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Introduction

Let C' be a smooth projective irreducible algebraic curve over C of any genus
and G a connected simply-connected simple affine algebraic group over C. In
this paper we elucidate the relationship between

(1) the space of vacua (“conformal blocks”) defined in conformal field theory,
using an integrable highest weight representation of the affine Kac-Moody algebra
associated to G and

(2) the space of regular sections (“‘generalised theta functions™) of a line
bundle on the moduli space 9 of semistable principal G-bundles on C.

Fix a point p in C and let /p (resp. IAcp) be the completion of the local ring
¢, of C at p (resp. the quotient field of /;p). Let ¥ = G(I%p) (the I%p—rational
points of the algebraic group G) be the loop group of G and let 7° := G’(/‘;’,) be
the standard maximal parahoric subgroup of <. Then the generalised flag variety
X 1= ¥/ is an inductive limit of projective varieties, in fact of generalised
Schubert varieties. One has a natural & -equivariant line bundle £(x,) on X (cf.
Sect. 2.2), and the Picard group Pic(X) is isomorphic to Z which is generated by
£(x,) (Proposition 2.3), where & is the universal central extension of % by the
multiplicative group C* (cf. Sect. 2.2). By an analogue of the Borel-Weil theorem
proved in the Kac-Moody setting by Kumar (and also by Mathieu), the space
HY(% |2, £(dx,)) of the regular sections of the line bundle £(dx,) := £(x,)®?
(for any d 2 0) is canonically isomorphic with the full vector space dual V (dy,)*
of the (integrable) highest weight (irreducible) module V(dx,) of the affine Kac-
Moody group % (or of the associated affine Kac-Moody algebra, which is a
certain one dimensional central extension of the loop algebra (Lie G) ® l%p) with
highest weight dx, (cf. Sect. 6.1).

* A Raman;han passed away on March 12, 1993
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Using the fact that any principal G-bundle on C\p is trivial (Proposition
1.3), one sees easily that the set of isomorphism classes of principal G-bundles
on C is in bijective correspondence with the double coset space I'\%/7,
where I := Mor(C\p, G) is the subgroup of ¢ consisting of all the algebraic
morphisms of C\p — G. Moreover X parametrizes an algebraic family 7 of
principal G-bundles on C' (cf. Proposition 2.8). As an interesting byproduct of
this parametrization, we obtain that the moduli space 9t of semistable principal
G-bundles on C is a unirational variety (cf. Corollary 6.3). Now, given a finite
dimensional representation V of G, let 74(V) be the family of associated vector
bundles on C' parametrized by X. We have then the determinant line bundle
Det(#2(V)) on X, defined as the dual of the determinant of the cohomology
of the family #4(V') of vector bundles on C (cf. Sect.3.8). As we mentioned
above, Pic(X) is freely generated by the homogeneous line bundle £(x,) on
X, in particular, there exists a unique integer my (depending on the choice
of the representation V) such that Det(7/(V)) ~ £(my x,,). We determine this
number explicitly in Theorem 5.4, the proof of which makes use of Riemann-
Roch theorem. It may be mentioned that the number m,, is given explicitly in
terms of the decomposition of V under sl(2) “passing through the highest root
space” (cf. Sect. 5.1), and coincides with the Dynkin index of the representation
V. For example, if we take V to be the adjoint representation of G, then
my, = 2x dual Coxeter number of G (cf. Lemma 5.2 and Remark 5.3). The
number m, is also expressed in terms of the induced map at the third homotopy
group level 7,(G) — m3(SL(V)) (cf. Corollary 5.6).

The subgroup I C % can canonically be thought of as a subgroup of &
(cf. Lemma 2.7). Suggested by conformal field theory, we consider the space
HY(% /7, £(dx,))! of I-invariant regular sections of the - -equivariant (in
particular I"-equivariant) line bundle £(dx,) (for any d 2 0). This space of
invariants is called the space of vacua. More precisely, in conformal field
theory, the space of vacua is defined to be the space of invariants of the
Lie algebra g ® R in V(dx,)*, where R is the ring of regular functions on
the affine curve C'\p and g is the Lie algebra of the group G. We have (by
Proposition 6.7) [V (dx,)*1" = [V (dx,)*]?®" and, as already mentioned above,
HY(% /9, £(dx,)) =~ V(dx,)*. Thus, by Theorem 6.6, we see that (for any
d 2 0) the space HO(M, O(V)®9) of the regular sections of the d-th power
of the ©-bundle O(V) (cf. Sect.3.8) on the moduli space M is isomorphic
with the space of vacua [V (dmy x,)*19®%. This is the connection, alluded to
in the beginning of the introduction, between the space of vacua and the space
of generalised theta functions. (In the case G = SL(n, C), this result has also
independently been obtained recently by A. Beauville and Y. Laszlo by different
methods.)

The proof of our Theorem 6.6 uses geometric invariant theory; in particular,
we make crucial use of the following extension lemma (cf. Proposition 7.2):

Let H be a reductive group and () be a projective scheme with a H-linearised
ample line bundle £ on Q, and let Q° denote the (open) subset of semistable
points of Q. Then, for any irreducible normal open H-invariant subscheme
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U 2 @Q° of Q, the canonical restriction map HO(U, £M)H — HOQs, gN)H
is an isomorphism, for any N 2 1.

We also make crucial use of a “descent” lemma (cf. Proposition 4.1), in the
proof of Theorem 6.6.

Our Theorem 6.6 can be generalised to the situation where the curve C
has n marked points {p,, ..., p, } together with finite dimensional G-modules
{V{, ..., V,,} attached to them respectively, by bringing in moduli space of
parabolic G-bundles on C.

It should be mentioned that Tsuchiya—Ueno—Yamada [TUY] have obtained
a factorization theorem for the space of vacua, from which one gets the va-
lidity of the Verlinde’s formula for the dimension of the space of vacua. In
view of our identification of the space of generalised theta functions with
the space of vacua, one gets the same formula for the dimension of the
space of generalised theta functions (for general G). Recently G. Faltings
has also announced a proof of the Verlinde’s formula. A purely algebro-
geometric study (which does not use loop groups) of generalised theta func-
tions on the moduli space of (parabolic) rank two torsion-free sheaves on
a nodal curve is made by Narasimhan and Ramadas [NRa]. A factoriza-
tion theorem and a vanishing theorem for the theta line bundle are proved
there. In addition, several other mathematicians (A. Bertram, S. Bradlow, S.
Chang, G. Daskalopoulos, B. van Geemen, E. Previato, A. Szenes, M. Thaddeus,
R. Wentworth, D. Zagier, ...) and physicists have studied the space of general-
ized theta functions (from different view points) in the case when G = SL(2), in
the last few years.

The organization of the paper is as follows:

Apart from introducing some notation in Sect. 1, we realize the affine flag
variety X as a parameter set for G-bundles. Section 2 is devoted to recalling some
basic facts (we need) about the affine Kac-Moody groups and their flag varieties.
In this section we prove that the affine flag variety is the parameter space for
an algebraic family of G-bundles on the curve C (cf. Proposition 2.8). Section 3
is devoted to recalling some basic definitions and results on the moduli space
of semistable G-bundles, including the definitions of the determinant line bundle
and the @-bundle on the moduli space. We prove a result (cf. Proposition 4.1) on
algebraic descent in Sect. 4. Section 5 is devoted to identifying the determinant
line bundle on the affine flag variety with a suitable power of the basic
homogeneous line bundle. Section 6 contains the statement and the proof of
the main result (Theorem 6.6). Finally in Sect. 7 we prove the basic extension
result (Proposition 6.5), using Geometric Invariant Theory.

1 Affine flag variety as parameter set for G-bundles

(1.1) Notation. Throughout the paper k denotes an algebraically closed field of
char. 0. By a scheme we will mean a scheme over k. Let us fix a projective curve
C over k, and a smooth point p € C. Let C* denote the open set C'\p. We also
fix an affine algebraic connected reductive group G over k.
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For any k-algebra A, by G(A) we mean the A-rational points of the algebraic
group G. We fix the following notation to be used throughout the paper:

I'=T; = GKk[C*)),

N

where ﬂAp is the completion of the local ring , of C at p, k, is the quotient
field of /;;,, k[C*] is the ring of regular functions on the affine curve C* (which

can canonically be viewed as a subring of IAcp), and ¥ is the triple (G, C, p).
We recall the following

(1.2) Definition. Let G be any (not necessarily reductive) affine algebraic group
over k. By a principal G-bundle (for short G-bundle) on an algebraic variety
X, we mean an algebraic variety E on which G acts algebraically from the right
and a G-equivariant morphism m:E — X (where G acts trivially on X), such
that 7 is locally isotrivial (i.e. locally trivial in the étale topology).

Let G act algebraically on a quasi-projective variety F' from the left. We can
then form the associated bundle with fiber F', denoted by E(F). Recall that
E(F) is the quotient of E x F' under the G-action given by g(e, f) = (g™, g/
forge G,ec€ Eand f € F.

Reduction of structure group of E to a closed algebraic subgroup H C G
is, by definition, an H-bundle E; such that E(G) ~ E, where H acts on G by
left multiplication. Reduction of structure group to H can canonically be thought
of as a section of the associated bundle E(G/H) — X.

Let.2" = .2°(G, C) denote the set of isomorphism classes of G-bundles on the
base C, and .2, = .£4(%) C .#" denote the subset consisting of those G-bundles
on C which are algebraically trivial restricted to C *,

(1.3) Proposition. Let G be a connected reductive algebraic group over k. Then
the structure group of a G-bundle on a smooth affine curve Y can be reduced to
the connected component Z°(G) of the centre Z(G) of G.

In particular, if G as above is semi-simple, then any G-bundle on Y is trivial.

Proof. This proposition is essentially proved in Harder’s paper [H1, Satz 3.3 and
the remarks following it], (as pointed out by the referee). We also need to use
the following facts:

(a) An affine group scheme over Y is rationally quasi-trivial (a result due to
Springer and Steinberg, cf. [Se2, Chap. III, Sect. 2.3]).

