/7,7—//

m =15k +d" - d (0" + U”(O)) + 0" Av' — 21)"1/—1—
I Z " ® Ay ® 4 Z o' A EHD Z Z WIS
k k k
Hence we obtain the followin refinement of isomorphism (25):

H(L(d0) = @ He_, , (Fie.(d,v) @ H(Fie(d'v")).

v +v"=v
7_/ 7,7_//

J

4. U-equivariance. We would like to prove that the isomorphism
(21) is an isomorphism of U-modules. I believe that the U-equivariance
should follow from the following fact:

Pi(d,v) NImn = n(P(d,v') x M(d",v")).
We explain the notation and we give a proof of this formula.

Let d,d',d",v,v' 0", D, D', D" V., V', V" as in section 4.1. Let also v =
v—a;, 0 =0 —aq;, 0" = 0" —a; and fix vector spaces V' and V" of dimension
v', " respectively. We have maps

M S(d, V) x S(d, V') x S, V") — S(d,V & V") x Sd,V' & V"),
Tt S(d, V') x S(d" V") x S, V") — S(d, V' & V") x S(d, V' & V")
defined by

,}‘]’1(5/’ 8,7 S/ ) (7711’ ”( ,)7 ﬁv’,v” (8/7 8”))7
772(8,7 5”7 S/ ) = (77@’,17”(3,7 ”)7 ﬁv’,v”(sl7 S”))‘

These two maps define similar maps 7;,72, 7%, 79 between varieties of type
M™* and M°. In particular it makes sense to consider

m(Py(d,v") x M(d",v")) C M(d,v) x M(d,v)
ne(M(d',v") x Pi(d",v")) C M(d,v) x M(d,v).
LEMMA 2.15. Let 1 € I then

1) Pi(d,v) NTImage n, = ni(Pi(d’,v') x M(d",v")),
2) Py(d,v) NImage ny = na(M(d',v") x P(d",v")).

PRrROOF. We prove only 1). The D part is easy. We prove C Let 5 €
AJ(d, '), s € Af(d,0'), 3 € Af(d",v"), s" € AS(d",v"), 5 = n(5,s") =



48 2. THE HOMOLOGY OF QUIVER VARIETIES
(B,7,0) and s = 7j(s',s") = (B,7,6). Suppose that (p(5,s"),p(s',s")) €
P,(d,v) and let ¢,: V/ ® V' — V, ® V" be such that
O Bh = Bren, 0= i =0
Now we observe that the thesis follows from
%‘(V;/) = V; and %(Vi//) = Vi//'

Since the proof of this fact is very similar to other proofs in this chapter we
skip it. O



CHAPTER 3

Quiver varieties of type A

In this chapter we prove a conjecture of Nakajima describing the relation
between the geometry of quiver varieties of type A and the geometry of
partial flags varieties and of the nilpotent variety. I want to thank Corrado
De Concini who pointed out to me this problem and Hiraku Nakajima who
pointed out an error and the solution to it in the original proof.

1. Nakajima’s conjecture

We recall some definition and fix some notation on quiver varieties of type
A, _1 and on partial flags varieties.

1.1. Convention for quiver varieties of type A,_;. We choose 2
and the numbering of the vertices and of the edges of 2 of the (doubled)
graph of type A,_; in the following way:

1 2 3 n—2 —— n—1.
1 2 n—2

If h € Q we call A, the map associated to h and By, the map associated to

h. So our conventions can be summarized in the following diagram:

Dy D, D,y Dy
l’}ﬁ l’YQ l’YnQ l’Y'nl
B1 BQ Bn72
MW Zo Vel Vi
K |
01 P n—2 Yn—1
Dl D2 Dn72 anl

and instead of speaking of the triple (B,, ) we will speak of the quadruple
(A, B,7,6) where A = (Ay,..., A 2), B=(B1,...,Bna), Y= ("1, Yn-1)
and § = (01,...,0,-1). With these conventions the ADHM equation p = 0
can be written in the following way:

B Ay = 7,01,

BzAZ = Aileifl + ")/Z(SZ for 2 < 1 <n-— 2,

0= An—QBn—Q + ’Ynfl(sn—b

In this chapter we will call M!(d,v) the image of 7, which is closed since 7
is projective, with the reduced structure.

49
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We will use also the following notations: Vj—i = Bi... Bj_17; and 0ji =
0;Ai—1...A; and we consider the admissible path [§,_.;7v,_,,] with the nota-
tions expalined in definition 1.17.

