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1 24.04.2018 - Overview

The basic questions we start from are

1. Let ξ ∈ Z, f ∈ Z[x]. Is it true that f(ξ) = 0?

2. Given P ∈ Z[x], does P divide f?

3. Factorization of f?

4. gcd(f, g)?

For many of these questions, there are efficient algorithms for polynomials in their dense repres-
entation, that is, if they are given by the complete list of their coefficients. In this course we’re
interested in lacunary polynomials, which we represent as f(t) =

∑N
i=1 cit

ai with ci ∈ Z \ {0} and
ai ∈ N.

Definition 1.1. The lacunary size of f(t) is

`(f) =

N∑
i=1

max{log2 |ci|, log2 ai}

Up to constants, this is essentially max{h(f), log deg f,N}, where h(f) = log max |ci|.

1.1 Testing roots of polynomials in polynomial time

Let’s start with the first problem. Fix ξ ∈ Z: we want to decide whether f(ξ) = 0.

Remark 1.2. The size of f(ξ) is exponential in `(f), unless ξ = 0, 1,−1. Therefore evaluating
the polynomial at ξ is not a good strategy to determine whether f vanishes at ξ.

Question 1.3 (Cueken-Koiran-Smale). Does there exist a polynomial-time algorithm to decide
whether f(ξ) = 0?

Theorem 1.4 (Lenstra). The answer is affirmative.

Remark 1.5. The problem is nontrivial only if log deg f ≈ N , for otherwise simply evaluating at
ξ is efficient.

Lenstra’s idea is to exploit the fact that there must be large gaps between the monomials of
f . Write f(t) = r(t) + tuq(t), with deg r = k < u and u− k large. Suppose f(ξ) = 0. Then, under
suitable assumptions, both q and r must vanish at ξ.

sketch. Assume by contradiction f(ξ) = 0 6= q(ξ) and write. Then one has

|ξ|u ≤ |ξ|u|q(ξ)| = |ξuq(ξ)| = |r(ξ)| ≤ ‖f‖1|ξ|k,
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and therefore ‖f‖1 ≥ |ξ|u−k ≥ 2u−k, that is,

u− k ≤ log ‖f‖1
log 2

.

This implies that the gap is bounded by a polynomial in the lacunary height (which is a contra-
diction under suitable assumptions, that is, there is a certain tension between this and the fact
that the degree is exponentially large in the number of terms). This allows us to write

f(t) =
∑

tnjfj(t)

with deg fj small, and simply evaluate the various fj(t).

Definition 1.6. The Weil height of ξ ∈ Q× is

h(ξ) =
1

d

(
log a+

d∑
i=1

log max{|ξj |, 1}

)
,

where d = deg(ξ) and ξj are the conjugates of ξ.

A similar bound holds for algebraic numbers, namely one gets

u− k ≤ log ‖f‖1
h(ξ)

.

Remark 1.7. h(ξ) is non-negative, and is zero precisely when ξ is a root of unity. However, if one
does not fix a bound on the degree of ξ, the height is not bounded away from zero: for example,
h(21/d) = log 2

d .
A conjecture of Lehmer (1933) states that there exists a universal constant C > 0 such that

for all ξ ∈ Q× \ µ∞ the inequality

h(ξ) ≥ C

d

holds.

Theorem 1.8 (Dobrowolski 1979). For all ε > 0 ∃Cε > 0 such that for every ξ which is not a
root of unity one has

h(ξ) ≥ Cε
d1+ε

Putting these ingredients together, one gets:

Theorem 1.9. There exists a polynomial-time algorithm (with respect to the lacunary height) for
the research of irreducible factors of bounded degree.

Example 1.10. One cannot do much better: for f(t) = tp − 1, one has `(f) ≈ log p, but
f(t) = (t− 1)(tp−1 + . . .+ 1) = (t− 1)h(t) is such that `(h) ≈ p, which is exponential in `(f).

1.2 Multivariate polynomials

Let’s consider the case of a bi-variate polynomial. One has a dictionary of sorts with the previous
case:

• elements of Q× ↔ elements of Gm(Q)2

• ±1↔ 1, subtori xayb − 1 = 0 with a, b ∈ Z, (a, b) = 1.

• Roots of unity ↔ torsion subvarieties, that is, translates by a torsion point ξ ∈ (G2
m)tors of

subtori
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• Weil height h(ξ)↔ Weil height for points; for curves C, one often uses the essential min-
imum:

Definition 1.11.
µess(C) = inf

{
h > 0

∣∣ ∃∞ α ∈ C : h(α) ≤ h
}

Theorem 1.12 (Manin-Mumford, toric case). µess(C) = 0 if and only if C is a torsion subvariety.
If nonzero, the essential minimum is bounded below by an explicit expression.

Again, one obtains polynomial-time algorithms for the research of irreducible factors of bounded
degree for lacunary polynomials in 2 variables.

1.3 Greatest common divisor

It is a fact of life that the coefficients of the GCD of two lacunary polynomials can be very large
with respect to the lacunary height. For this reason, instead of working with the lacunary height
introduced above, one fixes the skeleton of f :

f = fa(t) = F (ta1 , . . . , taN ),

where F is a fixed (Laurent) polynomial with integer coefficients.

Remark 1.13 (U. Zannier). In geometric terms, F is a regular function on GNm, and f is the
specialization of F to a 1-parameter subgroup; the variable of the problem is this subgroup.

Remark 1.14. d = deg fa ≈ max(ai)

Theorem 1.15 (Plaisted). Computation of gcd with respect to the lacunary height is NP-hard
(that is, any NP problem can be reduced to it in polynomial time).

Theorem 1.16 (Filoseta, Granville, Schinzel). Let f, g ∈ Z[x] be polynomials without cyc-
lotomic factors. Then one can compute (f, g) in quasi-linear time in log(d) (with constants
depending on the skeletons of f and g, and where quasi-linear time means linear up to powers of
log log d)

More precisely,

Theorem 1.17 (Amoroso-Leroux-Sombra). With the same complexity and with no assumptions

on f, g, one can compute p ∈ Z[x] such that p(x) | gcd(f, g) and gcd(f,g)
p(x) is a product of cyclotomic

polynomials.

Example 1.18.

gcd(tab − 1, (ta − 1)(tb − 1)) =
(ta − 1)(tb − 1)

t− 1

is an example of lacunary polynomials whose GCD is not lacunary.

Corollary 1.19. One can decide whether (f, g) = 1 in quasi-linear time.

Conjecture 1.20 (Schinzel). F,G ∈ Z[X1, . . . , XN ] relatively prime. Suppose that ξ 6= root of 1
is a common root of F (ta1 , . . . , taN ) and G(ta1 , . . . , taN ). Then there exists a vector b ∈ ZN \ 0
with ‖b‖ ≤ C(F,G) such that b⊥a. The crucial point here is that b does not depend on a.

Remark 1.21. This is now a theorem of Bombieri-Zannier.

Example 1.22. The constant C(F,G) must depend not just on the monomials appearing in F,G
but also on their coefficients, as the following example shows.

F (x, y) = x − 2, G(x, y) = y − 2a. Then f(t) = F (t, ta) = t − 2 and g(t) = G(t, ta) = ta − 2a

both vanish at 2, but any vector b orthogonal to (1, a) must necessarily grow in norm as a→∞.
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The idea behind the algorithm of Filaseta-Granville-Schinzel

• If (F,G) 6= 1 all the better! By specialization they will still have a common factor.

• Suppose (F,G) = 1 but (f, g) 6= 1. Then there exists ξ such that f(ξ) = g(ξ) = 0. By
assumption, ξ is not a root of unity. By Schinzel-Bombieri-Zannier, there exists a small b
orthogonal to a. After a change of variables, we can assume b = (0, . . . , 0, 1), i.e. aN = 0,
and now we continue by induction.

Remark 1.23. This gives more: it shows that GCDs between lacunary polynomials can be found
by computing GCDs between not exactly their skeletons, but polynomials obtained from the
skeletons via ’controlled’ changes of variable.

Theorem 1.24 (Amoroso-Sombra-Zannier). C(F,G) is bounded polynomially by the logarithmic
height of the coefficients of F,G.

Remark 1.25. This has applications to the study of multiple roots of a polynomial: one needs
to compute (f, f ′), and f ′ necessarily involves the degrees ai. The logarithmic dependence on the
coefficients ensures that this computation can be done in polynomial time in the input.

Remark 1.26. Schinzel (’65) conjectures analogue results for the (complete) factorisation of
fa = F (ta1 , . . . , taN ). More precisely, there should exist a matrix A ∈ MN×N (Z) in a finite set
(depending only on F ) such that a = Aa′, and the factorisation of fa comes, up to cyclotomic

factors, from the factorisation of F (yA by specialisation y 7→ ta
′
.

Remark 1.27. This conjecture seems to be out of reach with the current methods. However, the
function field analogue (that is, replace Z[t] with C(z)[t]) is (almost) a direct consequence of work
of Dvornicich-Zannier and Zannier.

2 26.04.2018 – Valuations, height...

2.1 Absolute values

Let K be a field. An absolute value on K is a map | · | : K → R+ that satisfies:

• x ∈ K, |x| = 0 if and only if x = 0

• |xy| = |x| · |y|

• |x + y| ≤ |x| + |y|; if furthermore |x + y| ≤ max{|x|, |y|}, then | · | is said to be non-
archimedean

Remark 2.1. • |1| = 1

• More generally, |ω| = 1 for every root of unity ω ∈ K

• if A ⊆ K is a subring and K is the fraction field of A and | · | is defined on A, then | · | can
be extended to K

Remark 2.2. The trivial absolute value is |x| = 1 for all x ∈ K× and |0| = 0.

2.2 Valuations

A valuation on K is a function v : K → R ∪ {∞} such that:

• v(x) =∞ if and only if =∞

• ∀x, y ∈ K v(xy) = v(x) + v(y)

• ∀x, y ∈ K v(x+ y) ≥ min{v(x), v(y)}
If v is a valuation on K and a ∈ R is > 1, then |x| := a−v(x) is a non-archimedean absolute

value (with the convention a−∞ = 0). Conversely, given a non-archimedean absolute value, the
function v(x) = −b log |x| is a valuation.
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2.2.1 Valuation ring

Let v be a valuation on K. The set

A = Av = {x ∈ K : v(x) ≥ 0}

is a valuation ring (that is, for all x ∈ K either x or x−1 belongs to A). It is a local ring with
maximal ideal

M = {x ∈ K : v(x) > 0}
and group of units

A× = {x ∈ K : v(x) = 0}.

Remark 2.3. When |x|v = a−v(x) is induced by a valuation v, the ring Av = {x ∈ K : |x|v ≤ 1}
and the ideal Mv = {x ∈ K : |x| < 1} are independent of a.

Definition 2.4. Two absolute values | · |1, | · |2 are equivalent if they define the same topology.

Proposition 2.5. Two absolute values | · |1, | · |2 are equivalent if and only if the corresponding
maximal ideals are the same, that is, if and only if

{x ∈ K : |x|1 < 1} = {x ∈ K : |x|2 < 1}.

In turn, this is equivalent to the fact that there exists a > 0 such that | · |1 = | · |a2.

Definition 2.6. Two valuations v1, v2 of K are equivalent if the corresponding absolute values
are equivalent.

Proposition 2.7. Two valuations are equivalent if and only if they are proportional (with the
proportionality constant being positive).