(b) PicY is a divisible group. [

The following map is of basic importance for us in this paper. This provides
a bridge between the moduli space of G-bundles and the affine (Kac-Moody)
flag variety.
(1.4) Definition (of the map np:f? — #;). Let G be a connected reductive
algebraic group over k. Consider the canonical morphisms i, : Spec(©,) — C
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and iy:C* < C. The morphisms i, and i, together provide a flat cover of C.
Let us take the trivial G-bundles on both the schemes Spec(ﬂp) and C*. The fiber
product

F = Spec(fp)éc*

of i, and i, can canonically be identified with Spec(/Acp). This identification
Spec(lAcp) ~ F'is induced from the natural morphisms

Spec(l}p)
/ N
Spec(ﬂj‘p) l ! c*.
/
F

By a “glueing” lemma of Grothendieck [Mi, Part I, Theorem 2.23, p. 19], to give
a G-bundle on C, it suffices to give an automorphism of the trivial G-bundle
on Spec(l%p), i.e., to give an element of & := G(lAcp). (Observe that since we
have a flat cover of C by only two schemes, the cocycle condition is vacuously
satisfied.) This is, by definition, the map ¢:& — 2.

(1.5) Proposition. The map ¢ (defined above) factors through the double coset
space to give a bijective map (denoted by)

@:I\S |7 — 2.

(Observe that, by Proposition 1.3, .4, = 2" if G is assumed to be connected
and semi-simple and C' is smooth and irreducible.)

Proof. From the above construction, it is clear that for g,¢' € ¢, ©(g) is
isomorphic with ¢(g’) (written p(g) ~ @(g’)) if and only if there exist two
G-bundle isomorphisms:

~ 0 A
Spec(é;) x G 1, Spec(@,) x G
N v
Spec((,)
and )
C*xG — C*xG
N e
C*
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such that the following diagram is commutative:

61 |Spec(fcp)

Spec(lAcp) xG —— Spec(fcp) x G

(*) l g l g

92 |Spec(fc;;)

Spec(l%p) xG —— Spec(fcp) X G.

Any G-bundle isomorphism 6, (resp. 6,) as above is given by an element
h € 7 (resp. v € I'). In particular, from the commutativity of the above diagram
(%), <p(g) ~ go(g’) if and only if there exists h € 7’ and v € I such that gh = ~¢’,
ie., v~ 'gh = g'. This shows that the map ¢ factors through I"\¢’/7’ to give an
injective map ¢. The surjectivity of ¢ follows 1mmed1ately from the definition
of .#,, and the fact that any G-bundle on Spec(/ ) is trivial. O

(1.6) Remarks. (a) We will show (cf. Proposition 2.8) that ¥ /7 in fact is a
parameter space for an algebraic family of G-bundles.

(b) The correspondence given in the above proposition is parallel to the
correspondence from the Adele group to bundles on a curve (cf. [H1, H2], also
see [PS, Sect. 8.11]). Some other analogous constructions are given by Beilinson-
Schechtman, Mulase [Mul, . ...

(c) ¥/ should be thought of as a the parameter space for G-bundles £ on
C together with a trivialization of Elc* (cf. Proposition 2.8).

(1.7) An alternative description of the map @ for vector bundles. We give an
alternative description of the map ¢ in the case when G = GL,,. In this case
4, can also be thought of as the set of isomorphism classes of locally free
(’c-modules of rank n (where (¢, is the structure sheaf of C') which are free as
c«-modules.

Let us denote by E = E,, the n-dimensional standard representatlon of GL,,.
Then the group ¢ has a canomcal representation in E(k ) and & is precisely

the stabilizer of E(/ ). Let @ := C x E(k) — C be the trivial rank-n vector
bundle over C. Fix any g € ¢, and define the presheaf ¢(g) of ¢’-modules on
C as follows: For any Zariski open U C C, set

@(g)(U) = HU,€), if p¢U and
#(g) (U) = {0 € H'U\p, ®):(0), € g(E()}, if peU,

where (o), denotes the germ of the rational section o at p viewed canonically
as an element of E(k ).

Now let ¢(g) be the associated sheaf of (“,-modules on C. Since the
representation of ¥ in E(k ) is k -linear (in particular / -linear), it is easy
to see that the sheaf ¢(g) is a locally free sheaf of 7, modules of rank n and
of course (by construction) <p(g)|c* is trivial. It can be easily seen that the map

©: % — .4 thus obtained is the same as the map ¢ defined in Sect. 1.4.
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2 Affine Kac-Moody groups and their flag varieties

Let ¥ = (G, C,p) be as in Sect. 1.1. In this section we will assume that the base
field k is C and further assume that G is a connected simply-connected simple
affine algebraic group over C. We fix a Borel subgroup B C G and a maximal
torus 7' C B, and define the standard Borel subgroup ./ of ¢ as ev, (B),
where ev,,:.7” = G(/Ap) — (@ is the group homomorphism induced from the

C-algebra homomorphism /p — C, which takes f — f(p).

(2.1) Generalized Schubert varieties. The generalised flag variety X = ¥ /.7
(where &',.7” are as in Sect. 1.1) has the following Bruhat decomposition:

(1) X= |J svr/r,
weW /W

where W := N (T)/T is the (finite) Weyl group of G, N(T) is the normalizer
of T in G, and W is the affine Weyl group of G (cf. [K, Sect. 6.6]). Moreover
the union in (1) is disjoint.

The affine Weyl group W is a Coxeter group and hence has a Bruhat partial
order <. This induces a partial order (again denoted by) < in W /W defined by

u:=umodW < v (for u,v € W)
if and only if there exists a w € W such that
u s vw.
We define the generalized Schubert variety X (for any ro € W /W) by

() X, = |J po7)7.

v

Then clearly X, & X, if and only if v < w. The set X, has the structure of a
(not necessarily smooth) finite dimensional projective variety over C. Moreover,
the inclusion X, € X, (for v < tv) is a closed immersion.

We put the inductive limit Hausdorff (resp. Zariski) topology on ¥ /.7, i.e.,
aset U C ¢'/7 is open if and only if U N X, is open in X, in the Hausdorff
(resp. Zariski) topology for all v € W /W. The decomposition (1) provides a
cellular decomposition of %'/, where .#107°/./’ is biregular isomorphic with
C”™ and /(tv) is the length of the smallest element in the coset to := wWW.

(2.2) Line bundles on &' /”. We define
(1) Pic(¥'/) = lim Pic(X,),
weW /w

where Pic(X,) is of course the set of isomorphism classes of (algebraic) line
bundles on X, . Clearly an element ¥ € Pic(£/7°) is given by a collection
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of algebraic line bundles %, on X, (for every v € W /W) together with
morphisms i, , (for all v < tv)

tw,0

% = DBy
1 |
X, — Xy

14
satisfying iy, , © %y, = iy, for all u S v < ro.

One can 51m11ar1y define the notion of vector bundles or principal bundles on
((/ /, /

Let us recall that the group & admits a “canonical” one-dimensional central
extension:
) 15 C*>9-% - 1.

i B

The “Lie algebra” Lie( D) of & is described explicitly in [K, Chap.7,
Identity 7.2.1] and is denoted by L(g)

The composite map C* 7 —+‘/’/ [#,77] is an isomorphism, where P

B~1(7) and q is the canomcal projection. In particular, identifying PP, P
with C* (under qo i), we get the character denoted eX°:7” — C*. Alternatively,
this is the unique character which is identically 1 restricted to the commutator
[,’ﬁ,.’i’], and restricted to the standard maximal torus T := 3~(T) it is got by
exponentiating the “integral” weight x,: Lie(T) — C, where ¥, is defined by

Xo(ag) =1, and

3
©) X,(a))=0, forall 1Sis/7,

where {ay,ay, ..., o)/} (resp. {o, ..., a}) are the simple coroots for L(g)
(resp. g := Lie G) (cf. [K, Sect. 7.4]).

For any d € Z, let %(dx,) be the homogeneous line bundle on the base
&P ~ ¥ |, which is associated to the principal Z-bundle & — ‘5’/@ by the
character (eX°)~%. We denote its restriction to X, by .4, (dx,). Then £ (dx,)
has a canonical structure of an algebraic line bundle, which is compatible with
respect to the inclusions, i.e., % (dx,), X = %.(dx,) for any v < to (cf.

[S1, Sect.2.7]). In particular, we get an element (again denoted by) £ (dx,) €
Pic(¥/P).
We have the following proposition determining Pic(&/7).

(2.3) Proposition. The map Z — Pic(¥' /) given by
d— F(dx,)
is an isomorphism.
Proof. Since X,, is a projective variety, by GAGA, the natural map
€)) Pic(X,,) = Pic,,(X,)
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is an isomorphism, where Pic,, (X, ) is the set of isomorphism classes of analytic
line bundles on X .
We have the sheaf exact sequence:

) 0—Z— O — Cx -0,

“an

where (7, (resp. (%,%) denotes the sheaf of analytic functions (resp. the sheaf
of invertible analytic functions) on X_. Taking the associated long exact
cohomology sequence, we get

3)
.- H'\(X,,0,) — H'(X,,,5 3 HA(X,,,Z) — HX Xy, Co) = --

where the map c, associates to any line bundle its first Chern class. Now
4) H(X,,?)=0, foral i>0,

by [Ku, Theorem 2.16(3)] (also proved in [M]), and by GAGA

®) HY(X,,, ) = H (X, O

and hence the map c, is an isomorphism. But

©) Pic,(Xy,) ~ H' (X, Gn) -

Hence, by combining (1) and (3)-(6), we get the isomorphism (again denoted
by)

(7) ¢t Pic(X,)) > HX(X,,, 7).

Further the following diagram is commutative (whenever X, & X )):

cl

Pic(X,) — HXX,,Z)

1 !

1

Pic(X,) — HXX,,Z),

where the vertical maps are the canonical restriction maps. But from the Bruhat
decomposition (1) of Sect. 2.1, for any v 2> s_, the restriction map

®) H*(X,,2) — H*(X,,,Z)

is an isomorphism, where s, is the (simple) reflection corresponding to the simple
coroot oy, and s, := s,mod W. Moreover, X, being isomorphic with the
complex projective line P!, H 2(X.,,O,Z) is a free Z-module of rank 1, which is
generated by the first Chern class —1 of the line bundle %, (x,).