LEMMA 3.1. 1) The algebra of admissible path is generated by the follow-
mg set

P={[01—;vi) : ©,7€{L,...,n—1} and |l <min(s,j)}. (27)
2) C[Ao]¢ is generated by the polynomials:

s +— p(B(s)) for B € P and ¢ € (Hom(Dg,, Dﬁl))* :
8) If (A, B,~,d) € Ag then it is an element of AZ iff for all1 <i<n-—1

n—1
IIIlAZ'_l + Zlm,yj%i - ‘/z
j=i
PROOF. 1) and 3) are easy. 2) is a consequence of 1) and Proposition
1.19 U

LEMMA 3.2. If o € W is such that o(d — v) is dominant and v' = o(v —
d) + d then
M(d,v) # @ <= v, >0 fori=1,...,n.

Proor. This follows from Nakajima’s theorem 1.37. U

1.2. The Slodowy’s variety. In this section we recall some definitions
on the nilpotent variety and on the partial flag variety.

DerFINITION 3.3. If N is a natural number and D is a vector space of
dimension N we define N' = Ny to be the variety of nilpotent elements in
gl(D). Counting the dimensions of the Jordan blocks of an element of N we
obtain a partion of N, and this give us a parametrization of the orbits O,,
for A a partion of N, of the action of GL(D) on N. If z € N and z,y,h is a
sly triple in gl(D) we define the transversal slice to the orbit of x in N in
the point x as:

S, = {u € N such that [u — z,y] = 0}.

Here and in the sequel, using a non standard convention, we admit 0,0, 0 as
an sl, triple, so that in the case of z = 0 we have S = N.

DEFINITION 3.4. For N an natural number , a = (ay,...,a,) a vector
of nonnegative integers such that a; +--- 4+ a, = N, D a vector space of
dimension N we define a partial flag of type a of D to be an increasing
sequence F': {0} = Fy C Fy C --- C F,, = D of subspaces of D such that
dim F; — dim F;_; = a;. We define F, to be the GL(D)-homogenous variety
of partial flags of type a. We define also

N.=T"F,={(u,F) € gl(D) x F, such that u(F;) C F;_,},
Iha N, — N the projection onto the first factor, and

Fr = pt(x) for z € N.
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For N, a, D as above let a = (ay > ag > -+ > a,) be a permutation of a
and define the partition A\, = 1717229279 ... % )\, is a partition of N and
it is known that if (u, F') is in N, then w is in the closure of O,,. Moreover
the map

Ha - Na — 6)\a
is a resolution of singularity and it is an isomorphism over O, . We define
Sa,:c =38, N 6>\a7 Sa,x = N;l(sa,w)-

We call ga,x the Slodowy’s variety.
The following proposition is well known.

PROPOSITION 3.5. Let x € Ny of type 1112% . (n — 1)%=1 and a =
(a1, ...,ay,) a partition of N then:
18,49 < 2€0,, — VIi<k<nandV1<i <iy<---<
i < n the following enequality holds:
di+2dy+ -+ kdp + -+ kdpo1 > a; + -+ ay, (28)

2) If ga@ # O then it is a smooth variety of dimension dim Zy(x) —
dim Zy(u,), where u, is an element of O,, .

1.3. Nakajima’s conjecture. If d = (dy,...,d,) and v = (vq,...,v,)
are two n—1-tuples of integers we define the n-tuple a = a(d,v) = (aq, ..., a,)
by:

ap=dy+ -+ dp1 — v, (p = Up—1,

and a; =d; +---+d,_1 —vi+uv,_q fori=2,...,n—1.

We observe that S, a; = N = S°7""id;. Moreover we observe that once
d is fixed the map a gives a bijection between n — 1-tuples of integers v and
n-tuples of integers a such that »_ a; = N. Indeed we have that

Up_1 = Qp V; = Qp+-- '+@i+1_di+1_2di+2 . -—(n—i—l)dn,l for i = 1, ey n—2.
Now we can state the main proposition of this chapter. We recall that
M(d,v) = M*(d,v) = @ if v; < 0 for some i and S, , = S, = D if a; <0
for some ¢ (see definition 1.16). The theorem was conjectured by Nakajima
in [21].

THEOREM 3.6. Let v, d, N, a = a(d,v) as above. Let v € N be a
nilpotent element of type 19 - ... (n — 1)1 then there exist isomorphisms

of algebraic varieties ¢ between M(d,v) and S, ., and ¢ between M*'(d,v)
and S, such that 0 € M'(d,v) goes to © € Sy, and the following diagram
commutes:

M(d,v) L gd@

| | (29)
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REMARK 3.7. If M(d,v) # & then it is easy to see that 0 € M'(d,v):
anyway this will be a consequence of the proof.

We begin the proof of the theorem with some remarks on the degenerate
cases and on the dimension of the varieties M(d,v) and S, .. W = S, is the
Weyl group.