2.3 Valuations on Q
The following are absolute values on Q:

• the trivial absolute value

• the standard (real) absolute value |x|∞ =

{
x, if x ≥ 0

−x, if x < 0

• for every prime number p, we can write each nonzero rational number x as pvp(x) a
b , where

a, b ∈ Z are prime to p and vp(x) ∈ Z. In the equivalence class of absolute values induced
by vp we take |x|p = p−vp(x), so that |p| = 1

p .

Theorem 2.8 (Ostrowski). The previous list of absolute values on Q is complete.

Definition 2.9. We denote by MQ the set of nontrivial absolute values on Q, normalised as in
the previous list.

2.4 Some diophantine inequalities

We saw the other day that the following two (trivial) inequalities were essential in studying the
problem of determining whether f(ξ) vanishes or not:

• ∀x ∈ Z, x 6= 0, we have |x| ≥ 1

• ∀x ∈ Z, x 6= 0,±1, we have |x| ≥ 2

These inequalities generalise to Q in the following way:

Theorem 2.10 (Product formula, or the fundamental theorem of arithmetic). For every x ∈ Q×
we have ∏

v∈MQ

|x|v = 1.
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2.5 Valuations on number fields

Let K/Q be a number field of degree d = r+2s (where as usual r is the number of real embeddings
and 2s is the number of complex embeddings). For every σ : K ↪→ C we obtain an archimedean
absolute value by setting |x|σ = |σ(x)|. Then:

Proposition 2.11. K admits exactly r + s archimedean (equivalence classes of) absolute values;
a set of representative is given by | · |σ, where σ varies among the r real embeddings and s non-
conjugate complex embeddings.

As for the non-archimedean valuations, recall from algebraic number theory the notion of rings
of integers, prime ideals, ramification index e and inertia degree f and the fact that e and f are
multiplicative in towers of extensions.

Theorem 2.12. Let L/K be an extension of number fields and let P be a prime of OK . Writing
POL = Qe11 · · · Q

ek
k we have

k∑
i=1

e(Qi
∣∣ P)f(Qi

∣∣ P) = [L : K].

Definition 2.13. Let P be a prime ideal of OK . For x ∈ K×, write (x) = Pλ ·
∏
Q6=P QeQ with

λ ∈ Z and set

vP(x) =
λ

e(P
∣∣ p) ,

where (p) = P ∩Z. We normalize the absolute value by |x|P = p−vP(x); this normalization ensures
that the product formula holds.

Theorem 2.14. The previous list of nontrivial absolute values on K is complete.

Definition 2.15. We denote by MK the set of nontrivial absolute values on K, normalised as
in the previous constructions. We shall confuse an equivalence class of absolute values with its
representative constructed above.

Given a place v (that is, an equivalence class of absolute values and/or of absolute values) we
write

nv = [Kv : Qv] =


1, if v | ∞, v = σ with σ(K) ⊆ R
2, if v | ∞, v = σ with σ(K) 6⊆ R
e(P

∣∣ p)f(P
∣∣ p), if v = P | p

Remark 2.16. The algebraic closure of Qp is not complete; its completion Q̂p is often denoted
by Cp. With the language of completions, one recovers a certain symmetry between archimedean
and non-archimedean valuations: the former are given by the embeddings of K in C, the latter
by embeddings of K in Cp (indeed, given σ : Kv ↪→ Cp we get an absolute value by setting
|x|v = |σ(x)|p).

Theorem 2.17 (Product formula). One has: ∀x ∈ K×,∏
v∈MK

|x|nvv = 1.

Definition 2.18. Let K ⊆ L be an extension of number fields, v ∈ MK , w ∈ ML. We say that
w | v if ∀α ∈ K we have |α|w = |α|v.

Remark 2.19. For w, v | ∞, w = [σ], v = [τ ], w | v is equivalent to σ|K = τ .
For w, v finite, w = [Q], v = [P] w | v is equivalent to Q | P.

Proposition 2.20. For v ∈MK we have
∑
w∈ML,w|v

nw
nv

= [L : K]
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2.6 Weil height

Given α ∈ Q×, fix a number field K that contains α.

Definition 2.21. The (logarithmic absolute) Weil height of α is

h(α) =
1

[K : Q]

∑
v∈MK

nv log+ |α|v,

where log+(x) = max{log x, 0} for x > 0.

2.6.1 Properties of the Weil height

1. h(α) ≥ 0, with equality iff α is a root of unity (proof: h(α) = 0 iff all summands are 0. This
is only possible if α is integral and all its archimedean absolute values are 1. Br Kronecker,
this implies that α is a root of unity)

2. h(αβ) ≤ h(α) +h(β) (proof: it follows immediately from max{1, xy} ≤ max{1, x}max{1, y}
for x, y > 0)

3. ∀n ∈ Z, h(nα) = |n|h(α) (proof: h(α−1) = h(α) by the product formula; the case of positive
n is obvious)

4. ∀σ : Q(α) ↪→ Q, h(σ(α)) = h(α) (proof: σ permutes the absolute values on Q(α)).

2.6.2 Relation with the elementary definition

Let P ∈ Z[x], P (x) = a(x− α1) · · · (x− αd) with αj ∈ Q and a ∈ Z.

Definition 2.22. The Mahler measure of P is M(P ) := |a|
∏d
i=1 max{1, |αj |}.

Proposition 2.23.

M(P ) = exp

(
1

2π

∫ 2π

0

log |P (eit)|dt
)

Let α ∈ Q× with minimal polynomial f ∈ Z[x]. Let K = Q(α). Then∑
v∈MK ,v-∞

nv log+ |α|v = log(a),

which implies h(α) = 1
d logM(P ).

3 02.05.2018 – Lower bounds on the height, Dobrowolski’s
theorem

3.1 Finding irreducible factors of a lacunary polynomial f(t)

Write
f(t) = (t) + tuq(t), deg r = k < u

Now let ξ ∈ Q, deg ξ = d. We want to show that if u − k is large, then f(ξ) = 0 implies
r(ξ) = q(ξ) = 0. By contradiction, assume x := ξ−ur(ξ) = −q(ξ) 6= 0.

To simplify the notation, given a place v write δv = 0 if v - ∞ and δv = 1 if v | ∞. For any
given place v we have both

|x|v = |ξ−ur(ξ)|v ≤ ‖f‖δv1 |ξ|−uv max{1, |ξ|v}k
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and
|q(ξ)| ≤ ‖f‖δv1 max{1, |ξ|v}deg q;

optimizing (ie choosing the first inequality if |ξ| > 1 and the second otherwise) we obtain

|x|v ≤ ‖f‖δv max{1, |ξ|v}k−u,

where k − u is negative. Using the product formula, we get

1 =
∏
v

|x|nv/dv ≤ ‖f‖
∑
v|∞

nv
d

1

(∏
v

max{1, |ξ|v}nv/d
)−(u−k)

= ‖f‖1H(ξ)−(u−k).

If ξ is not a root of unity, this implies

u− k ≤ log ‖f‖1
h(ξ)

,

which is a contradiction if u − k is large enough. For our applications it is enough to know any
nontrivial lower bound on h(ξ) (when ξ is not a root of unity); however, for completeness, we now
discuss finer lower bounds on the height.

3.2 Lower bounds on the height I: algebraic numbers

Let ξ ∈ Q× be an algebraic number which is not a root of unity.

Conjecture 3.1. (’Optimal’ conjecture; Lehmer’s conjecture) There exists an absolute constant
C > 0 such that, for every algebraic ξ of degree d which is not a root of unity, the inequality
h(α) ≥ C

d holds.

Theorem 3.2. (Dobrowolski ’77) There exists C > 0 such that, for every ξ of degree d ≥ 3 (ξ
not a root of unity), the following inequality holds:

h(ξ) ≥ C

d

(
log log d

log d

)3

Theorem 3.3. (Smyth) Lehmer’s conjecture is true if one restricts to algebraic numbers which
are not reciprocal (that is, such that α−1 is not a conjugate of α).

Definition 3.4. (Bombieri-Zannier) Let K ⊆ Q be an infinite algebraic extension of Q. We say
that K has property (B) if ∃C > 0 such that h(α) > C for every α ∈ K× which is not a root of
unity.

Remark 3.5. (B) stands for Bogomolov.

Example 3.6. Here are some fields for which property (B) holds:

• (Schinzel) Qtr, the composiitum of all totally real extensions of Q. More precisely, for every

α ∈ Qtr, α 6= 0, 1,−1, one has H(α) ≥
(

1+
√

5
2

)1/2

. One can prove this result by applying

Bilu’s equidistribution theorem (see theorem 3.7 below, which shows that h(α) cannot go to
zero if α ranges over totally real algebraic numbers, because the conjugates of α are certainly
not equidistributed near the unit circle)

• (Bombieri-Zannier) p prime, L ⊆ finite extension of Qp. Then L has property (B). For
example, given r ∈ N, the field Q(r) (compositum of all extensions of Q of degree ≤ r) has
local degrees which are bounded uniformly in p.

• (Dvornicich-Amoroso) Qab. Notice that by Kronecker-Weber Qab = Gm(Q)tors.
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• More generally, Kab (K number field) satisfies property (B)

• (Habegger) Let E/Q be an elliptic curve. Then Q(Etors) has property (B). Notice that if E
has CM then Q(Etors) is an abelian extension of a quadratic extension of Q.

Theorem 3.7 (Bilu’s equidistribution theorem). Let (αn) ⊆ Q be a sequence of pairwise distinct
algebraic numbers such that h(αn)→ 0 as n→∞. Then δαn → µT, where

δα =
1

[Q(α) : Q]

∑
σ

δσ(α),

the measure µT is the uniform measure on the torus T = S1, and the convergence is in the weak-*
topology.

Observe that α ∈ Q×, α 6= ±1 implies h(α) ≥ log 2: this is obvious. We now prove a weaker
statement than this (in a more complicated way) using techniques that appear in the proof of
Dobrowolski and of the fact that Qab has property (B).

Proof. Fix a prime p. Fermat’s little theorem gives ap − a ≡ 0 (mod p) for all a ∈ Z, which can
be restated as |ap − a|p ≤ 1

p . By continuity, this is true for every a ∈ Zp. If, on the other hand, a

does not belong to Zp, then a−1 is in Zp and in the same way one obtains

|ap − a| ≤ 1

p
|a|p+1

p .

In particular, the inequality |ap − a|p ≤ 1
p |a|

p+1
p holds for every a. Applying the product formula

to x := ap − a we obtain
1 =

∏
v∈MQ

|x|v = |x| · |x|p ·
∏
` 6=p

|x|`.

Notice that for ` 6= p we also have

|ap − a|` ≤ max{1, |ap|`}max{1, |a|`} = max{1, |a|`}p+1,

and
|ap − a|∞ ≤ 2 max{1, |a|}p+1.

Multiply all these inequalities together to get

1 ≤ 2

p
H(a)p+1 ⇒ h(α) ≥ log(p/2)

p+ 1
.

Choosing for example p = 3 one gets an absolute lower bound on h(α).

3.3 Proof of Dobrowolski’s theorem (sketch)

Remark 3.8. We can assume α to be integral. Indeed, if α is not integral, then there exists v -∞
such that |α|v > 1, and therefore

h(α) ≥ nv log |α|v
d

,

where nv log |α|v ∈ Z · log p. Therefore h(α) ≥ log 2
d .

Hence, from now on, we assume that α is an algebraic integer.