Since any element tv 3 ¢ € W /W satisfies to = s, (in particular the elements
to 2 s are cofinal in W/ W), taking the inverse limit of diagram (&), we get
the proposition. [
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(2.4) Topology on I'. We fix an embedding G — GL,,,(C) (for some large m),
and define a filtration of I" as follows:

G=FOCF1C...,

where I, := {f:C* — G C GL,,(C) such that all the matrix coefficients of f
have poles of order < i at p}.

It is easy to see that I',’s admit canonically a compatible structure of finite
dimensional affine varieties. In particular, we have Hausdorff as well as Zariski
topology on I'’s. Now we define the corresponding (Hausdorff or Zariski)
topology on I' as the inductive limit topology from I7;’s. It is easy to see that
neither topology on I" depends upon the particular embedding of G — GL,,,(C).

We prove the following lemma.

(2.5) Lemma. Let X be a connected variety over C. Then any regular map
X — C*, which is null-homotopic in the topological category, is a constant.

(Observe that if the singular cohomology H'(X,Z) = 0, then any continuous
map X — C* is null-homotopic.)

Proof. Assume, if possible, that there exists a null-homotopic non-constant
regular map A\: X — C*. Since A is algebraic, there exists a number N > 0
such that the number of irreducible components of A™!(z) £ N, for all z € C*.
Now we consider the N'-sheeted covering 7y, :C* — C*(z — 2V "), for any
N’ > N. Since ) is null-homotopic, there exists a (regular) lift XX — C*,
making the following diagram commutative:

C*

A

X — C*.
A

Since )\ is regular and non-constant, by Chevalley’s theorem, Im X\ (being a
constructible set) misses only finitely many points of C*. In particular, there
exists a z, € C* (in fact a Zariski open set of points) such that w&} (2,) C Im X
But then the number of irreducible components of A~!(z,) = X‘l(ﬂ;}zo) 2
N’ > N, a contradiction to the choice of N. This proves the lemma. [

(2.6) Corollary. There does not exist any non-constant regular map X:I" — C*.

(A regular map \:I" — C* is, by definition, a map such that |, is regular
for each n, cf. Sect. 2.4.) ]
Proof. By Segal [S] (see also [PS, Proposition 8.11.6(i), p. 157]), I' is connected
and simply-connected, in particular, H'(I', Z) = 0 (where H*(I',Z) denotes the
singular cohomology of the topological space I'). This gives that the map A is
null-homotopic. By using the above Lemma 2.5, A is constant on each connected
component of I, (for any n 2 0) and hence A itself is constant. O

Restrict the central extension (2).of Sect. 2.2 to get a central extension
1) 1— cc*—,»F—ﬂ*r -1,
(2
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where I is by definition 5~!(I"). The group I" admits a canonical structure of
an inductive limit of affine algebraic varieties.

(2.7) Lemma. There exists a unique regular group homomorphism I' — T,
which splits the above central extension.
In particular, we can canonically view I' as a subgroup of & .

Proof. The existence of a regular splitting on I" is well known (cf,, e.g., [W,
Sect. 4]). The uniqueness follows immediately from the above corollary. [

We have the following proposition.

(2.8) Proposition. (a) There is an algebraic G-bundle 76 — C x ¥ /P (i.e.
% cxx,, IS algebraic for any w € W /W) such that, for any x € & |P
the G-bundle %, = %ICM is isomorphic with p(x) (where o is the map of
Sect. 1.4). Moreover the bundle 74|cx /., comes equipped with a trivialization
a:e5% cx g 190 Where € is the trivial G-bundle on C* x /2.

(b) Let & — C x T be an algebraic family of G-bundles (parametrized
by an algebraic variety T), such that & is trivial over C* x T and also over
(Spec @;‘,) x T. Then, if we choose a trivialization (3: s'géﬁc*xT, we get a
Schubert variety X, and a unique morphism f:T — X _ together with a G-
bundle morphism f: & — 7,0 x x,, inducing the map 1d X f at the base such that
fopB =aob, where € is the trivial bundle on C* x T and 0 is the canonical
G-bundle morphism ' — ¢ inducing the map 1d x f at the base.

Proof. Let R be a C-algebra and let T := Spec R be the corresponding scheme.
Suppose E' — C'X T is a G-bundle with trivializations « of £ over C* x T and 8
of E over (Spec ¢,) X T'. Note that the fiber product (C*xT) X gy 7 (Spec &, xT)
is canonically isomorphic with (Speck,) x T (cf. Sect. 1.4). Therefore the
trivializations o and 3 give rise to an element a3~ € G(lAcp ®c R). Conversely,
given an element g € G(k, ® R), we can construct the family £ — C x Spec R
by taking the trivial bundles on C* x T and (Spec @;) x T and glueing them via
the element g. Moreover, if g; and g, are two elements of G(k,, ® R) such that

9, = g,h with h € G(@A”p ® R), then h induces a canonical isomorphism of the
bundles corresponding to g, and g,. All these assertions are easily verified.

To construct the family parametrized by ¥/, we note that it is enough to
construct the families %4, — C x X parametrized by the Schubert varieties
X\, together with certain isomorphisms ¢, , of %, |cxx, With %,, for any
X, C X, such that the isomorphisms @, , satisfy the cocycle condition
ProoPou = oo forall o 2 o 2 u.

Choose a local parameter ¢ for C at p and set /"~ = G(C[¢t~']). Then /"~
can canonically be thought of as a subgroup of &. Further the .#"~-orbit U~
through the base point € € X := /% is open in the Zariski topology on X.
In particular, by the Bruhat decomposition {roU ~ }, provides an open cover of
X. The map U~ — ¥, defined by z.e — z for x € .47, provides a section o
of the principal #’-bundle & — ¥°/2 over the open set U™, and by translating
this section we also get sections o, over any wU ™~ (o, does depend upon the
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coset representative w of ro = wW, but for each, tv € W/W we fix one coset
representative w and then o,, really means o). Now fix any Schubert variety
X, and cover this by the affine open sets {(toU~) N X, } and take the sections
0, over them. In view of the discussion above, this canonically gives rise to
G-bundles %, = 723, on C x (U~ N X,). Further, for any z in the intersection
Up, N Up,» Where Uy, = (0, U7) N X, we have o, (z) = Oroy (D, 1, (@)
with by, o (2) € G(/Q;,). These hy, ,, canonically give rise to the isomorphisms
Py, — %y, oOver the intersection C' X (%, N 74,,), which obviously satisfy
the cocycle condition. Thus the bundles {# },, patch-up to give the G-bundle
% = 74° on C x X,. Since the sections o, are defined on the whole of wU ™,
it is easy to see that 72°! canonically restricts to #/°2 whenever v, 2 v,. This
completes the (a)-part, i.e., the construction of the family %/ parametrized by
S|P,

To prove the (b) part, let us choose a trivialization 7 of the bundle & restricted
to (Spec @;) x T. As above, this (together with the trivialization (3) gives rise to
amap f,:T — % and hence a map f:T — /7. (It is easy to see that the
map f does not depend upon the choice of the trivialization 7.) We claim that
there exists a large enough X such that Im f C X, and moreover f:T — X
is a morphism:

For both of these assertions, we can assume that T is an affine variety
T = SpecR, for some C-algebra R. Then the map f_ can be thought of
as an element (again denoted by) f. € G(lAcp ® R). Choose an embedding
G — GL(N), and also choose a local parameter ¢t around p € C. Then we
can write f, = (f&9),<; ,<n- With f29 € k, @ R. In particular, there exists a
large enough ! = 0 such that (for any 1 < 4, j < N) fi9 € t~!C[[t]] ® R.
From this one can see that Im f is contained in a Schubert variety X,,. Now
the assertion that f:T — X, is a morphism follows from the description of the
map f, as an element of G(I%p ® R) together with the explicit description of
the variety structure on ¥/, as given, e.g., in [KL, Sect. 5.2]. The remaining
assertions of (b) are easy to verify, thereby completing the proof of (b). O

Let X, C X; € X, C ... be a sequence of algebraic varieties such
that X, C X,,, is a closed immersion, for all i. Let X := UX, be the
corresponding ind-variety. For any z € X, we define the Zariski tangent space
T,.(X) := lim T, (X,), where T, (X,) is the Zariski tangent space of X, at z. If
X as above is an algebraic ind-group, then T,(X) has a canonical structure of a
Lie algebra (see [Sa, Sect. 1]). Endowed with-this Lie algebra structure, T,(X)
is denoted by Lie X.

We define the map Lie I' — (Lie G) ®, k[C*], by considering the differential
of the evaluation map at each point of C*, where (as in Sect. 1.1) k[C™*] is the
ring of regular functions on the affine curve C* := C\p. The following lemma
determines the Lie algebra of the algebraic ind-group I'.

(2.9) Lemma. Under the above map, Lie I is isomorphic with g ®, k[C*]
as Lie algebras, where g:= Lie G and the bracket in g ® k[C*] is defined as
(X ®p,Y®q=[X,Y]1®pq, for X,Y € g and p,q € kK[C*].
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Proof. Embed G as a (closed) algebraic subgroup i:G — SLy (k) (C My(k)),
for some N > 0. This gives rise to a closed immersion i:G(R) = I' — My (R)
(where M (R) is the space of N x N matrices over the ring R := kE[C*]).
In particular, it induces an injective map di:T(') = Lie’ — T(My(R)) =
My (R), at the Zariski tangent space level (where I is the identity matrix). We
claim that di is a Lie algebra homomorphism, if we endow My (R) with the
standard Lie algebra structure. To prove this, consider the following commutative
diagram (for any fixed z € C*):

() & My(R)
! !

TG & My,

where the vertical maps are induced by the evaluation map e, : R — k given by
p — p(x). Since di is a Lie algebra homomorphism, and so are the vertical maps,
we obtain that d itself is a Lie algebra homomorphism. It is further clear, from
the above commutative diagram, that the image of d is contained in g® R, where
g is identified with its image in M (k) via the Lie algebra homomorphism di.