LEMMA 3.8. Let d,v, N,a as above and let 0 € D such that o(d — v) is
dominant and v' = o(v — d) + d then:

1) If there exists i such that v; < 0 then there exists i such that v < 0.

2) If there exists i such that a; < 0 then M(d,v) = &.

3) 1If there exists i such that v; < 0 then ga@ = .

4) If Su # O then M(d,v) # @ and they are two smooth varieties of the
same dimension.

PROOF. 1) This is an easy consequence of the following well known prop-
erty: if u,d are dominant and d —u > 0 (that is d —u € ) Z>o«;) then for
any o € W we have d — ou > 0 (Ilaria Damiani).

2) Is an easy consequence of lemma 3.1 point 3).

3) If v; < 0 then we have

N—(a1+---+ai):an+---—|—ai+1<
<dig1+2dio-+(n—i—1dp 1 =N—(dy+ - +id; + -+ id,).

Soay+---+a; >dy+---+1id; +---+1d, and S, , is empty by lemma 3.5.
4) We observe that the Weyl group S,, acts by permutation on the n-tuple
a and that :
(1) Sa(a),ac # O <= Sa@ #* O,
(2) a(d,o(v —d) +d) = o(a(d,v)).
The first property is clear from proposition 3.5 (indeed with a little more
effort can be checked that S, (), >~ S, but we don’t need this result). The
second property is a computation that can easily checked for o = (i,7 + 1).
So by proposition it is enough to prove that ga,x #+ & = M(d,v) # @ when
d — v is dominant. If we set i; = 1,...,i; = k in the inequality (28) we
obtain v, > 0 for k =1,...,n — 1 and by lemma 3.2 M(d,v) # @.
The equality of dimensions is an easy computations using proposition 1.5
and proposition 3.5. O

2. Definition of the map

In this section we will define the maps ¢; and ¢ in the case v;, a; > 0 for
each 1.

LEMMA 3.9 (Nakajima, [21]). If N > vy > -+ > v, and if d =
(N,0,...,0) then the conjecture is true. In this case we have D = Dy
and M(d,v) ~ N, and M?'(d,v) ~ Oy, and M°(d,v) is the closure of a
nilpotent orbit.
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PROOF. The proof is given in [21], but in that case Nakajima took the
inverse condition of stability so we remind the definition of the isomorphism
in our case and we give a sketch of the proof. The isomorophism between

M(d,v) and F, is given by:
(A7 Ba Vs 5) — (61717 {O} C ker 71 C ker AlVl C -+ Cker An—l T AlVl)

The map between M1(d,v) and O,, or between M°(d,v) and N is given by
(A, B,v,9) +— 017,. Once the map on M (d,v) is defined it is easy to check
that it is bijective and that it is GL(D) equivariant. Now we know that the
map [, is a resolution of singularity and that it is an isomorphism over O,,
which is a homogenous space. Now by bijectivity and equivariance we see
that the map we have defined must be a isomorphism over this set. Now
we can proove the lemma by Zarisky main theorem and the normality of the
closures of nilpotent orbits proved by Kraft and Procesi [13] . U

Now to treat the general case we use the lemma above in the following
way. Let d,v,a, A\, be given as in theorem 3.6 and define 67 =0ifi > 1
and d; = N = > i 1 i, T = v + > s z+1( | —i)d;. We observe that by the
lemma above M (v, d) = T*F, and M'(v, d) Oy,- So we can think S,
and S, , as subvarieties of M (7, d) and M (7, d):

Sa,:c :p0<{(*’f4v>§a;?ag) € AO(%;’C/Z) : [/51;71 —x,y] = 0}) ﬂMl(”J,g)’
ga,ac :p({(g, E,,’?,E) € Az)r(,ﬁvdv) ‘ [5171 - x,y] - 0}>

So we can construct our map by giving a map from Ao(d, v) to Ag(T,d). Let

us begin with the definition of V and D. Let D ) be an isomorphic copy of
D;. We define:

b-b- @ o
1<k<j<n—1
ieve @ of

1<k<j—i<n—i—1

So We will use also the following conventions: 170 = 51, ZO = Y1, EO = gl
and we define the following subspaces of V;:

- @ o o= @ o b= @ o

i+1<j<n—1 i+2<j<n—1 i+2<j<n—1

1<k<j—i 2<k<j—i 1<k<j—i—1
We consider the group GL(V) as the subgroup of GL(V') acting as the iden-
tity map on D! and mapping V; into V;. We will always think at the maps
AZ, B as a block-matrix with respect to the given decomposition of V D
and when we use a projection on one of our subspaces, it will be a projection
with respect to the given decompositions (30). We give also a name to the



54 3. QUIVER VARIETIES OF TYPE A

blocks:

Z Y E I
T Ail pon = tijn wpo Bil pon = sij,
J 7 J
TomAilv, =4, Tpm Bilvi, = 835
J J (31)
~ j/ 1Y ~ j/ h'
7T‘/;;+1Ai|D(f‘,) = ti,V ﬂ-szZ‘D(il/) = Si,V
i J
v, Ailv = a; v, Bilvi,, = bi

We define also (x;,y;, [z:,v:]) to be the following special sly triples of
sl(D5):

2

[L’i’DQ) = 0,
J
a:i\D(_h) = Idp, : Dj(h) — D](»h_l),
J
Yil pui-» = 0,
J

yi‘D(_h) = h(j — 7 — h)]dDj :D§h) R Dj(hﬂ),

and we observe that x = zo y = o, [z, y] is an sly triple in sl(D) of the type
required in the theorem. N

We want now to introduce a subset of Ay(v,d). To do it we give a formal
degree to the block of our matrices. Indeed we define two different kind of
degrees, deg and grad, in the following way:

deg(t] ) =min(h — k' + 1,h — b + 1+ 5 — j),
grad(t] ) = 2h — 20 + 2+ j' — j,

deg(s] ) = min(h — I, h — I + 5/ — j),
grad(sg:]’.f;:) =2h—20 +j5 —
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DEFINITION 3.10. An element (A, B,7,6) of Ag(7, d) is called transversal
if it satisfies the following relations for 0 < <n — 2:

tflﬁ; -0 if deg(t{]’.%) <0

fon =0 if deg(t]}) = 0and (7,1) # (j.h 4 1)
tz]’h = Ildp, if deg(tiﬁ) = 0and (j',7') = (j,h + 1)
—0

t? S if ' #£1
Z,V 7é (32)

sf/ﬁ; =0 if deg(s Z;%) <0

sz;};; =0 if deg(sz;’.%) =0and (j', ') # (4, h)
sl = Idp, if deg(s)) = 0and (§', 1) = (j, h)
s{in =0 ifh+#j—i

sy =0

and finally if for each 0 <7 <n — 2:
[ngéigib; — 23,y = 0.

We call T the set of transversal data and we call T the set of +stable data
which are also transversal.

We observe that p(T") C S, and po(T) N M*(v,d) C S, and we ob-
serve also that 7" and T are GL(V) invariant closed subset of Ay and AJ
respectively.

We will define our maps @, ¢ by giving a GL(V) equivariant map ®
from Ag(d,v) to T. If (A, B,v,9) € A(d,v) its image under ® is an element
(g, B, 7,0) of T such that:

tj/’l = Vj—it1 Sz“/jj i = i1 (33Db)
= H%MBma sl = SI (A, B, v, 9) (33¢)

where 57 J]}Z and T > 7' i h " are admissible polinomials of type (5, j) (see definition
1.17).

REMARK 3.11. The conditions tf/v Vjr—ip1 for j' >+ 1 and 52” ;=

dit1-; for j > i+1 are reduntant. Indeed it is easy to see that if (A B,7, 5)

T and a; = A;, b; = B; and t’“ =y, S{it1s = Oiy1 then (33b) is
satisfied. We do not give the detalls of this simple fact becouse the argument
is comptely similar (but much more simple) to the proof of the next lemma.

LEMMA 3.12. There exist uniquely determined admissible polinomials TZJ;};LI
and Sf;},l: in (A, B,~,9) such that (Z, Zﬂéﬁ,g) € T. Moreover for deg > 0 they



56 3. QUIVER VARIETIES OF TYPE A

result to be homogeneous polinomials of degree equal to grad of the following
form:

g’ h 3 n 3’ h
TJh _)‘wh(sTHJVJ '—r th

l

g'h gk 7’
S (N 'uw h(STHJ% I T R .7, h

where r = j+ h' — h and P and Q are admissible polinomials that can
be expressed as a linear combination of products of admissible polinomials of
degree strictly less than grad (at least each monomial of P and @Q is a product
of two admissible polinomials of positive degree) and )\f ﬁl, ui;]}; are rational
numbers.

2) Moreover for i = 0,...,n — 2 and deg > 0 the following inequalities
hold:

/\ﬁj’;l>0
forh =1, i+2<j/<n—1andl<h<j—i—1<n-—i-—2,
)\]Jh—l—,u”h >0

fori<h <j—i—-1<n—i—-2andl <h<j—i—1<n-—i-2,

J'n
Hign = 0

fori1<h<j—i—-1<n—i—-2, h=j—iandi+1<j<n-—1.