Remark 3.9. If F ∈ Z[x] which vanishes at α with multiplicity ≥ T , then

|F (αp)|v ≤ p−T ∀p ∀v | p
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Proof. Let f ∈ Z[x] be the minimal polynomial of α (it is monic since α is integral). From Fermat’s
little theorem we get

f(x)p ≡ f(xp) (mod pZ[x]),

which (evaluating at α) gives f(αp) ≡ 0 (mod )Z[α], and therefore |f(αp)|v ≤ p−1. The assump-
tion is that fT | F , and therefore |F (αp)|v ≤ p−T .

We work with an extra parameter L (a bound for the degree of F ). Suppose therefore that
degF ≤ L and F (αp) 6= 0. Then by the product formula

1 =
∏
v

|F (αp)|nv/d ≤
∏
v|∞

|F (αp)|nv/d
∏
v|p

|F (αp)|nv/d

Furthermore, if v | ∞, we have the obvious upper bound

|F (αp)|v ≤ ‖F‖1 max {1, |α|v}pL ,

and for v | p we have already proven |F (αp)|v ≤ p−T . Combining all this with
∑
v|∞

nv
d =∑

v|p
nv
d = 1 we obtain

1 ≤ ‖F‖1H(α)pLp−T ,

which gives a lower bound on h(α) of the form

h(α) ≥ T log p− log ‖F‖1
pL

.

If we try to take F = f and T = 1 we’re not too happy: ’trival’ inequalities give ‖f‖1 ≤ 2dM(f) =
2dH(α)d. One can assume that H(α) is small (because if it’s big we’re already done!), but log ‖F‖
is still linear in d, which forces us to take p exponential in d, and therefore gives a very weak lower
bound on h(α). Let’s do something better (ie the only thing we know how to do: Siegel’s lemma);
for L > 2dT (and, for technical reasons, logL� log d), it gives

log ‖F‖1 ≤
(

1 +
dT 2

L

)
logL+ dTh(α),

where one should think that dh(α) is small (because h(α) is supposed to be very small). Because
of the 1 + ...

L , one might as well choose L ≈ dT 2. Suppose by contradiction that h(α) � log d
dT :

then we can find an F (of degree at most L, vanishing at order at least T at α) such that

log ‖F‖1 � log d.

We have an extra problem: F might vanish at αp. Let’s now do things (almost) properly. We
work with an extra parameter N and consider primes p with log d ≤ p ≤ N .

• if by contradiction F (αp) 6= 0, then the product formula implies 1 ≤ p−T ‖F‖1H(α)pL, that
is, T log p � log d + pLh(α) ⇒ T log log d � log d + NLh(α). If we suppose h(α) < c log d

NL ,

it suffices to show T large enough to obtain a contradiction (T = C log d
log log d suffices), so for

this choice of parameters F (αp) = 0. Now T is fixed (hence L ≈ dT 2 is also fixed) and
we can only choose N . Notice that the technical assumption logL� log d is satisfied.

• Now we know that F vanishes at βp for all primes between log d and N and for all β conjugate
of α. Up to a technical detail ([Q(αp) : Q] = [Q(α) : Q] – one can reduce to this case1) we
obtain

L ≥ #{zeroes of F} ≥
∑

log d≤p≤N

d�PNT d
N

logN
.

1if I understand correctly, this reduction needs an assumption like log d = o(N))
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It is now enough to choose dN
logN � d

(
log d

log log d

)2

, which leads to choosing N ≈ d log d
(log log d)2 .

This choice of parameters (N,L, T ) gives a contradiction, hence one of the assumptions on
h(α) must fail. One then obtains

h(α)� log d

NL
=

1

d

(
log log d

log d

)3

.

4 03.05.2018 – More lower bounds on the height; geometry
of GN

m

4.1 Lower bounds on the height II: abelian extensions

Theorem 4.1 (Amoroso-Dvornicich 2000). ∀α ∈ (Qab)×, α not a root of unity,

h(α) ≥ log 5

12
.

Remark 4.2. The constant might be non-optimal, but there exists α ∈ (Qab)× such that h(α) =
log 7
12 . To construct such an α, we work in the field Q(ζ21). In the ring of integers of this field we

have (7) = (PP)6; furthermore, Q(ζ21) has class number 1, so P = (γ). Set α = γ/γ. Then α and
all its conjugates have modulus 1, and therefore

h(α) =
logN(γ)

[Q(ζ21) : Q]
=

log 7

12
.

Remark 4.3. One can also invert the argument to prove lower bounds on the class number based
on lower bounds on the height.

Generalizing the previous remark, one obtains

Theorem 4.4 (Amoroso-Dvornicich 2003). The exponent of the ideal class group of a CM field
K goes to infinity as disc(K)→∞.

Remark 4.5. There is no uniform lower bound on the height for algebraic numbers lying in CM
fields. Indeed, a CM field K can be generated by a single element α with |α| = 1 (and α not
a root of unity; notice that the condition |α| = 1 is independent of the choice of absolute value
because the field is CM). The field Q(α1/n) is then also CM, and the height of α1/n goes to zero
as n→∞.

4.1.1 Sketch of proof of Theorem 4.1

By Kronecker-Weber, every abelian extension is contained in a cyclotomic one, hence we might
work with a cyclotomic field L = Q(ζn) and with a (generic, but integral) element α ∈ L×. Fix p
prime (which will be chosen at the end of the proof to be ’small’).

We have an extension
Q(ζn)

ab

(P1 . . .Pr)e

Q p

We consider two cases:

• e = 1, or equivalently p - n. Let σ be the Frobenius of Pj over p (this is independent of j,
because L/Q is abelian). Then if α is integral (α ∈ OL) we have αp ≡ σ(α) (mod Pj) for
every j, and therefore αp ≡ σ(α) (mod pOL). Concretely, if one doesn’t want to talk about
Frobenius automorphisms, σ is the unique automorphism of L that sends ζn to ζpn.
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Now let x = αp−σ(α) 6= 0 (if αp = σ(α), then ph(α) = h(αp) = h(σ(α)) = h(α), so h(α) = 0
and α is a root of unity). For any α (not necessarily integral) set

∆v = ∆v,p,α := max{1, |α|v}p max{1, |σα|}.

As in yesterday’s lecture, one obtains

|x|v ≤


2∆v v | ∞
∆v v -∞
1
p∆v v | p

To prove the inequality for v | p: if α ∈ OL we are done, and otherwise one uses the fact
that |α−1|v < 1 and |α−p − σ(α−1)|v < 1.

Applying the product formula,

1 =
∏
v|∞

|x|nv/dv ·
∏
v|p

|x|nv/dv ·
∏
v-p
v-∞

|x|nv/dv

≤ 2
∑
v|∞ nv/dp−

∑
v|p nv/d

∏
v

∆v

≤ 2p−1H(αp)H(σα)

=
2

p
H(α)p+1,

which gives h(α) ≥ log(p/2)
p+1 .

• p | n, that is, e > 1. The idea is to choose another automorphism of L which still allows us
to obtain lower bounds on the height. Observe that

Gal
(
Q(ζn)/Q(ζn/p)

)
= 〈σ〉,

where σ(ζn) = ζnζp (for a fixed primitive p-th root ζp of 1). If α ∈ OL we have αp ≡ σ(αp)
(mod pOL): this can be proven immediately by just writing α = f(ζn) with f ∈ Z[x] and
applying Fermat’s little theorem:

αp = f(ζn)p ≡ f(ζpn) = f((ζnζp)
p) = f((σζn)p) ≡ f(σζn)p = σ(f(ζn)p) = σ(αp).

Set x = αp − σαp.

Remark 4.6. As in the proof of Dobrowolski’s theorem, there is no guarantee that x is
nonzero. However, if x is zero, there exists a root of unity η such that ηα ∈ Q(ζn/p). Here
we use a fundamental property of the Weil height – namely h(ηα) = h(α) if η is a root of
unity – to proceed by induction on the degree of the cyclotomic extension.

We can then assume x 6= 0. Set

∆v = ∆v,p,α = max{1, |α|v}p max{1, |σα|v}p;

the same kind of computation we did before yields

h(α) ≥ log(p/2)

2p
.

Choosing p = 3 yields a universal lower bound h(α) ≥ log(3/2)
6 , which however is not as good

as log 5
12 . To obtain this improved lower bound one needs to work harder (but we won’t do

it).

12



4.1.2 Abelian extensions of number fields

L

ab

(Q1 . . .Qr)e

K

d

P

Q p

1. if e = 1 one uses Frobenius

2. if e 6= 1 some ramification theory is needed. Let G = Gal(L/K) and

Gj = {σ ∈ G : ∀γ ∈ OL, σγ ≡ γ (mod Qj+1)}.

These groups are independent of the prime Q above P because the extension is abelian.
G0 ⊃ G1 ⊃ G2 ⊃ · · ·Gk−1 ) Gk = {0}, by using Hasse-Arf one obtains kq ≥ e, where
q = N(P). Let now σ ∈ Gk−1, σ 6= id. Then ∀γ ∈ OL we have

(σγ − γ)q ∈ Qkq ⊆ Qe,

and since this holds for every Q over P this implies (σγ − γ)q ≡ 0 (mod POL), which (by
Fermat again) gives

σγq ≡ γq (mod POL).

We now proceed as before with x = σγq − γq; the difficulty is now that of dealing with the
case x = 0 (the induction is more complicated, but works).

Putting everything together, one obtains lower bounds on the height for points in L that depend
only on d.

4.2 Lower bounds on the height III: Q(Etors)

Let E be an elliptic curve over Q (the field of definition is important). The proof of the fact that
Q(Etors) has property (B) is similar in structure, but more complicated, to the proofs we’ve seen
so far. If E has CM, then Q(Etors) is an abelian extension of a quadratic extension of Q and the
result follows from what we’ve already seen.

By Elkies, there are infinitely many supersingular primes; the corresponding Frobenius has
the property that the square is central in the Galois group. If there is no (or little) ramification
an approach similar to the above works; otherwise, one needs some more ramification theory
(Lubin-Tate).

The role of the cyclotomic extensions Q(ζn) is now played by the torsion extensions Q(E[N ]).

4.3 Kronecker’s theorem in higher dimensions

Lang’s problem. Characterise irreducible polynomials f ∈ Q[x, y] such that there exist infin-
itely many pairs (α, β) ∈ µ∞ × µ∞ with f(α, β) = 0. Geometrically, characterise curves in G2

m

that contain infinitely many torsion points.

Example 4.7. The polynomials f(x, y) = xmyn − 1 (with (m,n) = 1) provide examples of this
behaviour. More generally, 1 can be replaced by a root of unity.

Theorem 4.8 (Liardet). f has this property if and only if it is of the form f(x, y) = xnym − a
or xn − aym for some root of unity a.

Remark 4.9. More geometrically: the curves in question are the translates of subgroups by
torsion points. Geometrically one would also allow Laurent polynomials, in which case xnym − a
and xn − aym are essentially the same.
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Proof. Let K be a number field containing the coefficients of f . Let (α, β) ∈ µ2
∞ be a zero of f ;

write (α, β) = (ζrN , ζ
s
N ) with gcd(r, s,N) = 1. We look for an upper bound on N ; notice that we

have K(α, β) = K(ζN ). Consider the group homomorphism

λ : Z2 → C×
(t, u) 7→ αtβu = ζrt+suN ;

its kernel is Λ = {(t, u) ∈ Z2 : rt + su ≡ 0 (mod N)}. By the pigeonhole principle, there exist
(a1, b1), (a2, b2) with 0 ≤ ai, bj ≤

√
N such that (a1, b1) 6= (a2, b2) and (a1 − a2, b1 − b2) ∈ Λ \ {0}.