Next, we prove that the image of di contains at least the set g ® R: Fix any
ad-nilpotent vector X € g and p € R, and define a morphism A! — I' by
z — exp(zX ®p). (Since X is ad-nilpotent, the image is indeed contained in I'.)
It is easy to see that the image of the induced map (at the tangent space level
at 0) is precisely the space k(X ®p). But since the image of di is a Lie subalgebra,
and ad-nilpotent vectors X € g generate g (as a Lie algebra), the assertion
follows. This completes the proof of the lemma. [

3 Preliminaries on moduli space of G-bundles
and the determinant bundle

Throughout this section, G denotes a connected reductive group over C and C a
smooth projective irreducible curve over C.

We recall some basic concepts and results on semistable G-bundles on C.
The references are [NS, R1, R2, RR]. Recall the definition of GG-bundles and
reduction of structure group from Sect. 1.2.

(3.1) Definition. Let E — C be a G-bundle. Then E is said to be semistable
(resp. stable), if for any reduction Ep of structure group of E to any parabolic
subgroup P C G and any non-trivial character x: P — G, which is dominant
with respect to some Borel subgroup contained in P, the degree of the associated
line bundle Ep(x) is < 0 (resp. < 0). (Note that, by definition, a dominant
character is taken to be trivial on the connected component of the centre of G.)

(3.2) Remark. When G = GL,,, this definition coincides with the usual definition
of semistability (resp. stability) due to Mumford (cf. [NS]) viz. a vector bundle
V — C is semistable (resp. stable) if for every subbundle W & V, we have
p(W) £ (V) (resp. w(W) < w(V)), where pu(V) := degV/rank V.
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Let V — C be a semistable vector bundle. Then there exists a filtration by
subbundles

G=0GV, GG .GV,

such that u(V;) = w(V) and V;/V,_, are stable. Though such a filtration in
general is not unique, the associated graded

gr(V) = @ VilViei

i1

is uniquely determined by V (upto an isomorphism).
We will now describe the corresponding notion of gr(E) for a semistable
G-bundle F.

(3.3) Definition. A reduction of structure group of a G-bundle E — C to a
parabolic subgroup P is called admissible if for any character of P, which is
trivial on the connected component of the centre of G, the associated line bundle
of the reduced P-bundle has degree 0.

It is easy to see that if Ep is an admissible reduction of structure group
of E to a parabolic subgroup P, then E is semistable if and only if the P/U-
bundle £ P(P/ U) is semistable, where U is the unipotent radical of P. Moreover,
a semistable G-bundle E admits an admissible reduction to some parabolic
subgroup P such that E,(P/U) is, in fact, a stable P/U-bundle. Let M be
a Levi component of P. Then M = P/U (as algebraic groups) and thus we get
a stable M-bundle E(M). Extend the structure group of this A/-bundle to G to
get a semistable G-bundle denoted by gr(E). Then gr(E) is uniquely determined
by E (up to an isomorphism) (see [R1]).

Two semistable G-bundles E,| and E, are said to be S-equivalent if gr(E) ~
gr(E,). We call a semistable G-bundle E quasistable if £ ~ gr(E). (It can be
seen that a semistable vector bundle is quasistable if and only if it is a direct
sum of stable vector bundles with the same p.)

Two G-bundles E, and E, on C are said to be of the same topological type
if they are isomorphic as G-bundles in the topological category. The topological
types of all the algebraic G-bundles on C are bijectively parametrized by the
first fundamental group 7, (G) (cf. [R2, Sect. 5]).

(3.4) Theorem. The set M of S-equivalence classes of all the semistable G-
bundles on C of a fixed topological type admits the structure of a normal,
irreducible, projective variety over k, making it into a coarse moduli.

In particular, for any algebraic family & — C x T of semistable G-bundles of
the same topological type (parametrized by a variety T'), the set map 3:T — 9,
which takes t € T to the S-equivalence class of &, in I is a morphism.

The details can be found in [NS, R1, R2, Ses,...].

(3.5) Remarks. (a) In general M is not a fine moduli, i.e., there may not exist
any family % — C x 9 (parametrized by 9) such that .7 belongs to the
S-equivalence class m € 9.
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(b) For G = GL,, i.e., for the case of rank-n vector bundles, the topological
type is nothing but its degree. When the degree is coprime to the rank, the coarse
moduli is in fact a fine moduli. (When the degree is not coprime to the rank, the
coarse moduli is rot a fine moduli.)

We prove a result on gr(E) which we will need in Sect. 6. We first prove the
following:

(3.6) Lemma. Let H be a connected affine algebraic group and C a smooth
projective curve over k. Then any principal H-bundle on C is locally trivial in
the Zariski topology.

Proof. Let E be a principal H-bundle on C and U the unipotent radical of H.
Since the group M = H/U is connected and reductive, the M-bundle E(M),
obtained from F by extension of structure group to M, is locally trivial in the
Zariski topology [R3, Proposition 4.3].

Let W be a non-empty affine open subset of C' such that the restriction of
E(M) to W is trivial. We shall show that E.W is trivial (which will prove the
lemma): Observe that a trivialization of E(M) on W gives a reduction of the
structure group H of Ejy, to the subgroup U. So, it suffices to show that any
(principal) U-bundle on W is trivial:

We may assume U =+ e. Then there exists a (finite) filtration of U by
closed normal subgroups such that the successive quotients are isomorphic to
the additive group G,,. Now the assertion follows since any principal G ,-bundle
on W is trivial, W being affine (see [Sel, Sect.5.1]). O

Let P be a parabolic subgroup of G and P = MU a Levi decomposition,
where U is the unipotent radical of P and M a Levi component. The next
proposition will be used in Sect. 6 in the case of an admissible reduction of a
semistable bundle E.

(3.7) Proposition. Let E be a G-bundle on C and E a reduction of the structure
group of E to P. Denote by gr(E p) the G-bundle on C obtained from the P-bundle
Ep by extension of the structure group via the homomorphism

P> P/lU~M<G.

Assume that G is semisimple and connected.

Then there exists a G-bundle & on C x Al, where A! is the affine line, such
that we have

@ Zloxanog & po(E), Elox oy ~ gr(Ep) and

(b) &\cxxar is trivial and also the pull-back of & to (Spec /9:;,) x Al is trivial,
where p, is the projection on the C-factor.

Proof. By [R1, Lemma 2.5.12], there exists a one-parameter group A:G,, (:=
A\0) — M, such that the regular map

G,,xP— P, givenby (t,p)— AXOpAt)~' for t€G,,peP,

extends to a regular map ¢:A! x P — P satisfying ¢(0, mu) = m, for m € M,
u € U. By Lemma (3.6), the P-bundle E, is locally trivial in the Zariski
topology. Let {U,} be an affine open covering of C' in which the bundle Ep



56 S. Kumar et al.

is given by the transition functions p,;:U; N U; — P. Let # be the (Zariski
locally trivial) P-bundle on C x A! defined by the covering {U, x A!} and the
transition functions

hiy:U;NU) x Al — P,

where hy;(z,t) = ¢(t,p;;(2)), for t € Al, z € U; N U;. Now let & be the G-
bundle obtained from the P-bundle .# by extension of the structure group to G.
Then clearly & satisfies condition (a).

We next show that for any non-empty affine open subset W of C, the
restriction of & to W x Al is trivial (this will, in particular, imply that condition
(b) is satisfied): Note that, by our construction, there exists a (finite) open covering
W, of W such that &y, o1 is trivial, for every 7. Now by an analogue of a result
of Quillen (cf. [Ra, Theorem 2]) élex al is the pull-back of a G-bundle on W.
But, by Proposition (1.3), any G-bundle on W is trivial. [

(3.8) Determinant bundle and ©-bundle. We now briefly recall a few definitions
and facts on the determinant bundles and @-bundles associated to families of
bundles on C. We follow [DN, NRa].

In the case of the moduli J, of line bundles of fixed degree d on C, i.e., the
Jacobian, there is a natural divisor (on the Jacobian) called the @-divisor. It is
defined only up to an algebraic equivalence in general, but on the Jacobian J,_,
it is canonically defined (where g is the genus of C). Since we have chosen a
base point p on C, the ©-divisor on any J,; is canonically defined.

To generalise this notion to the moduli of higher rank vector bundles, one
makes use of the determinant bundle associated to any family of vector bundles.

Let Z° — C x T be a vector bundle. Then there exists a complex of vector
bundles 7 on T (with 7= 0, for all i 2 2):

Z — A —-0—-0—..

)

such that for any base change f:Z — T, the i direct image on Z (under
the projection C' x Z — Z) of the pull back (id x f)*7 is given by the
i cohomology of the pull back of the above complex to Z. We define the

o] o]
determinant line bundle Det 7" on T to be the product /{(% ® (/{)(%)*).
(Notice that our Det 7 is dual to the determinant line bundle as defined, e.g., in
[L, Chap. 6, Sect. 1].)

The above base change property gives rise to the base change property for
Det 7, ie., if f:Z — T is a morphism then Def((id x f)*7") & f*(Det 7).

Let £ be a line bundle on T, and let p,:C x T — T be the projection
on the second factor. Then for the family 7" ® p; £ — C x T, we have
Det(?7 ® pi£) = (Det?7) ® £, where 2(?") := h%(Z) — (%)) is the
Euler characteristic and 7/ := 7|y, (Observe that h%(7) — h'(%) remains
constant on any connected component of T'.)

We now define the ©@-bundle ©(7") of a family of rank r and degree O
bundles #° — C x T to be the modified determinant bundle given by
(Det 7°) ® det(Z,y*77/", where 7, is the bundle 77,1 on T and det 7 is
its usual determinant line bundle. It follows then that &(?") = (7" ® p3 £),
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for any line bundle £ on T. Moreover ©(Z") also has the functorial property
6((d x f)*7") = fX(OF).

If & — C x T is a family of G-bundles and V' is a G-module, then Det(¢(V))
and ©(&(V)) are defined to be the corresponding line bundles of the associated
family of vector bundles, via the representation V' of G, for G semisimple.

For the family % — C x ¥'/% (cf. Proposition 2.8), the line bundles
O(#(V)) and Det(#(V)) coincide, since %lpm/f is trivial.