PrOOF. We prove this lemma by decreasing induction on ¢. To be more
precise we prove something slightly stronger of what claimed above. We prove
that once (A, B,v,9) € Ag(d,v) is fixed then there exist a unique element
(A, B,7,0) € T such that (33a) and (33b) are satisfied. Moreover we give an
inductive formula for the computation of this element and from this formula
will be clear that there exist admissible polynomials as claimed in the lemma.

For i = n— 2 we have that gn,g and En,g are already completely defined
by relations (33) and they verify the relation A, 2B, > = 0. Now we assume
to have constructed T}, and S;7;, for j > i+ 1 as stated in the lemma such
that Aj, Bj verify the relations requested to be in 7. We prove that there
exist unique 7;", and S;, such that:

[WDQEiZi\DQ — @3, 4] = 0 and AiBi = §i+1gi+1’ (34)

and we prove also that they have the required form. First we observe that
the following equations are satisfied by relations (32) and (33):

A B Vi = AiBi + 7010i01 = Bip1Aipr =7

‘/'i+1BZ'+1Ai+1

Vit1 Vit1

7|y, AiB; |D<h> On1Vjmit1 = Bix1Vjive = Tlviy Biri Aiprl po
J

W\D A:Bily

Vig1 = 0p,10i41—j = OipojAip1 = W’D(h)Bi+1Ai+1 Vig1
J
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Let L = éiﬂflﬂ, M = A,;B; and N = WDgEiAVZ”Dg — x;, and as we have
done in (31) we define the blocks Lg:;Lh/, M ]J.;;’Lh/ and IV, Jj/hh, So we can give the
following formulation to equations (34):

M =1t (35)

for1<h <j'—i—-1<n—i—2and1<h<j—i—-1<n—i—2,

NI =0 (36)
forl+i<jy<n—landl1<h<j—i—1<n-—i-—2,
NI =0 (37)
forl+i<j<mn—land2<h <j—i<n—i—1, and
W(j —i—h)NE = h(j—i— h)NT" (38)

for 1<hW<j—i—-1<n—i—2and1<h<j—i—1<n—i-—2.
Now we give a degree deg and a degree grad also to these new blocks, in
the following way:

deg(L;:,’lhl) = deg(M;.;/,;h/) = deg(N;.;/,’lh,) =min(h—h +1,h—h +1+7 —j),

grad(L ") = grad(MZ}") = grad(NJ;") = 2h — 21/ + 2+ j — j.
Since min(m — ' +1,m —h +1+j —j)+min(h —m,h —m+1—j) <
min(h—h'+1,h—h' +14j —j) and min(m —h’,m —h' +j' — j) + min(h —
m+1,h—m+1+1—j) <min(h—h'+1,h—h 4+ 14 5 — j) we have that
deg and grad behaves well under composition; that is:

deg(Sfﬁ s B+ deg(szﬂ l m) < deg(LJ:/’h/)
deg(T7}) + deg(sz]l?n < deg(Majhh )
< deg(N;hh,)

i,5,h

deg(SM™ ) + deg(T] "

)

b sz)

grad(SZ+1 i n) + grad (T} T m) = grad( )
)
) =

grad(TV™) + grad(SJ u

,5,h zlm

grad(S %)+ grad(T

zlm

(We observe that in the N-case the term —x; respects these rules). So if the
blocks have deg strictly less than 0 they vanish identically, and if deg = 0
then to be different from zero we must have j = j' and h = A’ — 1 and it is
straight forward that also in this case all the equations are satisfied. In this
way we see that the equations (36) and (37) are always satisfied.

Now we argue by inductlon on d = deg > 0 in the following way: we
assume to have constructed TJ ];L and S " ., for the blocks with deg < d such
that all the relatlons (35) and (38) for blocks with deg < d are satisfied and

we prove that T] ih "and SJ for blocks of deg = d are uniquely determined
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by the equations (35) and (38) for blocks of deg = d. So we have the following
relations:
'l,h/ -/7hl
M]]',h - L;‘,h
W(j' —i— RN = h(j—i— )N,
for1<h<j—-i—-1<n—i—2and1 <h<j—i—1<n-—i—2and
min(h—h'+1,h—h' +1+j' —j) = d > 0. By induction hypothesis we have
under this assumptions on j, j', h, b/, d the following formulas:
'l7h/ '/,h/
L;,h = Vh5’l"4>]7],—>1” + C;vh‘

MG " =57 e + Tijn + Dy

(2 1

jlvh/ 3 A
Nj/’hl _ E]:l’h/ ﬂ{j,h ' lf h = 1
Jh 3k + TJ'JZ/ + S]',h'*l fl<WW<i—i—-1
i.j.h i.j.h 1 =)
' . .
G/ R +1 - 3’ h! Si,j,h—i—l lf h =] —1— 1
R A b IR S Iy AP
i, h+1 ight1 LIS h<jg—1—

where r = j+h'—h, C’j /;th, Dgl;lh,, Ejl;Lh/, F ]J ;;h/ are admissible polinomials that
by induction we already know and that are a linear combination of products
of admissible polinomials of degree strictly less than grad, and