Interpolation: construction of an auxiliary function. Let g(x, y) = xtyu−1 ∈ Q[x±1, y±1]: it van-
ishes at (α, β). If we want to work with polynomials, we can just multiply by xmax{−t,0}ymax{−u,0}

to obtain g1(x, y) = xmax{−t,0}ymax{−u,0}g(x, y) ∈ Z[x, y].

Extrapolation: for arithmetical reasons, the auxiliary function must vanish at many more points
than just those we imposed. Indeed, for every σ ∈ Gal(K(ζn)/K) = Gal(K(α, β)/K) the point
(σα, σβ) is a common zero of f and g1. Therefore

#{f = 0} ∩ {g1 = 0} ≥ [K(ζn) : K] ≥ ϕ(N)

[K : Q]
� N

d log logN
,

where d = [K : Q].

Zeroes lemma. If f divides g1(x, y) we are done, because all factors of g1(x, y) are of the desired
form. Otherwise f, g1 are relatively prime (recall that f is irreducible), and by Bézout they meet
in (deg f)(deg g1) ≤ 2

√
N deg(f) points.

Conclusion. Putting the inequalities together we obtain

N

d log logN
� 2
√
N deg(f)⇒ N is bounded

Notice that the bound on N is completely explicit.

Definition 4.10. A curve C in G2
m is a torsion curve if it is the translate of an algebraic

subgroup by a torsion point. Notice that C is not required to be irreducible.

Remark 4.11. We shall see in the next lecture that the (1-dimensional) algebraic subgroups of
G2
m are all of the form

{(x, y) ∈ G2
m(Q) : xnym − 1 = 0}

Corollary 4.12. A curve C ⊂ G2
m has the property that Ctors := (G2

m)tors ∩ C is Zariski-dense in
C if and only if it is a torsion curve.

5 08.05.2018 – Geometry of GN
m

Last time we proved:

Theorem 5.1. Let f ∈ Q[x, y] be an irreducible polynomial. There exist infinitely many pairs
(α, β) ∈ µ∞ × µ∞ with f(α, β) = 0 if and only if f(x, y) = axnym − 1 or f(x, y) = xnym − 1 for
some root of unity a.

We consider Gnm := Gnm(Q) = (Q×)n and its natural embedding in Pn given by

Gm(Q)n → Pn(Q)
x 7→ (1 : x1 : · · · : xn)

There is also another natural compactification given by

Gnm ↪→ P1 × · · · × P1

x 7→ (1 : x1), (1 : x2), . . . , (1 : xn)

14



Remark 5.2. • it’s an algebraic group

• given λ ∈ Zn and x ∈ Gnm, we set xλ := xλ1
1 · · ·xλnn

• the ring of regular functions on Gnm is Q[x±1
1 , . . . , x±1

n ]

• α ∈ Gnm is a torsion point if ∃k ∈ N such that αk = 1, i.e. iff the coordinates of α are roots
of unity.

• H ⊆ Gnm is an algebraic subgroup iff H is a closed subgroup of Gnm

Definition 5.3. H ⊆ Gnm algebraic subgroup is a torus iff it is irreducible.

5.1 Lattices

Let Λ ⊆ Zn be a subgroup of finite rank. Then it is torsion-free, and therefore free. It is then a
lattice in RΛ := Λ⊗Z R. The rank of Λ is the dimension of the R-vector space Λ⊗Z R.

The saturation of Λ is

Λ = QΛ ∩ Zn = {λ ∈ Zn
∣∣ ∃k ∈ Nkλ ∈ Λ}.

Definition 5.4.
ρ(Λ) := [Λ : Λ]

Remark 5.5. If Λ is contained in Λ′, rk Λ = rk Λ′ and ρ(Λ) = ρ(Λ′), then Λ′ = Λ.

Definition 5.6. Λ is primitive if Λ = Λ.

Remark 5.7. Every lattice Λ admits a Z-basis. Let a1, . . . , ar be a basis: then Λ is primitive
if and only if the gcd of the r × r minors of (aij) is ±1, or equivalently that a1, . . . , ar can be
completed to a basis of Zn.

5.1.1 Connection with the algebraic subgroups of Gnm
There is a natural map

{lattices ⊆ Zn} → {algebraic subgroups of Gnm}
Λ 7→ HΛ = {α ∈ Gnm

∣∣ ∀λ ∈ Λ, αλ = 1}

Remark 5.8. This map is contravariant: given Λ ⊆ Λ′, we have HΛ′ ⊆ HΛ.

The aim of today’s lecture is to show that this map is a bijection.

5.1.2 Morphisms Gkm → Gnm
Let A be an element of Matn×k(Z). With A we can associate a morphism

ϕA : Gkm → Gnm
α 7→

(
αA1 , . . . , αAn

)
,

where Aj is the j-th row of A. Product of matrices corresponds to composition of morphisms:

ϕA ◦ ϕB = ϕAB

We define αA := ϕA(α). Notice that αAB = (αB)A.

Remark 5.9. Let A ∈ Matn×n(Z). Then ϕA : Gnm → Gnm is a finite morphism (ie | kerϕA| <∞)
iff detA 6= 0; more precisely, the order of kerϕA is |detA|. In particular, ϕA is an isomorphism
iff detA = ±1.
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Theorem 5.10. Λ ⊆ Zn of rank r. Then HΛ is isomorphic to F ×HΛ, where F is finite, of order
[Λ : Λ]. Moreover, HΛ

∼= Gn−rm (and is therefore irreducible). In particular, H is the finite union
of translates of HΛ by torsion points.

Sketch of proof. Let a1, . . . , ar be a basis of Λ and complete it to a basis a1, . . . , an of Zn. The ai
define a matrix A ∈ GLn(Z) such that

AΛ = Zr × {0}.

Therefore
ϕA(HΛ) = HAΛ = {1} ×Gn−rm ,

hence (up to a change of coordinates and a projection) we may assume r = n,Λ = Zr and
HΛ = {1}. Notice that we have already proven that HΛ

∼= Gn−rm is irreducible.
By the elementary divisors theorem, there exist unique ρ1, . . . , ρr ∈ N with ρr | ρr−1 |

· · · | ρ1 and a basis a1, . . . , ar of Zr such that ρ1a1, . . . , ρrar is a basis of Λ. Up to a fur-
ther change of coordinates we can then assume that ai = ei is the canonical basis and Λ =
〈(ρ1, 0, . . . , 0), . . . , (0, . . . , 0, ρr)〉. But then

HΛ = {α ∈ Gnm : ∀i, αρii = 1} = ker[ρ1]× · · · × ker[ρr]

that as claimed has order HΛ =
∏
ρi = [Zr : Λ].

Corollary 5.11. HΛ is a torus if and only if HΛ
∼= Gn−rm (where r = rank Λ), if and only if Λ is

primitive.

Example 5.12. r = 1,Λ = 〈λ〉, λ = (λ1, . . . , λn). Let d = GCD(λ1, . . . , λn) and µ = 1
dλ ∈ Zn

primitive. We have
H = HΛ = {α ∈ Gnm

∣∣ αλ1
1 · · ·αλnn = 1}

and
T = HΛ = {α ∈ Gnm

∣∣ αµ1

1 · · ·αµnn = 1};

one checks that H =
⋃
ζd=1 Tζ.

5.1.3 Decomposition in Q-irreducible components

H =
⋃
k|d

{α ∈ Gnm
∣∣ Φk(αµ) = 0},

where x 7→ Φk(xµ) is called a generalized cyclotomic polynomial.

5.1.4 Every algebraic subgroup of Gnm is of the form HΛ

Theorem 5.13. Let

• V ⊆ Gnm be defined by equations fl(x) =
∑
λ∈I al,λx

λ = 0

• H a maximal algebraic subgroup contained in V

Then there exists a lattice Λ ⊆ Zn, generated by vectors in the set

D(I) = {λ− µ
∣∣ λ, µ ∈ I},

such that H = HΛ.

Corollary 5.14. Λ 7→ HΛ is surjective (onto the set of algebraic subgroups of Gnm).
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Proof. Let λ ∈ Zn and let ϕλ be the corresponding morphism Gnm → Gm (x 7→ xλ). By definition,
χλ := ϕλ|H is a character of H. Let us consider the partition of I given by the sets

Iχ := {λ ∈ I
∣∣ χλ = χ}

for χ ranging over Ĥ (the character group of H).

Remark 5.15. ∀χ ∈ Ĥ, ∀λ, µ ∈ Iχ, χλ−µ = 1.

Let
Λ =

〈
λ− µ

∣∣ λ, µ ∈ Iχ, χ ∈ Ĥ〉.
By Remark 5.15 we have H ⊆ HΛ. By maximality of H, it is now enough to show that HΛ is
contained in V .

We now observe that

fl|H =
∑
χ∈Ĥ

∑
λ∈Iχ

al,λ

χ ≡ 0,

simply because these are the defining equations of V ⊇ H. By independence of characters (Artin’s
theorem), this implies that ∀χ ∈ Ĥ,

∑
λ∈Iχ al,λ = 0. Now notice that, given α ∈ Hλ, the map

I → Gm
λ 7→ αλ

is constant on Iχ. Therefore for α ∈ HΛ we have

fl(α) =
∑
χ∈Ĥ

∑
λ∈Iχ

al,λα
λ =

∑
χ∈Ĥ

∑
λ∈Iχ

al,λ

αλ = 0,

so HΛ ⊆ V as desired.

Corollary 5.16. Every morphism φ : Gnm → Grm is of the form ϕA for a suitable matrix A.

Sketch of proof. One is immediately reduced to the case r = 1. Consider the graph of ϕ,

Γ =
{

(x, ϕ(x))
∣∣ x ∈ Gnm

}
Γ is an n-dimensional torus, and therefore Γ = Hλ. Hence we that y = ϕ(x) iff xλ1

1 · · ·xλnn yλn+1 =
1. As ϕ is a morphism, λn+1 is forced to be ±1, and we are done.

Theorem 5.17. 1. Λ 7→ HΛ is bijective

2. HΛHΛ′ = HΛ∩Λ′ and HΛ ∩HΛ′ = HΛ+Λ′ .

Proof. 1. We’ve already shown surjectivity, so it remains to show that injectivity. Suppose we
have two lattices Λ,Λ′ which correspond to the same H = HΛ = HΛ′ . Then ∀x ∈ H,∀λ ∈
Λ,∀λ′ ∈ Λ′ we have xλ = xλ

′
= 1. Hence H ⊆ HΛ+Λ′ , and clearly HΛ+Λ′ ⊆ HΛ = H. It

follows that HΛ = H = HΛ+Λ′ . By a previous theorem, rk(Λ+Λ′) = rk(Λ), and furthermore
ρ(Λ + Λ′) = ρ(Λ). This implies Λ = Λ + Λ′, hence Λ′ ⊆ Λ. By symmetry, Λ = Λ′.

2. HΛHΛ′ is an algebraic subgroup of Gnm (proof/exercise: a dominant morphism ϕ : Gnm → Grm
is surjective). In particular, it is the smallest algebraic subgroup containing both HΛ and
HΛ′ . Now Λ ∩ Λ′ is the largest lattice contained in both Λ and Λ′; since Λ 7→ HΛ reverses
the inclusions, this implies that HΛ∩Λ′ is the smallest algebraic subgroup containing HΛ and
HΛ′ , whence HΛHΛ′ = HΛ∩Λ′ .