It is known ([DN, NRa]; see also Remark 7.6) that there exists a line bundle
© on the moduli space M, of rank r and degree O (semistable) bundles, such
that for any family 7" of rank r and degree O semistable bundles parametrized
by T we have f*(0) = O(7"), where f:T — 9, is the morphism given by the
coarse moduli property of 90, (cf. Theorem 3.4).

Assume that G is semisimple (and connected) and let V' be a finite dimensional
representation of G of dimension r. Then for any semistable G-bundle on C,
the associated vector bundle (via the representation V') is semistable (cf. [RR,
Theorem 3.18]). Thus, given a family of semistable G-bundles on C' parametrized
by T, we have a canonical morphism (induced from the representation V)
T — 9, (where 9, as above is the moduli space of semistable bundles of
rank r and degree 0). Let 9t be the moduli space of semistable G-bundles on C.
By the coarse moduli property of 901, we see that we have a canonical morphism
oy I — I, . We define the theta bundle ©(V') on 901 associated to V' to be the
pull-back of the line bundle © on 907, via the morphism ¢y,. It can be easily seen
that for any family 2 — C x T of semistable G-bundles, f*(@(V)) ~ &(Z"(V)),
where f:T — 90t is the morphism (induced from the family #) given by the
coarse moduli property of 97.

4 A result on algebraic descent

We prove the following technical result, which will crucially be used in the
paper. Even though we believe that it should be known, we did not find a precise
reference.

(4.1) Proposition. Let f: X — Y be a surjective morphism between irreducible
algebraic varieties X andY over an algebraically closed field k of char 0. Assume
that Y is normal and let & — Y be an algebraic vector bundle on'Y .

Then any set theoretic section o of the vector bundle & is regular if and only
if the induced section f*(o) of the induced bundle f*(¥) is regular.

Proof. The “only if” part is of course trivially true. So we come to the “if” part.

Since the question is local (in Y'), we can assume that Y is affine and moreover
the vector bundle & is trivial, i.e., it suffices to show that any (set theoretic) map
0:Y — kisregular, provided 6 := oof: X — k is regular (under the assumption
that Y = Spec R is irreducible normal and affine):

Since the map f is surjective (in particular dominant), the ring R is canonically
embedded in I'(X) := H%X,@). Let R[5] denote the subring of I'(X)
generated by R and & € I'(X). Then R[] is a (finitely generated) domain (as X
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is irreducible by assumption), and we get a dominant morphism f:Z — SpecR,
where Z := Spec(R[5]). Consider the commutative diagram:

X
6/ N\
Z —— Y
f

where @ is the dominant morphism induced from the inclusion R[5] — I'(X). In
particular, Im 6 contains a non-empty Zariski open subset U of Z. Let x|, , € X
be closed points such that f(z,) = f(x,). Then r(z,) = r(z,), for all r € R and
also &(x,) == &(z,). This forces 8(z;) = 0(z,), in particular, f|U is injective on
the closed points of U.

Since f is dominant, by cutting down U if necessary, we can assume that
flU:U — V is a bijection, for some open subset V' C Y. Now since Y is (by
assumption) normal and Z is irreducible, by Zariski’s main theorem (cf. [Mum,
p. 288, I. Original form])), f|U :U — V is an isomorphism, and hence o is regular
on V. Now we give two different proofs for the remaining part:

First proof. Assume, if possible, that o), does not extend to a regular function
on the whole of Y. Then, by [B, Lemma 18.3, AG], there exists a point y, € Y
and a regular function h on a Zariski neighborhood W of y, such that h(y,) = 0
and ho = 1 on W N V. But then hé = 1 on f~'(W NV) (where h := ho f)
and hence, & being regular on the whole of X, hé = 1 on f~'(W). Taking
Jo € f‘l(yo) (f is, by assumption, surjective), we get h(§y)3(g,) = 0. This
contradiction shows that o) does extend to some regular function (say ¢’) on
the whole of Y. Hence & = &', in particular, by the surjectivity of f, o = o’.
This proves the proposition.

Second proof. Let us define a subset Uy C Z by
Uy = {z € Z: dime(x) = 0},

where e(z) is the union of all the irreducible components of f —I( f (x)) containing
. Then, by Chevalley’s theorem, U, is open (possibly empty) in Z and the map
fl v :U, — Y has all its fibers finite. But since f is birational, U, is non-empty.

Further, by Zariski’s main theorem, V; := f(U,) is open in Y and the map
fiy Uy = Vp is an isomorphism. This gives that Ty, is a regular function.
0
Consider the surjective map
F:2\f7' () = Y\,
Then, by the definition of V;, every fiber of the above map has at least one
irreducible component of dim 2 1 (actually of dim exactly 1). Hence

dim(Y'\Vp) £ dim(Z\f~'(1p) — 1 £ dimY -2

(since f:Z — Y is birational and Z is irreducible), i.e., codimy (Y'\Vj) 2 2.
But since Y is assumed to be normal, the regular function o Yo admits a regular

extension o’ to the whole of Y. Now by the same argument as in the first
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proof, we get that ¢ = ¢’ on the whole of Y. This completes the second proof
as well. [

(4.2) Remark. Even though we do not need it, the same result as above is true
in the analytic category if the underlying field k is taken to be C.

5 Identification of the determinant bundle

In this section we consider the triple € = (G, C,p), where G is a connected,
simply-connected, simple algebraic group over C, C is a smooth projective
irreducible curve over C, and p is any point of C. We follow the notation as
in Sect. 1.1.

(5.1) Recall from Proposition 2.8 that /7 is a parameter space for an algebraic
family %4 of G-bundles on C. Let us fix a (finite dimensional) representation
V of G. In particular, we can talk of the determinant line bundle Det(74(V))
(cf. Sect. 3.8). Also recall the definition of the (fundamental) homogeneous line
bundle £(x,) on ¥/7 from Sect.2.2. Our aim in this section is to determine
the line bundle Det(%(V)) in terms of £(x,). We begin with the following
preparation.

Let 8 be the highest root of g. Define the following Lie subalgebra si,(6) of
the Lie algebra g of G:

(1) sl,(@):=g_y ®CH @ gy,

where g, is the 6-th root space, and 6" is the corresponding coroot. Clearly
sl,(8) ~ sl, as Lie algebras. Decompose

2) V=8,V

AR

as a direct sum of irreducible sl,(#)-submodules V; of dimm,. Now we define

41 2
3) mvzz<mz; >, where we set <3>:O.

The number m, coincides with the Dynkin index of the representation V' (cf.
[D, Sect. 2]). We give an expression for m,, in the following lemma.
Write the formal character

) cthz nyer.
(5.2) Lemma.
¢)) my = > > na(A0Y)2.

A
In particular, for the adjoint representation ad of g we have
@) My =2(14(,0")),

where o as usual is the half sum of the positive roots of g.
Similarly, for the standard n-dim. representation E,, of sl,, mg = 1.
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Proof. 1t suffices to show that, for the irreducible representation W(m) (of
dimm + 1) of sl,

1 «— +2
?3) §§<m91‘”avH>2:<m3 ),

where o is the (unique) positive root of sl,, H the corresponding coroot and
Ql = %a.
Now the left side of (3) is equal to

m 2 ko
2
2Z<m—n) =4zk2___m(m+l)(m+ ), if m = 2k, is even, and

n= 2 k=1 6
m 1 2
=2§_:0(k0—§—n> , if m =2k, —1isodd

1 2 ko ) ko
=4Z(k—§> :<4gk>+ko—4;k
_ m(m+1)(m+2)

_ ) |

So in either case the left side of (3) =
proves the first part of the lemma.
For the assertion regarding the adjoint representation, we have

m(m+16)(m+2) _ (m;—Z). This

ch(ad) = (dimb).e” + Y (e +e7P).

BEAL
So
mad = Z (:Bae\/)z
BeAy
=4+ Z (8,6), since (3,6¥) =0or 1, forany 3 € A \0
BEAL\O
=4+ (29_9,0V>

=2(1+ {,6Y)).

The assertion about mp, is easy to verify. [J

(5.3) Remark. The number (1 + (p, bv)) is called the dual Coxeter number(cf.
[K, Sect. 6.1 and Exercise 6.2]) of g (rather of the corresponding affine Kac-
Moody algebra). Its value is given as below.
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Type of g Dual Coxeter number
A, I+1

B, 20—1

of I+1

D, 20-2

Eq 12

E, 18

Eq 30

G, 4

F, 9

Now we can state the main theorem of this section.

(5.4) Theorem. With the notation as in Sect. 5.1 (as elements of Pic ¥ [/7)
Det(Z2(V)) = £(my X,)

for any finite dimensional representation V of G, where the number m., is defined
by (3) of Sect. 5.1.

Proof. By Proposition 2.3, there exists an integer m such that
Det(z(V)) = £(mx,) € Pic(¥'/7).

We want to prove that m = my,:

Set %, = %(V)|cxx, as the family restricted to the Schubert variety
X, = X, (cf. proof of Proposition 2.3). Denote by a (resp. 3) the canonical
generator of H*(X,,Z) (resp. H*(C, Z)). Then it suffices to show that Det %/, ~
£, (myx,), which is equivalent to showing that the first Chern class
€)) c,(Det?,) =myo:

From the definition of the determinant bundle we have
)] c,(Det%,) = —c,(m,,%,) ,
where 7, is the projection C' x X, — X, and the notation ,, is as in [F,
Chap. 9].

Since %, 0« x, as well as %, is trivial (where € is the base point of
& |P), we get
3) e (#%,)=0.

Let & (resp. 3) be the pull back of « (resp. 3) under m, (tesp. m;). Now write

“4) c(%,) =1af3, for some (unique) ! € Z.
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Let T, be the relative tangent bundle along the fibers of ,. Let us denote
by ¢, (resp. c,) the first (resp. second) Chern class of 7/,. By the Grothendieck’s
Riemann-Roch theorem [F, Sect. 9.1] applied to the (proper) map m,, we get

ch(my, #,) = my,(ch(74,). td(T},))
= Mo [(rk yéo + ¢ + % (C% - 2C2)) (1 + % CI(TWZ))]
=m, [k 7%, — ¢) (1 + 5 ¢/(T,.))], by (3),

where ch denotes the Chern character and td denotes the Todd class. Hence

5) e, (M, 72,) = Ty, (—Cy(7,))
= —la, since 772*(615) =a«.