1 ifthh=1landh=j—i—1
N if ' =landh<j—i—1
A N ifh=j—i—1landh >1
N iR > Tand h<j—i—1

In any case by induction hypothesis we see that 1, is a positive rational
number. We observe that also the numbers h'(j' —i — h') = oy, and h(j —
i — h) = [, are positive rational numbers. Now we group together all the
equations with the same j and the same j' and we solve them altogether.
Once we have fixed 7 and j' the relations between indeces can be written in
this form: hg < h < h; and b’ = k + h, where hy = j —i — 1 and:

o Jd if §' > L1 if ' >
T ld+i—j ifi<j T 14 —j—d ifj<j

We observe also that once j,j’,d are fixed also r = j + h' — h is fixed.

Now to write our sistems of equations in a more readable way we introduce

the following variables: X, = TZ];Z/ and Y, = Sf;};: +1; and we observe that

variables involved exhaust all the unknown blocks of type Tf;: and S7 ;1 of
deg = d that is what we we want to construct. So we can write the equations

(35) and (38) in the following way:

Xno + Yy = Ungr—jVjr—r + Pipg
ce (39)
Xny + Yoy = UnyO0r Ve + Py
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and
Ohg (Yho + Xho—i—l) - ﬁhoXho + P2,h0

Aho1(YVno+1 + Xnot2) = Brot1(Yng + Xng+1) + Prnor1
. (40)
apy—1(Yn -1+ Xny) = Bni—1(Yn—2 + Xny—1) + Pony—1
ny Yy, = By (Yny—1 + Xny) + Papy
where P, , are known polinomials of degree equal to the grad = 2 deg +[j —j'|
of our blocks and that are a linear combination of products of polinomials
that have degree strictly less than grad. This system has a unique solution:
first we use the equations (40) to give an expression of Y3, + Xj, 11 in terms of
Xy, then we sum all the equations (39) and we obtain a formula for X, and

then we see that we can determine all the others X), and Y};,. We observe also
that equations (39) and (40) give an inductive formula for the coefficients
)\37 ]};L and /% };L Indeed they are the coefficient of the term d,_;v;_, in the
polinomials 77 J',h ih "and $7" i in above so they solve the same systems (39) and
(40) but with the costant coefficients P, . equal to zero. So if we use the same

variables X and Y for A and p, we obtain from system (40) the following
formulas:

Yho + Xho+1 = phoXho

thfl + Xh1 = ph1*1Xh0
Yi, = ph1Xho
where p;, are positive rational numbers. We observe that the coefficients
of the point 2) of the lemma are just, with our convention Xp,,(Ys, +

Xhot1)s -+, Y. So it is enough to prove that X, > 0. But summing
the equations in system (39) we obtain:

Vho -+ V1
Lt png + -+ pny
which is a positive rational number and we have proved the lemma. U

Xny =

REMARK 3.13. The lemma above show, how is possible to define the map
® from Ao(d v) to T. An inverse of @ is given in the following way. Take
(A, B,5 = AO 0 = By) € T and define ®1(A, B,7,6) = (A, B,,6), where
B, = 7TvB Viers Vi = 7TvAZ 1\D(1) and §; = 1 (1)BZ v, Ttis
clear that the new data is in Ag(d, v) and it also clear that &~ o(ID = Idpy(d,v)-
The relation ® o ®~! = Idy follows from the unicity proved in the lemma.
To be more precise it follows from the unicity explained at the beinning of
the proof of the lemma and remark 3.11.

A—7TVZ

LEMMA 3.14. 1) @ : Ao(d,v) — T is a GL(V)-equivariant isomorphism.
2) ®(z) € Tt < =z € Aj(d,v) and ®lsz : AJ(d,v) — TT is a
GL(V)-equivariant isomorphism
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PROOF. We have just proved 1). To prove 2) we observe that in the
case of (7, d) the stability condition is equivalent to A, is an epimorphism for
i=0,...,n—2. We observe also that if (4, B,7,0) = ®(A, B,7,6) €T we
have that AZ‘D;" is an isomorphism onto D . Since V; @ Dz(}r)l DD D(l)

is a complementary space of D; and that V;, is a complementary space of
Dj,,, we conclude, by (32) and (33), that the stability condition in our case

is equivalent to A; ® i+l D DVp1 iy - ViD DH—I SSERRIS D(l) it1 18
an epimorhpism for ¢ = 0, ..., n —2; which is exactly the cond1t10n of lemma
3.1 point 3) for the stability of (A, B,% J). O