Similarly, HΛ ∩ HΛ′ is the largest algebraic subgroup contained in both HΛ and HΛ′ , and
one deduces HΛ ∩HΛ′ = HΛ+Λ′ .
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Definition 5.18. V ⊆ Gnm is a torsion subvariety if V is of the form Hζ, where H is a torus
and ζ ∈ (Gnm)tors.

Theorem 5.19 (Toric case of the Manin-Mumford conjecture). THe following hold:

• V ⊆ Gnm irreducible is a torsion subvariety if and only if the Zariski closure of Vtors is equal
to V .

• V ⊂ Gnm, not necessarily irreducible. Then Vtors is a finite union of torsion subvarieties;
equivalently, it is the (finite) union of the maximal torsion subvarieties contained in V .

Remark 5.20. Notice that part (i) in the case of curves is Liardet’s theorem.

Proof (of (1)→ (2)). Write Vtors = V1 ∩ · · · ∩Vn for the decomposition in irreducible components.
Then

Vtors =
(
Vtors

)
tors

= (V1)tors ∪ · · · ∪ (Vn)tors

By uniqueness of the decomposition in irreducible components, (Vi)tors = Vi, hence Vi is a torsion
subvariety.

5.2 References

• Bombieri-Gubler. Heights in diophantine geometry, chapter 3

• Zannier. Lecture notes on diophantine analysis

6 09.05.2018 – Heights and Lenstra’s algorithm in more
than one variable

6.1 Kronecker in dimension > 1?

There are (at least) two natural notions of height on Gnm, corresponding to the two compactifica-
tions Pn1 and Pn:

• ĥ1(α) =
∑n
i=1 h(αi), if we consider Gnm ↪→ Pn1 ;

• ĥ2(α) = h((1 : α1 : · · · : αn)), if we consider Gnm ↪→ Pn.

Definition 6.1. Recall the usual Weil height on Pn: given a point β = (β0 : · · · : βn) ∈ Pn(K),
take a number field K that contains all the βi and define

h(β) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max{|β0|v, . . . , |βn|v}.

It depends neither on the choice of K nor on the choice of the representatives for the coordinates
of β.

Remark 6.2.
ĥ1 ≤ ĥ2 ≤ nĥ1

Remark 6.3. The following properties hold:

1. ĥ(α) = 0 if and only if α is torsion

2. ĥ(αβ) ≤ ĥ(α) + ĥ(β)

3. ĥ(αn) = nĥ(α) for n ∈ N, and also for n ∈ Z if Gnm ↪→ Pn1 .

4. Northcott: the set of points of bounded height and degree is finite.
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Definition 6.4. Let V ⊆ Gnm and ϑ > 0. Set V (ϑ) = {α ∈ V
∣∣ ĥ(α) ≤ ϑ}. The essential

minimum of a subvariety is

µess(V ) = inf{ϑ > 0
∣∣ V (ϑ) = V }

Theorem 6.5 (Toric case of Bogomolov’s conjecture, Zhang/Bilu). V ⊆ Gnm, V/K (K a number
field). Suppose that V is K-irreducible. Then the following are equivalent:

1. V is a union of torsion subvarieties

2. µess(V ) = 0

Remark 6.6. The implication 1⇒ 2 is obvious.

More precisely:

Theorem 6.7 (Schmidt, Bombieri-Zannier). If V is not a union of torsion subvarieties, then

µess ≥ C([K : Q],deg V ) > 0

for some function C(d,m).

Theorem 6.8 (Bombieri-Zannier). In fact, µess(V ) ≥ C(deg V ) > 0 provided that V is not a
union of translates of tori (translation by arbitrary points of Gnm).

Remark 6.9. To see that the exception is necessary consider the case of a single point (the height
can go to zero as [K : Q]→∞).

6.2 Lenstra in more than one variable

We describe an approach due to Averdaro-Krick-Sombra. The problem is the following: given
f ∈ Q[x, y], suppose that degy f > 0. What is the analogue of the gap principle we saw for the
case of univariate polynomials?

Write f = r + yuq with q, r ∈ Q[x, y]. Let k = degy r. Assume that u− k is large (in a sense
to be specified later). Let now P ∈ K[x, y] (K a number field) be an irreducible polynomial such
that degy P > 0 and the curve C = {P = 0} is not a union of torsion curves.

Suppose (by contradiction2) that p | f and p - r (hence p - q); we want to show that the gap is
small. By Bogomolov, the essential minimum of C is positive. Take h0 ∈ (0, µess(C)): then{

(ω, ξ) ∈ C(Q) : ω ∈ µ∞, h(ξ) ≤ h0

}
is finite (for otherwise it would be Zariski-dense3). On the other hand,{

(ω, ξ) ∈ C
∣∣ ω ∈ µ∞}

is infinite, and moreover C ∩{q = 0} is finite (p - q). Therefore there exists ξ ∈ Q×, h(ξ) > h0 and
a root of unity ω such that P (ω, ξ) = 0 and q(ω, ξ) 6= 0.

Definition 6.10. g ∈ Q[x, y], g =
∑
gijx

iyj. Define

|g|v :=

{
‖σg‖1, if σ : K ↪→ C
max |gij |v, if v -∞

Finally set

h(g) =
∑
v∈MK

[Kv : Qv] log |g|v

2well, morally by contradiction
3invariance of the Weil height under the action of Galois shows that the essential minimum is the same on all

irreducible components, and we have assumed that C is K-irreducible, hence the Q-irreducible components are
permuted transitively by Galois
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Remark 6.11. h(g) is independent of the choice of the number field K containing the coefficients

of g and is invariant under multiplication by scalars in Q×.

Let now α = (ω, ξ), z := ξ−ur(α) = −q(α) 6= 0. We have

|ξ−ur(α)|v ≤ |f |v|ξ|−uv max{1, |ξ|v}k

and
|q(α)|v ≤ |f |v max{1, |ξ|v}deg q;

this implies |z|v ≤ |f |v max{1, |ξ|v}−(u−k), and by using the product formula we obtain

1 ≤ H(f)H(ξ)−(u−k),

hence

u− k ≤ h(f)

µess(C)
≤

{
h(f)/C([K : Q],degP )

h(f)/C ′(degP ) if C is not a union of translates

6.3 Heights of subvarieties

Reference: appendix to Zannier’s book Lectures on diophantine analysis
Let V be a Q-irreducible variety.

Fact. Consider the morphism

[`] : Gnm → Gnm
α 7→

(
α`1, · · · , α`n

)
Then deg([`]−1V ) = `codimV deg V .

Example 6.12. If V is the hypersurface defined by V = {F = 0}, then [`]−1V = {F (x`1, . . . , x
`
n) =

0} has degree `degF = `deg V .

On the other hand,

deg([`]V ) =
`dimV deg V

| ker[`] ∩ Stab(V )|
,

where Stab(V ) = {α ∈ Gnm : αV = V } =
⋂
x∈V x

−1V . Let h : Pn → R≥0 be an (almost) arbitrary
height. Then one can define a height à la Néron-Tate, namely

ĥ(V ) = lim
`→∞

h([`]V ) deg V

` deg([`]V )
.

With this definition, one has
ĥ([`]−1V ) = `codimV−1ĥ(V )

and

ĥ([`]V ) =
`dimV+1ĥ(V )

| ker[`] ∩ Stab(V )|

Remark 6.13. The height depends on the choice of compactification of Gnm. If we work with Pn
and if V = {F = 0}, then

ĥ(V ) = logM(F ) =

∫ 1

0

· · ·
∫ 1

0

log |F (e2πiθ1,...,2πiθn)| dθ1 · · · dθn

Theorem 6.14 (Zhang). µess(V ) ≤ ĥ(V )
deg V ≤ (1 + dimV )µess(V )
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6.3.1 Quantitative results

Let V/Q be an irreducible subvariety of Gnm. Suppose that V is not contained in an algebraic
subgroup of Gnm. Then for all ε > 0 there exists Cε(n) such that

µess(V ) ≥ Cε(n)ω(V )−1−ε,

where Cε(n) > 0 and

ω(V ) = min{deg(Z) : Z hypersurface defined over Q containing V }.

This is a result of Amoroso-David.

Example 6.15. α = (α1, . . . , αn) ∈ Qn multiplicatively independent. Let V = {σα
∣∣ σ : Q ↪→ C}.

Then ∀ε, h(α) ≥ Cε(n)ω−1−ε. Moreover, by linear algebra one obtains

ω = ω(V ) ≤ n[K : Q]1/n,

where K = Q(α1, . . . , αn).

Definition 6.16. Let

V u = (finite) union of the maximal torsion subvarieties of V, V ∗ = V \ V u,

and

δ(V ) = {δ : V is the intersection of hypersurfaces of degree at most δ defined over Q}.

Then:

Theorem 6.17 (Amoroso-Viada 2013). ∀α ∈ V ∗ one has

h(α) ≥ δ(V )−1(935n5 log(n2δ(V )))−(n+1)2 dimV .

Definition 6.18. We denote by V a the (not necessarily finite) union of the positive-dimension
translates contained in V .

Example 6.19. To see that the union is not necessarily finite, consider

V = {x1 + x2 + x3 = 0} ⊆ G3
m, H = {(t, t, t)

∣∣ t ∈ Gm}

Then ∀α ∈ V , Hα ⊆ V .

Remark 6.20. Even though it’s not obvious, V a is closed.

Set V 0 = V \ V a.

Theorem 6.21 (Bombieri-Zannier). For all but finitely many α ∈ V 0 the inequality h(α) ≥
C(deg V ) > 0 holds.

Let now V ⊆ Gnm be defined over K and K-irreducible. Suppose that V is not contained in a
finite union of translates. Analogously to the case of varieties defined over Q, set

δ(V ) = min{δ : V is intersection of hypersurfaces of degree ≤ δ}

and
θ = θ(V ) = δ(V )(200n5 log(n2δ(V )))n(n−1) deg V

Theorem 6.22 (Amoroso-Viada ’09).

V (θ−1) = B1 ∪ . . . ∪Bk

where every Bi is a translate and
∑k
i=1 θ

dimBi degBi ≤ θn.
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Corollary 6.23. The maximal torsion subvarieties Bj of V satisfy

k∑
i=1

θdimBiBi ≤ θn.

Example 6.24. n = 2, V = {F (x, y) = 0} Q-irreducible and not torsion. Then the number of
torsion points on V satisfies

#Vtors ≤ C deg(F )2

and in fact
#Vtors ≤ vol(∆F ),

where ∆F is the Newton polytope of F . These are results of Ruppert and Aliev-Smyth, generalized
to hypersurfaces of Gnm by César Martinez.

7 29.05.2018

Recall the following notions:

1. Weil height in Gnm ↪→ Pn: see sections 2.6 and 5.

2. height of a polynomial

3. Mahler measure: see definition 2.22

4. normalised height of a hypersurface, or more generally of a subvariety:

ĥ(V ) = lim
`→∞

h([`]V ) deg V

` deg([`]V )
.

5. non-normalised heights of varieties. Let V ⊆ Pn be a projective variety of dimension d, and
let F be the Chow form (see section 13.1) of V . Then one can define h(V ) as the height of

the hypersurface {F = 0} of G(d+1)n
m .

We begin with two exercises:

Exercise 7.1. Let P =
∑
λ cλx

λ be a polynomial in n variables x1, . . . , xn.