So to prove the theorem, by (1), (2) and (5), we need to show that [ = m,,,
where [ is given by (4):

It is easy to see (from its definition) that topologically the bundle % is pull
back of the bundle 72 on P! x X, (where 7/, is the same as %, for C = P')
via the map

C x Xoéiml}”1 x X,,
where §:C — P! pinches all the points outside a small open disc around p to a
point. Of course the map § is of degree 1, so the cohomology generator o pulls
back to the generator 3 (observe that X, ~ P’ as shown below). Hence it suffices
to compute the second Chern class of the bundle 7%, on P! x X :

Choose X, € g, (where 6 is the highest root of g) such that (X,, —wXy) = 1,
where w is the Cartan involution of g and (, ) is the Killing form on g, normalized
so that (0,0) = 2. Set Yy = —w(Xy) € g_g. Define a Lie algebra homomorphism
sl, — Clt,t7 '] ® g, by

X—tY,
Y =t @ X,

H—-1®6Y,

where {X,Y, H} is the standard basis of sl,. The corresponding group homo-
morphism (choosing a local parameter ¢ around p) n: SL,(C) — ¥ induces a
biregular isomorphism 7: P! ~ SL,(C)/B,~ X, where B, is the standard Borel
subgroup of SL,(C) consisting of upper triangular matrices. In what follows we
will identify X, with P! under 7. The representation V' of G on restriction, under
the decomposition (2) of Sect. 5.1, gives rise to a continuous group homomor-
phism

:SUL0) — [ [ (AutV),

where SU,(6) is the (standard) compact form (induced from the involution w) of
the group SL,(#) (with Lie algebra sl,(6)).
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There is a principal SU,-bundle 77" on S* (in the topological category) got by
the clutching construction from the identity map S* =~ SU, — SU,. In particular,
we obtain the vector bundle 77°(1)) — S* associated to the principal bundle 77
via the representation 1), which breaks up as a direct sum of subbundles 7,{))
(got from the representations V).

We further choose a degree 1 continuous map v:P' x P! — S% We claim
that the vector bundle 74/ on P! x P! is isomorphic (in the topological category)
with the pull back v* (7 (¥)):

Define a map ¢:(SU, /D) x S' — SU, by

a b dD.t d ct™! d c\ !
mo -
¢ d ’ bt a b a ’

b
for <a d> € SU, and t € S', where D is the diagonal subgroup of SU,. It
c

is easy to see that the principal SU,-bundle v*(%") on P' x P! is isomorphic
with the principal SU,-bundle obtained by the clutching construction from the
map & (by covering P! x P! = 5% x §2 = S x H* US? x H~, where H* and
H~ are resp. the upper and lower closed hemispheres). By composing ¢ with
the isomorphism SU, — SU,(f) (induced from the Lie algebra isomorphism
sl, — sly(®) taking X — X,, Y — Y, and H — 6"), and using the
isomorphism 7 together with the definition of the vector bundle 77, we get
the assertion that %! ~ v™(7°(1))).
So

(W) = V¥ (e (@) = v* D ep(F))

I

4+ 1 ~
E (m,; > @3, by the following lemma
i

(since v is a map of degree 1).

m; + 1 .
Hence [=5Y_ 3 = my,, proving the theorem modulo the next
lemma. O !

(5.5) Lemma. Let W (m) be the (m + 1)-dimensional irreducible representation
of SU, and let 77"(m) be the vector bundle on S* associated to the principal
SU,-bundle 7" on S* (defined in the proof of Theorem 5.4) by the representation
W(m) of SU,. Then

m+2
(1) )(# (m)) = ( 3 ) 12,
where (2 is the fundamental cohomology generator of H*(S*, Z).

Proof. By the Clebsch-Gordan theorem (cf. [Hu, p. 126]), we have the following
decomposition as SU,-modules:

WmWl)=Wm+1)dW@m-—1), foranym 1.
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In particular, the Chern character
?) chZm).ch#)=chZ'(m+ 1)+ chZ ' (m—1).

Assume, by induction, that (1) is true for all [ < m. (The validity of (1) for
m = 1 is trivial to see.) Then by (2) we get

chZ'(m+1)=chZ ' (m).ch?Z'(1) —ch % (m — 1)
=((m+1).1 = ,7°(m)) 2.1 — ¢, 7 (1))
—(m.1l — e, 7' (m - 1)),
since ¢, Z°(1) = 0 as it is a SU,-bundle .
Hence (by induction)

3) ch ' (m+1) = ((m+1).1—(m3+2>9)(2.1—9)

e ("1)9)

Writing ch Z°(m + 1) = (m+2).1 — ¢, %" (m + 1), and equating the coefficients
of (3), we get

= (:("T) emer - ("1))a
_ (m;—'}»)ﬂ'

This completes the induction and hence proves the lemma. [

Recall that for any connected complex simple group G, the third homotopy
group 74(G) is canonically isomorphic with Z.

(5.6) Corollary. For any representation g of G in a finite dimensional (complex)
vector space V, the induced map m,(G) — m3(SL(V)) is multiplication by the
number my,.

Proof. We can clearly assume that G is simply connected. The representation
0:G — SL(V) gives rise to a morphism §:% /7 — /7, where &, =
SL(V) (I::p) and 2, := SL(V) (/9;’,). Moreover, the family %,(V) parametrized
by & /2, (got from the standard representation of SL(V) in V') pulls back to the
family %(V) (parametrized by &°/%7). In particular, from the functoriality of the
determinant bundle (cf. Sect. 3.8), Theorem 5.4, and Lemma 5.2, we see that the
induced map §* : HX(%,/%,,Z) — H*(¥ /7, Z) is multiplication by the number
my, (under the canonical identifications HX(¥,/%,,Z) ~ L ~ HX¥ |7, L)).
But the flag variety &/ is homotopic to the based loop group §2,(K) (where
K is a compact form of G), and similarly & /7, is homotopic to §2,(SU(V)).
In particular, by the Hurewicz’s theorem and the long exact homotopy sequence
corresponding to the fibration £2,(K) — P(K) — K (where P(K) is the path
space of K consisting of the paths starting at the base point e), the corollary
follows. O ‘

(5.7) Remark. J.-L. Brylinski has observed a direct proof of the above corollary
using Lemma 5.2.
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6 Statement of the main theorem and its proof

Let the triple T = (G, C, p) be as in the beginning of Sect. 5.

(6.1) Definition. Recall the definition of the homogeneous line bundle £L(my,)
on X :=5 P ~ 5P (for any m € Z) from Sect. 2.2. Define, for any p € Z,
(cf. [Ku, Sect. 3.8])

(1 HP(X, &mx,) = lim  HP (X, £,(mx,))-
neW /W
Since L(my,) is a 2 -equivariant line bundle, H?(X, £(mY,)) is canonically a

% -module. This module is determined in [Ku, Corollary 3.11] (and also in [M]).
We summarize the results:

2) HP(X,£&(mx,) =0, if p>0 and m 20,
3) HY(X,L(mx,) =0, if m<0, and
) HY(X, £(mx,)) ~ V(mx,)* for m 20,

where V(m),) is the irreducible highest weight % -module with highest weight
mx,, and V(mx,)* denotes its full vector space dual. Recall from Lemma 2.7
that I" is canonically embedded in 2 By HP(X, £(mx,))! we mean the I'-
invariants in HP(X, £(mx,)).

Recall the definition of the map ¢:¥ — .2 from Sect. 1.4, and the family
7 parametrized by X from Proposition 2.8. Now define

X°={97€ ¥/ ¢(g) is semistable}
={r € X :%,:= %oy, is semistable},

and set (for any o € W /W)
Xs=XNX,.

Then by the same proof as [R2, Proposition 4.1], X7 is a Zariski open (and non-
empty, since € € X7) subset of X, , in particular, X is a Zariski open subset
of X. Now define

©) HP(X?, £(mx,)) = lim  HP(XG, £,(mx,))
nEW /W
Clearly I" keeps X* stable, in particular, I" acts on the cohomology
HP(X®, £(mx,))

and we can talk of the [-invariants HP(X?, S(mxo))F .

The family %I xs yields a morphism %: X° — 90, which maps any z € X*
to the S-equivalence class of the semistable bundle 77, where 901 is the moduli
space of semistable G-bundles on C (cf. Theorem 3.4). (By a morphism X°* — 9
we mean a map which is a morphism restricted to any X7.)



66 S. Kumar et al.

(6.2) Lemma. There exists av, € W /W such that
WX2) =M.

Proof. Since |y X2 = ¥°/7 and Y(&°/7°) = M, we get M = |JY(X;3). But

by a result ofmChevalley (cf. [B, Chap. AG, Corollary 10.2]), w()‘(ulf,) is a finite
union of locally closed subvarieties {9t } of 91, hence M is a countable union
U ME of locally closed subvarieties. But then, by a Baire category argument,
M is a certain finite union of (locally closed) subvarieties {Dﬁgl, )
Now choosing a v, € W/W such that b, 2 tv,, for all 1 < i < n, we get that
M = (X, ). This proves the lemma. [

(6.3) Corollary. The moduli space M is a unirational variety.

Proof. Since X is an open subset of X and X is a rational variety (by
the Bruhat decomposition, cf. Sect. 2.1), the corollary follows from the above
Lemma6.2. [

(6.4) Proposition. For any d = 0 and any finite dimensional representation V of
G, the canonical map

W* HOOM, O(V)®%) — HUX®, p* OV )2

is an isomorphism, where @(V') is the theta bundle on the moduli space IN
associated to the representation V (cf. Sect. 3.8), and the vector space on the
right denotes the space of I'-invariants under its natural action on the line bundle
Y¥OO)). (Since the map : X° — M is I'-equivariant, with trivial action of I
on M, the pull back bundle *(©(V)) has a natural I'-action.)