DEFINITION 3.15. As observed ® is a GL(V)-equivariant morphism, so
we can define g and ¢ as the maps making the following diagrams commute:

Ao(d,v) —2— T Af(d,v) —2— T+
pol pol Pl Pl
Mo(d, U) L MO (/67 g) M(d, U) L} ~a T

and if we set ¢1 = @o|ar1(a,) We observe that by definition the diagram (29)
commutes, and that ip; C pi(Saz) = S -

COROLLARY 3.16. Let a,d,v, N as in section 1.3 then
M(d,v) =0 «— §a,z =

_ PRrROOF. After lemma 3.8 we have only to prove that M(d,v) # @ =
Sux 7 @ but this is clear since we have constructed a map from M (d,v) to
Soz- O

3. Proof of Theorem 3.6
LEMMA 3.17. Let (A, B,%,8) € T and § € GL(V) then
G(A,B,7,0) € T = 3g € GL(V) such that §(A, B,7,0) = g(A, B,7,0)
PROOF. We prove first that g;(V;) = V; and g;(D}) = D.. To prove it we

introduce for i = 0,...,n—=2, [=0,....n—2—¢tand h=0,....n—2—1—1
the following subspaces of V;:

pM= @ Dy
(7,

(2
0<h'<h
i+1+14+h' <j<n-—1

We prove that ﬁz(Dl’(h)) = D"™_ Indeed we observe that if (A,B,7,0) €T

- 1 ™) for | > 1. So we can argue by in-

duction on i, takmg as first step the trivial case i = 0, that g;(D" (h)) Dl’(h).
We observe that D"~ = D! and so the we have proved §;(D!) = D!. Now
we observe that if (A B,7,8) € T then Tp- B; |p;,, is an isomorphism and

then A | il .o is an isomorphism onto D,

that Bi(VQH) C Di ) @ Vi. Since D; @& V; is the complementary subspace,
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respect our decomposition, of D, () and (D} ’(0)) = D! @ Wwe can conclude
that giy1(Vie1) = Vi L L
Now we consider g; = g;|v; and we prove that g(A, B,7,0) = g(A, B,7,9).
Arguing as in remark 3.13 we see that it is enough to prove that the a;, b;
and tf{}’l and SX ;1 of the two elements of T" are equal. By construction
we have already proved the equality of the a; and b; block. To prove the
equality for the ¢ and the s block we observe that it’s enough to prove that

3| DY, = Id

vl = To prove it we observe that fm ph© is the identity map

Dy
from Dﬁ’(o) to Dﬁﬁ’(o). So arguing by induction as above we conclude that

Ji pio 1s the identity map, and finally we observe that Dgi)l - Dﬁ’(o). O
REMARK 3.18. By direct computation we can prove that ﬁ(g, B, 7,5) €
T <= g€ GL(V) but we don’t need this result.

LEMMA 3.19. ¢y and ;1 are closed immersions.

PROOF. It is enough to prove that ¢ is a closed immersion. We observe
that M°(d,v) and M°(v,d) are affine varieties whose coordinate ring is de-
scribed in lemma 3.1. We will prove that the associate map ¢,* between these
rings is surjective by showing that is it possible to obtain the polinamials in
P(d,v) from the admissible polinomials for (d,v) through the map ¢q. Let
us introduce the following deg on the set P(v,d):

deg(d,—jy;_,) =min(j —r+ 1,7  —r 4+ 1)

and de observe that usual degree is given by grad(d,;v;_,) = 2deg +|j"—j|.
We will prove the statement by induction on d = deg. If d <0 thenr > j+41
or r > j'+1 and so there are no polinomial in the set P in this case, and the
statement is proved. If d > 0 we consider the following blocks of degree d:

~ __ . ~ o~ .y 1.(5+17h4>ﬁ)// . l—h 1f]:h
(617025 = (BoAo)iy = R+9 iy’ S e
o 7 N Ot Vjmgeion LG >h
where by induction and lemma 3.1 R is a linear combination of products
of monomials with a smaller deg. Since by lemma 3.12 the coefficient of
Oj+1-h—jVj—j+1-n 18 different from zero we obtain that for any 1 < h < j
the element of P(v,d), 6j11-n—jV;—;+1-n can be obtained as claimed. But
now we observe that this element has deg = d and that all the elements in P

of deg equal to d can be obtained in this way for a good choice of h between
1 and j. U