1. For n = 1 show that
M(P ) ≤ ‖P‖1 ≤ 2degPM(P ).

2. Show by induction on n > 1 that in general we have

M(P ) ≤ ‖P‖1 ≤ 2
∑
j degxj PM(P ) ≤ 2n degPM(P )

3. Show that in fact ‖P‖1 ≤ (n+ 1)degPM(P ) by using the inequality

|cλ| ≤
(degP )!

λ1! · · ·λn!
M(P )

Exercise 7.2. Let ϕA : Gnm → Gnm be an isogeny. Then ĥ(ϕ−1
A (V )) = ĥ(V ).

Hint. Elementary divisors.

Proposition 7.3. Let V be a subvariety of Gnm. The following hold:

1.
deg([`]−1V ) = `codim(V ) deg(V ),
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2.
ĥ([`]−1V ) = `codim(V )−1ĥ(V ),

3.

deg([`]V ) =
`dimV deg V

| ker[`] ∩ Stab(V )|
,

4.

ĥ([`]V ) =
`dimV+1ĥ(V )

| ker[`] ∩ Stab(V )|
.

We sketch how to prove these properties in the special case codim(V ) = 1; write V as the zero
locus of some polynomial F .

Proof. For the first part, notice that [`]−1(V ) is defined by F (x`1, · · · , x`n) = 0, so it clearly has
degree equal to `deg(V ).

For the rest, one combines the following:

• [`]−1[`](V ) =
⋃
ζ∈ker[`] ζV

• M(P (x`1, . . . , x
`
n)) = M(P )

• deg(P (x`1, . . . , x
`
n)) = ` degP

• The class formula for the action of ker[`] on {ξV : ξ ∈ ker[`]}

Corollary 7.4. The normalised height satisfies

ĥ(V ) =
ĥ([`]V ) deg(V )

`deg([`]V )

7.1 Essential minimum

Recall (definitions 1.11 and 6.4) that we defined the essential minimum of a subvariety V as

µess(V ) = inf{ϑ > 0
∣∣ V (ϑ) = V },

where V (ϑ) = {α ∈ V
∣∣ ĥ(α) ≤ ϑ}.

Remark 7.5. The following properties of the essential minimum are straightforward to
check:

• µess([`]V ) = `µess(V )

• µess(V
σ) = µess(V ) for all σ ∈ Gal(Q/Q)

We had also stated Zhang’s inequality (Theorem 6.14):

ĥ(V )

(1 + dimV ) deg(V )
≤ µess(V ) ≤ ĥ(V )

deg V
.
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7.1.1 Siegel’s lemma

Let V ⊆ Gnm be a Q-irreducible variety, and let P ⊆ Q[x0, . . . , xn] be the defining ideal of V in
Pn. Define

r := H
(
PT ;L

)
= dimQ

(
Q[x0, . . . , xn]

[PT ]L

)
.

Suppose r < N :=
(
L+n
n

)
and set k = r

N−r (Dirichlet’s exponent). Then there exists F ∈ Q[x], of
degree at most L, vanishing on V with multiplicity at least T and such that

h(F ) ≤ k ((T + n) log(L+ 1) + Lµess(V )) .

Remark 7.6. There is also an absolute version of this lemma, where one only requires V to be
defined over Q, but loses all control on the field of definition of F (even if V is defined over a
number field of controlled degree, say).

Remark 7.7. In the special case when V is given by {F = 0} with degF = D, one has

k ≤ n
(

1 +
DT

L−DT

)n
DT

L−DT
;

if furthermore L ≥ (n+1)DT , then k ≤ 3nDT/L. Indeed, in this case one can compute k exactly:

k =

(
L+ n

n

)
−
(
L−DT + n

n

)
(
L−DT + n

n

) .

7.1.2 Proof of Zhang’s inequality

Let V be the hypersurface given by {P = 0}. We may assume P 6∈ Z[x] irreducible of degree D.

Lower bound on µess(V ). By Siegel with T = 1, there exists FL ∈ Z[x] of degree at most L
(with P | FL, since FL vanishes on V ) such that

h(FL) ≤ kL
(

(n+ 1) log(L+ 1)

L
+ µess(V )

)
,

where kL ≤ n
(

1 + D
L−D

)
DL
L−D

L→∞−−−−→ nD, and where the term (n+1) log(L+1)
L goes to 0 as L→∞.

Hence
ĥ(V ) ≤ ĥ(FL) ≤ h(FL) . nDµess(V )

Upper bound on µess(V ). Let’s assume for simplicity that n = 2.

Lemma 7.8. Let P ∈ C[x] be a polynomial of degree D and let p be a prime number. Then∏
ωp=1
ω 6=1

|P (ω)| ≤ pDM(P )p−1.

Proof. Left as an exercise for the reader.

Let now P ∈ C[x, y]. Given ω ∈ C, let M(P (ω, y)) be the Mahler measure of the polynomial
y 7→ P (ω, y). By the previous lemma, for any prime p we have

1

p− 1

∑
ωp=1
ω 6=1

log |P (ω, y)| ≤ logM(P (ω, y)) +Dy
log p

p− 1
,
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where Dy is the degree of P in y.
It follows that, for p large and ω primitive p-th root of unity, we have

min{h(α)
∣∣ P (ω, α) = 0} ≤ 1

p− 1

∑
α:P (ω,α)

h(α) ≤ ĥ(V )

Dy
+ ε.

Since the points (ω, α) thus obtained are an infinite set, this, implies that µess(V ) ≤ V̂
Dy

. To obtain

the upper bound

µess(V ) ≤ ĥ(V )

deg V

one may consider the hypersurface defined by Q = P (xy, y): then degy Q = degP , and ĥ(V ′) =

ĥ(V ) by exercise 7.2.

8 30.05.2018 – Lower bounds for the essential minimum

Theorem 8.1. Let V ⊂ G2
m be a curve. If V is Q-irreducible and is not a union of torsion

cosets4, then
µess(V ) ≥ c(deg V ) > 0

Remark 8.2. One can replace the hypothesis ‘Q-irreducible’ by ‘K-irreducible’, at the cost of
having the constant depend on the field.

If we want to avoid the dependence on the field of definition, we have the following result:

Theorem 8.3. Suppose V is Q-irreducible and that V is not a torsion coset: then µess(V ) ≥
c(deg V ) > 0.

Proof of Theorem 8.1. The proof is analogous to that of Dobrowolski’s theorem. In most questions
of height, the crucial point is a metric inequality which is then inserted into the product formula.
In this case, the inequality is that of Dobrowolski: given α ∈ Gnm(Q), let

F [x1, . . . , xn],deg(F ) ≤ L

be a polynomial that vanishes at α with multiplicity at least T . Then for every prime p and for
every place v dividing p we have

(?) |F (αp)|v ≤ p−T max{1, |α1|v, . . . , |αn|v}pL

This is not obvious; it’s easy for T = 1 (Fermat’s little theorem) but not for T > 1. We won’t give
the details.

Now the assumption that V is not a union of torsion cosets implies that

1

p
µess(V ) = µess([p]

−1V ) 6= µess(V )

, for otherwise µess(V ) would be zero. Set D = deg V . In particular we can find α ∈ V (Q) such
that

1. h(α) ≤ µess(V ) + ε

2. α ∈ V, αp 6∈ V
4translates of subgroups by torsion points
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Applying (?) by taking as F the minimal equation over Z of V and T = 1 and plugging the result
into the product formula, we obtain

µess(V ) + ε ≥ h(α) ≥ log p− h(F )

pD

Fixing F and choosing p to be so that the last fraction is positive we obtain some sort of lower
bound.

Recall from yesterday that

h(F ) ≤ ĥ(F ) +D log 2 ≤ D(log 2 + µess(V ))

where the second inequality is Zhang’s theorem. All in all, one can conclude (notice that we can
assume µess(V ) to be very small, for otherwise we are already done!) the proof, but the bound is
quite weak: C(D) ≈ (DeD)−1.

We describe a technique to obtain better bounds for the case of geometrically irreducible
varieties:

Proof of Theorem 8.3. Let F ∈ Q[x1, . . . , xn], deg(L) ≤ L, vanishing at α with multiplicity at
least T . For every prime p, ∀ζ ∈ ker[p], ∀v | p one has

|F (ζα)|v ≤ p−
T
p−1 |F |v max{1, |α|v}L (1)

Proof of (1). Taylor’s formula + |`2πi/p − 1|v ≤ p
1
p−1 .

Let’s try applying this inequality näıvely, without constructing any clever auxiliary functions.
The fact that V is not a torsion coset implies that the stabiliser of V is a finite group. For
simplicity, assume Stab(V ) = {1} (otherwise the proof is more technical). As before, there exists
α ∈ V (Q) such that

1. h(α) ≤ µess(V ) + ε

2. α ∈ V, ζαp 6∈ V for some ζ ∈ ker[p] (in fact, even for every nontrivial ζ ∈ ker[p] \ {0}).

Reasoning as above, we obtain

µess(V ) + ε ≥ h(α) ≥
1
p−1 log p− h(F )

D
,

which gives nothing: for large p, this quantity is negative.
We now show that constructing a good auxiliary function leads (in both cases: both for varieties

irreducible over Q and over Q) to an essentially optimal bound C(D) = CεD
−1−ε. Recall Siegel’s

lemma:

Lemma 8.4. Let V ⊆ Gnm be a curve of degree D, defined over Q and Q-irreducible (respectively
defined and irreducibile over Q). Let L, T be two parameters, with L ≥ (n + 1)DT . Then there
exists a polynomial F ∈ Q[x1, . . . , xn] (respectively in Q[x1, . . . , xn]) such that F vanishes on V
at order at least T , and

h(F ) ≤ k((T + n) log(L+ 1) + Lµ̂ess(V )),

where k is Dirichlet’s exponent, for which we have

k ≤ n
(

1 +
DT

L−DT

)
DT

L−DT
≤ 3nDT

L
.
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Remark 8.5. The version in parentheses is called the absolute Siegel’s lemma. If V is defined
over the field K, one can ask that F be also defined over K: in this case, however, the upper
bound on the height depends on the discriminant of K as well as on the other data. This is not
good for our applications, since we do not want a dependence on K in the constant C(D).

We now discuss both the case of fixed field of definition and the geometric case.

1. Case 1: V/Q is Q-irreducible. Let N be a parameter and p ∈ [N/2, N ] be a prime.

Extrapolation. We show that F (given by Siegel’s lemma) vanishes on [p]V . Assume the
contrary: then there is α such that h(α) ≤ µess(V ) + ε, F (αp) = 0. By the first metric
inequality and the product formula we obtain

0 ≤ h(F ) + n log(L+ 1) + pLh(α)− T log p.

Combined with h(α) ≤ µess(V ) + ε and the upper bound on h(F ) given by Siegel’s lemma,
this inequality yields

T logN �
(

1 +
DT 2

L

)
logL+ (NL+DT )µ̂ess(V ),

where the implicit constant depends only on n.

Extrapolation – choice of parameters. One may choose L ≈ DT 2 (even if DT 2/L
is much smaller than 1, 1 + DT 2/L is still approximately 1). Suppose logL � logD and
logN � log logD.

Notation 8.6. We write x ≪ y to mean that there exist constants A,B such that x ≤
Ay +B log logD.

We wish to show, by contradiction, that

(NL+DT )µ̂ess(V )� logD.

Suppose the contrary.

With our choice of parameters we have T ≪ logD. Now we choose T ≤ C logD to obtain a
contradiction. This allows us to conclude that the auxiliary function vanishes on [p]V , and
finishes the extrapolation phase.