Proof. Using Lemma 6.2, we see that the map ™ is injective. Now part b) of
Proposition 2.8, and Proposition 3.7 show that if x and y are two points in X*
with %y ~ gr(%4,), then y belongs to the Zariski closure of the I'-orbit of z. In
particular, two points in X ¢ are in the same fiber of # if and only if the closures
of their I'-orbits intersect. This, in turn, shows that if ¢ is a I'-invariant regular
section of ¥*(@(V))®? on X3, it is induced from a set theoretic section g of
6(V)®? on M. That ¢ is regular, is seen by taking all those Schubert varieties
X, such that (X)) = 9 (cf. Lemma 6.2) and applying Proposition 4.1 to the
morphism ¢ xs : Xg — M. [

By the functorial property of the theta bundle, 6(%(V))! xs 1s canonically
isomorphic to ¥*(©(V)), since 1 is defined using the restriction of the family
26(V) to X* (cf. Sect. 3.8). Moreover, as observed in Sect. 3.8, the line bundles
©O(#%(V)) and Det(%(V)) coincide on the whole of X.

(6.5) Proposition. Any I'-invariant regular section of *(@O(V))®? on X* ex-
tends uniquely to a regular section of (Det Z4(V))®¢ on X.

This proposition will be proved in the next section.
We now state and prove our main theorem, assuming the validity of Proposi-
tion 6.5.
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(6.6) Theorem. Let the triple T = (G, C, p) be as in the beginning of Sect. 5 and
let V be a finite dimensional representation of G. Then, for any d 2 0,

H'ON, 0?4 ~ HYS |2, L(dmy, x ),

where the latter space of I'-invariants is defined in Sect. 6.1, the integer my, is
the same as in Theorem 5.4, and the moduli space 9 and the theta bundle O(V)
are as in Proposition 6.4.

In particular, H'(%' |7, £(dmy, )" is finite dimensional.

(Observe that, by (4) of Sect. 6.1, H'( /2, £(dmy, x,))T is isomorphic with
the space of I'-invariants in the dual space V(dmy,x,)*.)

Proof. We first begin with some simple observations:

(a) For any line bundle £ on X, the canonical restriction map H°(X, £) —
HO(X, £, xs) is injective: This is seen by restricting any section to each Schubert
variety X, and observing that (cf. Sect. 6.1) X’ is non-empty (since the base
point e corresponds to the trivial bundle, which is semistable), and open (and
hence dense) in the irreducible variety X,,.

(b) If £ is a I'-equivariant line bundle on X (with respect to the standard
action of I' on X ) and o is a regular section of £ such that its restriction to X° is
I'-invariant, then o itself is I'-invariant: By assumption, for v € I', the section
~v*(0) — o vanishes on X and hence on the whole of X.

(c) Suppose that £ and £" are two I'-equivariant line bundles on X°. Then
any algebraic isomorphism of line bundles &: £ — £ (inducing the identity on
the base) in fact is I'-equivariant. In particular, £ induces an isomorphism of the
corresponding spaces of I'-invariant sections:

Define a map ¢:I" x X® — C* by

e(y,z) = L&, L (&) € Auy(gl)) = C*,

for v € I" and z € X°, where L, is the action of v on the appropriate line
bundles, and £, denotes the restriction of £ to the fiber over z € X3, It is easy
to see that € is a regular map and of course £(1,z) = 1, for all z € X®. In
particular, by Corollary 2.6, £(y,z) = 1, for all v € I'. This proves the asser-
tion (c).

We now consider (Det % (V))%;iS as a I'-equivariant line bundle by transport-
ing the natural I'-action on 1*(©(V))®? (cf. Proposition 6.4), via the canonical
identification

6] Det %(V) xs ~ ™ (O(V)).
Choose an isomorphism of line bundles on X
£:Det Z(V)®? — L(x,)®™V,

which exists by Theorem 5.4. Recall from Sect.2.2 that £(x,)®™v is a
‘¢-equivariant line bundle, in particular, by Lemma 2.7, it is a I'-equivariant
line bundle on X. Hence by (c) above, the map ¢, := §| xs is automatically
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I'-equivariant. We have the following commutative diagram:

£
HOYX,(Det Z4(V)®) ——  HOX, £(x,)®4"v)

_ |
HYX®,(Det Z(V)®?) —— HO(X?, £(x,)®™V)
where £ (resp. £,) is induced from & (resp. £,), and the vertical maps are the

canonical restriction maps. Observe that £, is I'-equivariant (since £, is so).
Further, we have

Hom, 0(V)®%) ~ HY(X*, Det Z(V)®HT  (by (1) and Proposition 6.4)
~ HO(X®, £(x,)2¢™)" (under £,).

We complete the proof of the theorem by showing that the restriction map
H(X, £0x)®*™)" — HUX®, £0¢,)*"™V)"

is an isomorphism:

It suffices to show that any [-invariant section o of E(Xa)@’di over X°
extends to a section over X, for then the extension will automatically be I'-
invariant by (b) and unique by (a). By the above commutative diagram, this is
equivalent to showing that any I'-invariant section o, of (Det % V)®? over X°
extends to the whole of X. But this is the content of Proposition 6.5, thereby
completing the proof of the theorem. [

Recall the definition of the ¥-module V(my,) from Sect. 6.1, and the
definition of Lie I" from Sect. 2.9.

(6.7) Proposition. For any m 2 0, we have
V(mx,)*1' = [Vimy, ) 1Hf = [V(mXo)*]g®C[C*] 7

where g is the Lie algebra of the group G and (as in Sect. 1.1) C(C*] is the ring
of regular functions on the affine curve C*.

Proof. Abbreviate V(my,) by V. Fix v € V and consider the morphism 7 : " —
V given by 7, (y) = y.v for v € I" (where I is considered as a subgroup of g,
by Lemma 2.7). Recall that, by definition, the action of the Lie algebra Lie I" on
v € V is given by the induced map (dr,),:T,(I) =LieI' = T (V)=V.

Fix 6 € V*. For any v € V, define the map 8,:I" — A! by 0,(y) = 6(y.v).
The induced map (d,), :T,(I') = Lie I" — Ty, (A!) = Al is given by

¢)) (dh,).(a) =60(a.v), for aeclLiel.

For any v, € I', we now determine the map (df,). : Consider the right
translation map R, :I' — I', given by R, () =77,. Then we have

@) (dBy)y, © @R,)e = (dh,y,.0)e -
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If 6 € [V¥]T, then 6, (for any fixed v € V) is the constant map 7 — 6(v).
In particular, (d6,), = O, proving (by 1) that § € [V*]"T. Conversely, take
@ € [V*]4el". Then by (1) and (2), for any fixed v € V, (df,), = O for any
7, € I'. In particular, for any fixed v € V and i 2 0, the map 0v|r T, — Al

7
(I; is as in Sect.2.4) is constant on the irreducible components of I'; (as the
base field is of char. 0). But since I" is connected, 6, itself is forced to be a
constant. Thus, we have (y6 — §)v = 0, for every v € V and v € I'; proving
that @ € [V*]7. Moreover, by Lemma 2.9, we have Lie I' = g ® C[C*]. This
proves the proposition. [J

(6.8) Remarks. (a) From the proof it is clear that the above proposition is true
with V(my,) replaced by any algebraic representation of the algebraic group I'.

(b) In conformal field theory, the space of vacua is defined to be the space
of invariants [V (mx,)*]9¥¢C") of the Lie algebra g ® C[C™*] in the affine
Kac-Moody algebra module V(mxo)* (cf. [TUY, Definition 2.2.2]). We see, by
Theorem 6.6 and Proposition 6.7, that the space of vacua is isomorphic to the
space of generalised theta functions.

As an immediate consequence of the above remark (b), we obtain the
following.

(6.9) Corollary. Let the notation and assumptions be as in Theorem 6.6. Then
the space of coinvariants V(dmy,x,)/ (8 Q¢ C[C*)).V(dmy,Xx,)) is finite di-
mensional. (Cf. [K, Exercise 11.10, p. 209] for a purely algebraic proof of this
Corollary.).

7 Geometric invariant theory — Proof of Proposition 6.5

In this section C is a smooth projective irreducible curve over C with a fixed
base point p.

(7.1) Lemma. Let X be an irreducible normal variety, U C X a non-empty open
subset and £ a line bundle on X. Then any element of @ H O(U, £™) which is

integral over @ HC(X, £") belongs to @ HO(X, £"). nez

Proof. Sincré the rings in question nare graded, it suffices to prove the
lemma only for homogeneous elements. Let b € H°(U, £"°) be integral over
®HO(X, L"), ie., b satisfies a relation b™ + a,b™ ' + ... + a,, = 0 with
a;, € ®H°(X,£"). Let D be a prime divisor in X\U and let b have a pole
of order #/ = 0 along D. Then the order of the pole of b™ along D is of
course #m and that of a;b™~" is £ /(m — 1) for every i 2 1. But since
b™ +a, ™! +...+a,,_,bis by assumption regular along D, we are forced to
have / = 0, i.e., b is regular along D. Hence b € HOX,gme). O

We state now a general result on the extendability of invariant sections for
actions of reductive groups.

Let a reductive group H operate on a projective scheme @ along with a
linearization with respect to an ample line bundle £ on Q). Let Q° denote the
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open subset of @ of semistable points (with respect to the H-equivariant ample
line bundle £) for the action of H. Recall that Q° := {x € Q:30 € HY(Q, £V)#
for some N = 1 such that o(z) & 0}. We then have the following proposition
(cf. [NRa, Sel]).

(7.2) Proposition. Let U D Q° be a H-invariant open subset of (), which (i.e.
U) is normal and irreducible. Then, for N 2 1, any H-invariant section of £~
on QF can be extended to a H-invariant section of £ on U.