Proof of theorem 3.6. By the lemma above and the fact that u; and =
are projective we see that ¢ is proper. By lemmas 3.14 and 3.17, since by
a result of Nakajima ([21] [22]) all the orbits in A (v,d) and A (d, D) are
closed we see that ¢ is also injective. Since by lemma 3.8 M (v,d) and ga,x
are smooth varieties of the same dimension and ga,x is connected we have
proved that it is an isomorphism of holomorphic varieties and by consequence
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is also an algebraic isomorphism. In particular ¢ is surjective and py is also
surjective, so also ¢ is surjective, but since it is a closed immersion of reduced
varieties over C it must be an isomorphism of algebraic varieties. Finally
©0(0) = x € S,., so by the previous lemma 0 € M'(v,d) and ¢;(0) = .
QED

REMARK 3.20. The map ¢ restricted to L(v,d) take a more explicit and
simple form. Indeed it is easy to see that in this case ¢ vanishes so we have
that all the polynomials 7" and S vanish also, and we have an explicit formula
for ¢.

REMARK 3.21. In [21] is observed that the conjecture does not generalize
to diagrams of type E and D. But it is an interesting and more general fact
(see for example the stratification of quiver varieties constructed by Nakajima
[21], [22] or the remark above) that some subvarieties can be described as
an another quiver variety. From this point of vied we want to point out that
it is possible to give an explicit pairs of injective maps ¢ and ¢ from M (v, d)
to M(d, ) and from My (v, w) to Mo(d, D) respectively such that the diagram
(29) commute and ¥ (0) = z. As we said they have an explicit formula and
so they look more simple than ¢ and ¢; but their image is not contained in
S, and S, , respectively, they "describe” different subvarieties.

3.1. Spaltenstein map. To understand the geometry of the general-
ized Springer fiber of type A,_1 F; is very usefull (see for example [26]) to

a

consider the following map « : Fi — Gr,, (ker z) defined by
a0CcFyC---F,1 CD)=F,.

If H € Gry, (kerz) it is very easy to see that a !(H) is isomorphic to a
Springer fiber fﬁ: of type A,,_s where ¢’ = (as,...,a,) and 2’ depends on H.
This fact suggest a way to study F;, by induction. For example it is a well
known fact that we can use this map to prove that the number of irreducible
component of F; is equal to the number of a-semistandard Young tableaux
of shape x. To avoid misleading interpretaion of this sentence we only say
that if o is of type 1% - 2! - 3? and a = (3,4, 0, 3) then

11
2 2 2
4 4 4 21

is a a-semistandard Young tableaux of shape z.

It is intersting to observe that the map « can be described easily in
the language of quiver varieties. First of all observe that Gr,, (kerz) ~
Gr(ay,a; + - - - + a,) is isomorphic to {map of maximal rank in Hom(D; @
-+ ® D,,V1)}/GL(V;). The define

a: L(d,v) — {map of maximal rank in Hom(D; @ --- @® D,, V1)}/GL(V})

a(A, B,v,0) = (71 DD anlal)‘
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The fibers of this map can be described easily as varieties L(d', v") for a graph
of type A,,_s without using the theorem proved inthis chapter. Now using the
computation above of the number of irreducible component of Springer fibers
and Nakajima’s theorem 1.37 we obtain the following well known formula for
the character of the irreducible sl,, module of highest weight d:

chy = Z eweight(T)

T semistandard Young tableaux
of shape 1‘11-...(n71)d"*1

where the weight of a tableaux of type a is Y7 (a; — ai11)w;.
We don’t give the (easy) details becouse they don’t give nothing new but
we hope that this explain the remark at the of the introduction.

3.2. sl,-equivariance and equivalence with Ginzburg’s construc-
tion. We showed that the varieties constructed by Nakajima appears as
special subvarieties of partial flag varieties, but we didn’t check if also the
costruction of representation is equivalent. By the very definition and Lemma
3.9 in the case d = (NV,0,...,0) is clear that Nakajima’s construction coin-
cide with Ginzburg’s construction. For general d,v we saw that L(d,v) =

M((d), (v)), for an appropriate choice of z, hence we have an isomorphism:
H,(L(d,v)) ~ H.(M(d,),).

We would like to prove that this is an isomorphism of si,, modules. More in
general the problem of sl,-equivariance can be stated as follows. Consider
the embedding

by =@ x i Z(d,v',v) — Z(d,v',7)
we have homorphism of algebra:
Ulsla) — Huop(2(a)).
U(sl,) — Htop<Z(07)>.

then problem of equivariance can be stated as follows: the embedding
induces an homomorphism of algebra H (1)) such that the following diagram
commute:

I believe that this fact should follow from some regularity condition plus the
following Lemma:
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LEMMA 3.22. Let ¢ = ¢ x p: M(d,v — ;) X M(d,v) — M(d, 7 — o) %
M(d,v) then N
Pi(d,v) N Imp = ¢(F(d,v)).

PRrROOF. The proof is equal to the proof of Lemma 3.17. O
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