Zeroes lemma. Given that F vanishes on [p]V for all the primes in the interval [N/2, N ],
one has that

deg

 ⋃
N/2≤p≤N

[p]V

 ≤ L.
Outside of an exceptional set of primes5, which we just ignore, one obtains

deg

 ⋃
N/2≤p≤N

[p]V

 ≥ ∑
N/2≤p≤N

deg([p]V ) ≫ ND.

Here we have used

deg([p]V ) =
pdimV deg V

| ker[p] ∩ Stab(V )|
≥ deg(V ),

which follows from the fact that dim Stab(V ) ≤ n − 1, so | ker[p] ∩ Stab(V )| ≤ pn−1. Now
L ≈ DT 2 ≈ D(logD)2, so it suffices to choose N ≈ C(logD)2 with C sufficiently large. This
leads to a contradiction, hence the assumption (NL + DT )µ̂ess(V ) � logD must be false.
Hence µess(V )� logD

NL � (D(logD)3)−1.

5the number of which is negligible with respect to N/ logN
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2. Case 2: V/Q is geometrically irreducible. We only consider the case n = 2, i.e. V is a curve
in G2

m. The group Stab(V ) is finite, and to simplify the presentation we assume that it is
trivial.

Extrapolation. We claim that the auxiliary function F vanishes on ker[p]V , for N/2 ≤ p ≤
N (at least if the parameters L, T,N satisfy certain inequalities). By contradiction assume
the contrary, and choose α ∈ V (Q) such that

(a) h(α) ≤ µess(V ) + ε

(b) ∃ζ ∈ ker[p] such that F (ζα) 6= 0.

The second metric inequality (1), combined with the product formula, yields

0 ≤ h(F ) + n log(L+ 1) + Lh(α)− T

p
log p,

which implies
T

N
logN �

(
1 +

DT 2

L

)
logL+ (L+DT )µess(V ).

Extrapolation – choice of parameters. As above, we choose L ≈ DT 2 and we ask
that the inequalities logL � logD, logN � log logD hold. Again we forget all terms in
log logD; assume that (L+DT )µess(V ) logD. The conclusion is

T

N
� logD.

Choose T ≈ CN logD; this gives a contradiction, hence we may assume that the auxiliary
function vanishes on all the translates of V by points in ker[p].

Zeroes lemma.

L ≥ deg

 ⋃
ζ∈ker[p],N/2≤p≤N

ζV

�∑
p

∑
ζ∈ker[p]

D � N3D,

up to factors of log(N) � log logD. Now one finishes the proof by choosing L ≈ DT 2 ≈
N2D(logD)2 and N ≈ C(logD)2; the conclusion is

µess(V )� 1

D(logD)5
.

Remark 8.7. Notice that the proof cannot work for n = 1, because the result would
amount to an absolute lower bound on the canonical height of algebraic numbers. Indeed,
the crucial point where n = 2 is used is the fact that | ker[p]| = p2 in G2

m, but | ker[p]| = p in
Gm.

8.1 Plan for the remaining lectures

1. Zilber’s conjecture and a panorama of related problems. Zilber’s conjecture implies the
toric case of Manin-Mumford (which is a theorem, and is even effective). Zilber’s conjecture
implies Lang’s conjecture (which is also a theorem, but is ineffective).

2. Motivations for Zilber’s conjecture: together with Schanuel, it leads to a uniform version of
Schanuel (which admits a better formulation in model theory).

3. Known cases of Zilber’s conjecture (Bombieri-Masser-Zannier): Schinzel’s conjecture.

4. Applications to problems of greatest common divisors of lacunary polynomials. Sketch of
proof of Schinzel’s conjecture.
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9 31.05.2018 – Computing Mahler measures

9.1 Graeffe’s method: Mahler measure of P ∈ C[x]
Given p(x) =

∏
(x− xi), one wants to compute p[`](x) =

∏
(x− x`i). This can be done computing

suitable resultants; to simplify the computational part of the problem, it is useful to choose ` = 2m,
so that the problem boils down to computing p[2](x) =

∏
(x− x2

i ).
Write p(x) = A(x2) +B(x2)x and set

(τp)(x) := A(x)2 −B(x)2x.

Then one has:

Remark 9.1. 1. deg(τp) ≤ deg p

2. M(τp) = M(p)2, because the roots of (τp) are the squares of the roots of p(x). Indeed, if y
is a root of p(x), then

(τp)(y2) = (A(y2) +B(y2)y)(A(y2)−B(y2)y) = p(y)p(−y).

The fact that the roots of τp are the squares of those of p already implies M(τp) = M(p)2;
another way of getting at the same conclusion is to remember that Mahler’s measure does
not change under isogenies, hence

M(p)2 = M(p(y))M(p(−y)) = M(τp(y2)) = M(τp(y))

As a consequence of an exercise we already discussed, we obtain

M(p)2m ≤ ‖τ (m)p‖ ≤ 2deg pM(p)2m ,

and taking the 2m-root of this inequality we get

M(p) ≤ ‖τ (m)p‖1/2
m

≤ 2deg p/2mM(p),

hence the sequence ‖τ (m)p‖1/2m converges very quickly to M(p).

9.1.1 Polynomials in two variables

The idea is the same (and can be generalised to an arbitrary number of variables). Write

P = A0(x2, y) +B0(x2, y)x

and set
P1 = A0(x, y)2 −B0(x, y)2x;

write this polynomial as
P1(x, y) = A1(x, y2) +B1(x, y2)y

and set
τP = P2 = A1(x, y)2 −B1(x, y)2y.

Our previous remarks generalise: we have

degx(τP ) ≤ 2 degx(P ), degy(τP ) ≤ 2 degy(P )

and
M(τP ) = M(P )4.

We don’t show this second equality, but it follows from a generalisation of the identity τP (y2) =
P (y)P (−y) that held for a univariate polynomial.

Recall the 2-dimensional inequality for Mahler measures:

M(P ) ≤ ‖P‖ ≤ 2degx P+degy PM(P ).

Applying this to τ (m)P we obtain

M(P )4m ≤ ‖τ (m)P‖ ≤ 22m(degx P+degy P )M(P )4m ,

and taking the 4m-th root we obtain again that ‖τ (m)P‖1/4m converges to M(P ).
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9.1.2 Essential minimum of a curve

Once the Mahler measure of a polynomial F is known (and therefore also the height of the
corresponding curve C is known) we can estimate the essential minimum of C using Zhang’s
inequality:

ĥ(C)
2 deg C

≤ µess(C) ≤
ĥ(C)
deg C

9.1.3 A remark (Dvornicich)

One can use similar tricks (avoiding resultants) to write down polynomials that have as roots
(say) the cubes of the roots of a given one. In this generalisation, one finds a formula that involves
P (y), P (ζy), P (ζ2y) where ζ is a cube root of unity. The geometric reason for this is that [`]−1C
is a union of translates of a certain subvariety (morally defined by P (

√̀
x)) by `-th roots of unity.

9.2 Zilber’s conjecture (2002)

Conjecture 9.2. Let V ⊆ Gnm (V defined over C) an irreducible variety, and let T ⊂ Gnm be a
torsion coset. Suppose that there exists an irreducible component Y of V ∩ T whose dimension is
unlikely6 large, namely

dimY > dim(V )− codim(T )

In Zilber’s terminology, Y is called an atypical component. Then there exists a torsion coset T ′,
contained in a set SV (finite and depending only on V ), such that Y ⊆ T ′.

9.2.1 Some special cases

1. Suppose dimT = 0, that is, T = {ω} where ω is a torsion point. In this case codimT = n, so
the conjecture is only interesting for dim(Y ) = 0 > dim(V )−n, so that “Y atypical” means
“Y nonempty”, or equivalently ω ∈ V . Zilber says that ω belongs to T ′, where T ′ lies in a
finite set of torsion cosets. In particular, when V is a curve, Zilber’s conjecture implies that
there are only finitely many torsion points lying on V (unless V contains a torsion coset),
that is, the toric case of Manin-Mumford.

2. dimT = 1. In this case Zilber’s conjecture implies Schinzel’s conjecture on lacunary poly-
nomials:

Conjecture 9.3 (Schinzel). Let F,G ∈ Z[x1, . . . , xn] be two relatively prime polynomials.
Let a ∈ Zn. Suppose there exists an algebraic numer ξ, not a root of unity, such that
F (ξa1 , . . . , ξan) = G(ξa1 , . . . , ξan) = 0. Then there exists a vector b ∈ Zn \ {0} such that

(a) max |bj | ≤ B(F,G), a constant depending only on F,G and not on a;

(b) a · b = 0 (the vectors are orthogonal)

Let’s clarify the connection. Define X = {F = G = 0} ⊂ Gnm and α = (ξa1 , . . . , ξan). The
assumption that F,G are relatively prime implies that X is a complete intersection, hence
of codimension 2. It might not be irreducible: take an irreducible component V of X with
α ∈ V . Now observe that

α ∈ T = {(ta1 , . . . , tan)
∣∣ t ∈ Gm},

so that α ∈ V ∩ T , dim{α} = 0, and

dimV − codimT = dimT − codimV = 1− 2 = −1.

6in italiano: patologicamente
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Hence in this setting Y = {α} is atypical. Assuming Zilber’s conjecture, we know that α
belongs to a finite set of torsion cosets that depends only on F,G; enlarging these torsion
cosets if necessary, we can assume that they are of codimension 1, hence given by a single
equation. Equivalently, there exists a finite list of vectors7 b ∈ Zn \ {0} and a finite list
of roots of unity ω such that α belongs to one of the finitely many torsion cosets T ′ =
{xb11 · · ·xbnn = ω}. Clearly this implies

ξa1b1+···+anbn = ω,

and since ξ is not a root of unity while ω is, this is only possible if a1b1 + · · ·+ anbn = 0, as
we wanted to show.

Remark 9.4. Conjecture 9.3 is now a theorem of Zannier.

3. dimV = 1. Intersect V with
⋃
H algebraic subgroup

codimH≥2
H: by dimension reasons, what one expects

is that this should be a finite set, unless V is contained in a torsion coset.

This fact is true, and is a theorem of Bombieri-Masser-Zannier (1999) and Maurin (2008).
More precisely, Bombieri-Masser-Zannier proved the theorem assuming that V is not con-
tained in any coset (not necessarily torsion), and the work of Maurin subsequently allows
one to replace “not contained in any coset” with the (optimal) hypothesis “not contained in
a torsion coset”.

9.2.2 Lang’s conjecture

Conjecture 9.5 (Lang). Let VGnm be irreducible, Γ ⊆ Gnm a subgroup of finite rank (dim(Γ⊗Q) <
∞). Suppose Γ ∩ V = V : then V is a translate of a torus by a point of Γ.

Remark 9.6. 1. Lang’s conjecture implies the toric case of Manin-Mumford by taking Γ =
(Gnm)tors.

2. This conjecture is now a theorem of Michel Laurent

3. The known proofs are all intrinsically ineffective

4. There is an equivalent (but apparently stronger) formulation:

Γ ∩ V =

r⋃
j=1

Tjγj ,

where every Tj is a torus and every γj is a point of Γ. In particular, if V does not contain
translates of tori of positive dimension, then Γ ∩ V is finite.

5. Zilber has shown that his conjecture implies Lang’s (this is shown in Zilber’s original paper
about his conjecture).

6. There are versions of Manin-Mumford and of conjecture 9.5 for abelian varieties; they are
now (ineffective) theorems, due respectively to Michel Raynaud and to Faltings.