Proof. We indicate the proof when () is normal and U = Q. (The general case
can be reduced to this case by the arguments as in [NRa, Lemma 4.15].) Let
o € HYQ?®, £N)H . If D is an irreducible divisor in Q\Q* along which o has a
pole, then we can find a 7 € HY(Q, ¥ ) (for some N’ > 0) such that o V172
will not vanish identically on D for suitable V|, N, > 0. This is a contradiction
since D C Q\Q?, in particular, any invariant section vanishes on D. [

(7.3) G.I.T. and moduli of vector bundles. We recall the construction of the
moduli spaces of vector bundles on C using G.I.T.. Let » 2 1 and § be
integers. For the fixed point p € C and for a coherent sheaf F on C, put
F(m) = F ®, @(mp), for any m € Z, where & = (7 is the structure
sheaf of C. We can choose an integer m, = m,(r,6) such that for any
m 2 m, and any semistable vector bundle E of rank r and degree ¢ on C,
we have HY(E(m)) = 0 and E(m) is generated by its global sections. Let
q = dim H'(E(m)) = § + r(m + 1 — g) and consider the Grothendieck quot
scheme @ consisting of coherent sheaves on C' which are quotients of C? @ &
with Hilbert polynomial (in the indeterminate v) rv + g (where g is the genus
of C). The group GL(g, C) operates canonically on @ and the action on C' X Q)
(with the trivial action on C) lifts to an action of the tautological sheaf & on
C xQ.

We denote by R, the GL(g)-invariant open subset of @ consisting of those
x € Q such that £, = &, is locally free and such that the following canonical
map is an isomorphism:

C! = HYC'® &)= HYZ,).

Then R, is smooth and irreducible. We still denote by & the restriction of
the family to R,.

We obtain a GL(qg)-linearized ample line bundle £ on @ by embedding @) in
a suitable Grassmannian as follows: We choose an integer k, = k,(m) such that
for k 2 k, the composite map

C! ® HY @ (k)) — H*(&,) @ HY(O(k)) — H(#,(k))

is surjective for all x € @, and such that the morphism ) — Grass (taking
x — H%¥_(k))) is a closed embedding, where (7 (k) := (7(kp) and Grass
denotes the Grassmannian of § + 1.— g+ r(m+ k) dimensional quotient spaces of
C? ® H%(@(k)). We define the ample line bundle £ on Q to be the pull back of
the natural ample line bundle on Grass, namely the determinant of the universal
quotient bundle on Grass. The action of GL(g) clearly lifts to £.
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There exists a positive integer m,, with m/ 2 m, such that for any integer
m = m], there is a positive integer k| = k[ (m) 2 k,(m) with the property that
the following conditions are equivalent (for any k 2 k.):

(1) A point z € @ is semistable in the sense of G.I.T. for the SL(g)-linearized
bundle £.

(2) z € R, (in particular, the sheaf & is locally free) and the bundle &, is
a semistable vector bundle on C.

We denote by RZ, by abuse of notation, the set of semistable points (in the
sense of G.I.T.) in Q. By the above equivalent conditions, we have RS C R,.
Now the G.LT. quotient R://GL(q) yields the moduli space M, of vector
bundles of rank r and degree 6.

(For all this, see [NRa, Appendix A] or [Le].)

(7.4) We note that we can arrange the above construction in such a way that
any fixed bounded family of vector bundles of rank r and degree § occurs in R,.
(This observation will be crucial for us.) More precisely, let 7, — C x T, be a
family of vector bundles of rank r and degree ¢ (parametrized by a variety 7).
We can find an integer mp, such that for m 2 my, , we have:

(1) Rlpg, (7jm) =0,

2 Pr,, (Z,(m)) is a vector bundle on T, (say of rank q).

(3) The canonical map p%iopTO* (Z(m)) — 7Z,(m) is surjective, where
pr,:C x T, — T, is the projection on the second factor,

%(m) = %‘@/LCXTO pz‘@(m)a

and p,:C x T, — C is the projection on the first factor.

Choose m > max(mg, ,m,), where m, is as in Sect.7.3. Let P, be the
frame bundle of p;. , (7,(m)) with the projection 7, :P, — T,. Then there exists
a canonical GL(g)-equivariant morphism ¢, P, — R, such that the families
¥ (7)) and ¥(%(—m)) are isomorphic, where the family & on R, is as in
Sect. 7.3, &(—m) = E?)”@ﬁCXRO P(@(—m)) and p,:C x R, — C is the
projection on the first factor.

(7.5) Lemma. Suppose that 6 = 0. Let O(¥) be the theta bundle (on R,) of the
family F = &(—m) (cf. Sect. 3.8). Then there exist positive integers e and f
such that, as GL(q) equivariant line bundles,

O(F)®° 2 (L)%,
where £ is the ample line bundle on Q) defined in Sect. 7.3.
Proof. For any integer # 2 1, we have
Det(# (/) = (Det.7) ® (det(F,x g, )™
as is seen from the exact sequence
0= F = F()>F B, P(O[my) =0,

where m, C @ is the sheaf of functions on C vanishing at p. Observing that
SI_RIO ~ Det(# (k + m)) (where m and k are as in Sect. 7.3) and Det.% (m) is



72 S. Kumar et al.

trivial, we see that £p = (det(%,, r,)Y and O(F) ~ (det( %, rNTTIT.
(By choosing m large enough in Sect. 7.3, we may assume that m+1 - g > 0.)
This proves the lemma. (Compare [NRa, Proof of Theorem 1(B)].) [

(7.6) Remark. One knows that O(# ) RS descends to a line bundle & on 91,
[DN], [NRa, Proof of Theorem 1(A)]. By ‘G.L T., some power of £ RS descends
as an ample line bundle on 9 . Using Lemma 7.5, we see that (9 is an ample
line bundle on 90.

(7.7) Proposition. Let f : RS — M, = R://GL(q) be the canonical map. Let
o be a section of O over M, (for any / 2 1). Then the section f¥(c) over RS
of the line bundle f¥(©%) ~ (0.%)%" extends uniquely as a GL(q)-invariant
section of (O.%)%" over R,, where, as in Lemma 7.5, # = &(—m).

Proof. By Proposition 7.2, any GL(g)-invariant section of any positive power of
£ over R} extends to R, as R, is smooth. Thus, by Lemma 7.5, some power of
f¥(0) extends to R,. Hence, by Lemma 7.1, f) (o) itself extends. Observe that
R %+ (, as the trivial bundle is semistable. Since R, is irreducible, the extension
is unique and invariant. [J

(7.8) Moduli of principal G-bundles. Assume that G is a connected semisimple
algebraic group. Let T' be a variety parametrizing a family 7 of G-bundles on
C. Then there exists a smooth quasi-projective irreducible variety R with an
action of GL(NN) (for some N), a family % of G-bundles on C parametrized
by R and a lift of the GL(/V)-action to 77" (as bundle automorphisms), such that
the following holds:

(D) Let R° = {z € R:%, = 7oy, is a semistable G-bundle} be the
GL(N)-invariant open subset of R Then the canonical map R® — 9N is
surjective, where I is the moduli space of semistable G-bundles.

(II) Moreover, there exists a principal GL(/N)-bundle 7:P — T and a GL(N)-
equivariant morphism ¢:P — R such that the families ©*(%") and 7*(Z") are
isomorphic. (See [R1].)

Now if V is a finite dimensional representation of G, we denote by &(Z"(V))
the theta bundle on R of the family Z°(V), of vector bundles of rankr
(r = dimV) and degree O parametrized by R, obtained from the family %~
of (principal) G-bundles via the representation V. Note that GL(/NV) operates on
O (V). Let ©(V) be the theta bundle on the moduli space 901 associated to
the representation V of G (cf. Sect. 3.8). If f R* — 90t is the canonical map,
we have

FXOWVY) = OF (V) s

(7.9) Proposition. Any section of O(V)®’ over M (for / 2 1), considered as
a GL(N)-invariant section of ((% (V)))®’ over R®, extends uniquely as an
invariant section of (%" (V)))®/ over R.

Proof. We will prove the propésition by showing that such a section of
(' (V))®/ over R® is integral over Q) HO(R,0(%(V))™), and then applying
Lemma7.1:
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We will apply the results of Sects. 7.3 and 7.4. With the notation of Sect. 7.4,
choose for T, the variety R and for 7, the vector bundle (V) on C x R
defined above in Sect. 7.8. Let h = hy,: 9t — 9, be the morphism defined by
V', where (as in Sect. 7.3) 9 is the moduli space of rank r and degree 0 vector
bundles on C. We have h*(0) ~ O(V), where O is the theta bundle on M, (see
Remark 7.6 and Sect. 3.8).

Since © is ample and h is a projective morphism, we see that

P #H@m, e(v)®)

is a module of finite type over @ H°(9,, ©®™). In particular, the former ring
n

is integral over the latter. Let o be a section of O(V)® over M. Then o satisfies
an equation

ad—i—ad_lod_l +...+a0+a,=0,

where a; € @ H°OM,,0®"). Let f,:RS — RS3//GL(q) = 9M, be the

canonical map (as in Proposition 7.7). If {a; j}i are the homogeneous components
of aj, using Proposition 7.7, we can extend fo* (aij) to an invariant section
(say) o,; of some appropriate power of ©(¥) over R, where .# = &(—m)
(as in Lemma7.5). Pulling back o;; via ¢,:P, — R, (cf. Sect.7.4) and
descending them via the projection 7,:P, — R (cf. Sect.7.4) to sections of
some appropriate powers of @(%(V)) over R), we see that f*(o) is integral
over @ H(R,0(%7(V))®™), where f:R® — 9 is the canonical map as in
n

Sect. 7.8. (Observe that ¢, maps 7, !(R®) into R3.) O
Finally we prove Proposition 6.5 and thus complete the proof of Theorem 6.6.

(7.10) Proof of Proposition 6.5. Let & be a I-invariant section of 1*(O(V))®4
on X°. By Proposition 6.4, there is a section o of O(V)®4 over M such that
¥*(0) = &. Let X, be a Schubert variety. With the notation of Sect.7.8 we
construct 12, where we take for T the variety X,, and for 7" the restriction of the
family %4 (Proposition 2.8) to X,,- Now o can be viewed as an invariant section
of O(Z°(V))®¢ over R® and hence (by Proposition 7.9) extends to an invariant
section o’ of ©(%7'(V))®¢ over R. Pulling back ¢’ via ¢:P — R (cf. Sect. 7.8)
and descending via m:P — T = X,,» we obtain a section of (6(%(V)[ xm))®d
which extends the section | xs- Moreover, this extension is unique as X # 0
(cf. Sect. 6.1). Varying X, we see that & extends to a section of O(%(V))®¢
over X. This completes the proof of the proposition. [
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