9.3 Transcendence

9.3.1 Historical introduction

1873 Hermite shows that e 6∈ Q

1882 Lindemann shows that for every α ∈ Q× the number eα is not algebraic. In particular, taking
α = 2πi shows that π is transcendental (and squaring the circle is proven to be impossible).

7in particular, ‖b‖∞ is bounded by a constant depending only on F,G
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1885 Lindemann and Weierstrass prove that if α1, . . . , αn ∈ Q are Q-linearly independent, then
eα1 , . . . , eαn are algebraically independent. This can be expressed in terms of transcendence
degrees: trdegQ Q(α1, . . . , αn, e

α1 , . . . , eαn) = n.

1966 Schanuel conjectures the following: let α1, . . . , αn be Q-linearly independent. Then

trdegQ Q(α1, . . . , αn, e
α1 , . . . , eαn) ≥ n.

There is also an equivalent version, which can be stated as follows: let α1, . . . , αn ∈ C be
arbitrary. Then

trdegQ Q(α, eα) ≥ dimQ〈α1, . . . , αn〉Q.

Finally, there is also a weaker version which is also interesting to consider, namely: let α1, . . . , αn ∈
C be arbitrary and eα1 , . . . , eαn be multiplicatively independent. Then

trdegQ Q(α1, . . . , αn, e
α1 , . . . , eαn) ≥ n.

Remark 9.7. • The ’weak’ version of Schanuel’s conjecture “can’t determine” whether π and
e are algebraically independent or not.

• The full Schanuel conjecture implies that π, e are algebraically independent: take α1 =
1, α2 = 2πi to get

2 ≤ trdegQ Q(α1, α2, e
α1 , eα2) = trdegQ Q(2πi, e).

• There are models of (C, exp) in which the weak version of Schanuel holds, but the strong
one does not.

9.3.2 Geometric version of Schanuel’s conjecture

Let α1, . . . , αn ∈ C be Q-linearly independent. Let V ⊂ Gnm be defined over Q with dimV < n.
Suppose that (α, exp(α)) ∈ V : then α1, . . . , αn are Q-linearly dependent.

In model theory, this last condition is not considered very nice, because one needs to write it
as

∃a1, . . . , an ∈ Z, a2
1 + · · ·+ a2

n 6= 0, such that a1α1 + · · ·+ anαn = 0.

Quantifying over the integers is always dangerous, so we (as in ’the model theorists’) don’t like
it. This is why one also considers uniform versions of Schanuel’s conjecture, which are stated as
follows:

Conjecture 9.8 (Uniform Schanuel). Let V/Q, V ⊂ Cn ×Gnm, dimV < n. Suppose that α ∈ Cn
is such that (α, exp(α)) belongs to V . Then α belongs to L, a linear subspace that belongs to a
finite set depending only on V . In particular, exp(α) belongs to T , a torsion coset taken from a
finite set that depends only on V .

Theorem 9.9 (Zilber). Assume conjecture 9.2. Then Schanuel’s conjecture implies the uniform
Schanuel conjecture.

Proof. We show something weaker, namely that exp(α) belongs to T , a torsion coset taken from
a finite set that depends only on V .

Consider the projection π : V → π(V ) ⊆ (C×)n. Let d be the dimension of the generic fiber,
which is dimV − dimπ(V ) < n− dimπ(V ). Let

V ′ = {(x, y) ∈ V
∣∣ dimπ−1(y) > d}.

It is a (proper) closed subset of V . By induction (details omitted) we can assume that (α, exp(α)
is not in V ′. Let

Λ = {λ ∈ Zn
∣∣ ∑λiαi = 0};
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it is a saturated lattice. One has dim Λ = n− dimQ〈α〉Q; if we assume Schanuel’s conjecture, this
number is strictly positive. Define

T = HΛ = {y ∈ (C×)n
∣∣ ∏ yλii = 1 ∀λ ∈ Λ},

so that T is a torus with codimT = dim Λ, hence

dimT = dimQ〈α〉Q.

Observe that by definition exp(α) belongs to T .
The equivalent version of Schanuel gives

trdegQ(α, exp(α)) ≥ dimQ〈α〉Q = dimT.

On the other hand,

trdegQ Q(α, exp(α)) = trdegQ Q(exp(α)) + trdegQ(exp(α)) Q(α, exp(α)).

Let Y be an irreducible component (defined over Q, and of maximal dimension) of π(V ) ∩ T
containing exp(α). We have

trdegQ Q(α, exp(α)) = trdegQ Q(exp(α)) + trdegQ(exp(α)) Q(α, exp(α))

≤ dimY + dimπ−1(exp(α))

= dimY + d,

where we have used the fact that the fiber over π(α) contains α, so it gives an upper bound for its
transcendence degree (over the field Q(exp(α)), which is the field over which exp(α) = π(α, exp(α))
is defined). Hence we get

dimY ≥ dimT − d > dimT − (n− dimπ(V )) = dimπ(V )− codimT,

so Y is atypical, and Y ⊆ T ′, finite set depending only on V . Some more work would then be
necessary to get rid of the 2πi which comes up when taking logarithms.

10 05.06.2018 – GCD of lacunary polynomials

Recall the statement of the conjecture: ∀V ⊂ Cn × (C×)n, V defined over Q and Q-irreducible,
dimV < n. Assume that V ∩Γexp 6= ∅, where Γexp is the graph of the exponential function. Then
there exists a Q-linear subspace H ( Cn such that α ∈ H

The problem for people working in Model theory is the existential quantifier; we have seen last
time that assuming Zilber (and Schanuel) one might prove a uniform version of Schanuel, namely
∀V ⊆ Cn × (C×)n there exists a finite set S of proper Q-linear subspaces such that V ∩ Γexp 6= ∅
there exists H ∈ S such that α ∈ H.

Remark 10.1. Combining the theorem of Lindemann-Weierstrass and the toric case of Manin-
Mumford (due to Michel Laurent) one gets that for all V ⊆ (C×)n, V/Q irreducible the following
holds:

V ∩ exp(Qn) = T1 ∩ exp(Qn) ∪ · · · ∪ Tk ∩ exp(Qn)

where T1, . . . , Tk are the finitely many8 subtori of V .

Proof. Exercise (same strategy used to prove that Zilber+Schanuel implies uniform Schanuel).

8by Manin-Mumford
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Theorem 10.2 (Bombieri-Zannier 1998, Schinzel’s conjecture). Let V be a subvariety of Gnm
defined over a number field9 K of degree ≤ δ by polynomials of näıve height at most h0 and of
degree ≤ d0. Let W be a Q-irreducible component of V of codimension at least 2. Let T be a
torsion coset of dimension 1. Suppose there is a point α ∈ W ∩ T ; in the language of the last
lecture, α is an atypical component of the intersection. Then there exists a torsion coset T ′ with
deg(T ′) ≤ B(V ) such that α ∈ T ′.

Remark 10.3. Bounding the degree is equivalent to imposing finiteness of the possible T ′.

Remark 10.4 (Schinzel). B must depend on h0: take W = Va defined by the equations x− 2 =
y − 2a = 0, where a ∈ N is a parameter. Consider the torsion coset (in fact, the torus) Ta
parametrised by {(t, ta) : t ∈ Gm}. Then α = (2, 2a) ∈ W ∩ Ta. If α belongs to T ′, then
necessarily det(T ′)� a.

10.1 Application to GCDs of lacunary polynomials

Theorem 10.5. Let F,G ∈ Z[x1, . . . , xn] and a ∈ Zn \ {0}. Set fa = F (ta), ga(a) = G(ta). Then
there exist k ∈ {0, . . . , n− 1} and morphism ρ, ψ such that the following diagram is commutative

Gm

ϕ′a:=ρ◦ϕa
��

ϕa
// Gnm

ρ

mmGn−km

ψ

<<

and such that

1. ρ, ψ have size at most B(F,G), where the size of a morphism is the maximum of the absolute
values of the coefficients in the matrices that define them. The crucial part here is that
B(F,G) is independent of a.

2. set P := gcd(F ◦ ψ,G ◦ ψ), where F ◦ ψ actually means the pullback on the rings of regular
functions10. By commutativity of the diagram, h := P ◦ ρ ◦ ϕa divides gcd(fa, ga). Here

comes the punchline: one has that gcd(f,g)
h is a product of cyclotomic factors.

10.2 Proof: theorem 10.2 implies theorem 10.5

Let ξ ∈ Q× be a common root of fa and ga which is not a root of unity. Define V = {F = G =
0} ⊆ Gnm.

One has ϕa ∈ V ∩ Ta, where Ta is the torus Imϕa.
Define W to be an irreducible component of V of dimension 2 containing ξ. Notice that this

needs component needs not exist, since V might even be of codimension 1 (e.g. if F = G).
By theorem 10.2 there exists a torsion coset T ′ (wlog of codimension 1), with degree deg T ′ ≤

B(V ) = B(F,G), such that ϕa(ξ) ∈ T ′.

Remark 10.6. Since ξ is not a root of unity, T ′ is a torus and Imϕa ⊆ T ′. To see this, notice
that ϕa(ξ) ∈ T ′ means ξa1λ1 · · · ξanλn = ω with ω a root of unity; since ξ is not a root of unity,
this implies ω = 1 and

∑
aiλi = 0.

Let τ be an automorphism of Gnm of size�F,G 1 that sends T ′ to {xn = 1}. Let ι : Gn−1
m ↪→ Gnm

be the injectiion x 7→ (x, 1) and π : Gnm → Gn−1
m be the projection on the first n− 1 coordinates.

9in fact, we want all geometrically irreducible components to also be defined over that same number field
10concretely, if y1, . . . , yn−k are variables on gmn−k, F ◦ ψ is a polynomial in the yi, given by F (m1, . . . ,mn),

where the mj are monomials in the yi
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It follows that Imm(τ ◦ ϕa) ⊆ {xn = 1}, and we have

Gm
π◦τ◦ϕa

��

ϕa
// Gnm

Gn−1
m

τ−1◦ι

<<

Remark 10.7. The construction depends only on T ′ (which is a torus and satisfies Im(ϕa) ⊆ T ′.

We now continue inductively with n replaced by n−1 and F,G replaced by F ◦τ−1◦ι, G◦τ−1◦ι
(and ϕa replaced by π ◦ τ ◦ ϕa. Repeating the same argument, either there is a subvariety W as
above (and then I do exactly the same as above), or there is no such W , and then I stop. When I
stop, it means that ϕa belongs to a component of codimension 1, that is, it lies on some component
defined by a nontrivial factor of the gcd(F,G) (or rather, of the polynomials found by changing
variables).

10.2.1 Ok, but how do we do it concretely?

In practice one does not have ξ. Choose a torus T ′ of degree at most B(F,G) and such that
Imϕa ⊆ T ′, and I apply the construction described above. Repeat until possible.

10.3 Sketch of proof of theorem 10.2

Write
T = {(ζ1ta1 , . . . , ζntan

∣∣ t ∈ Gm}, ζ ∈ (Gnm)tors.

10.3.1 Digression on the torsion coset locus of a variety

Let V be a subvariety of Gnm and define V u as the union of all the torsion cosets contained in V .
Further define:

1. V a to be the union of all the cosets (of dimension > 0) contained in V

2. V ∗ = V \ V u

3. V 0 = V \ V a

A possible formulation of Manin-Mumford is that V u is the union of the maximal torsion cosets
of V . Recall the following theorem:

Theorem 10.8 (Laurent). Let V ⊆ Gnm be defined by

f`(x) =
∑
λ∈I

a`,λx
λ = 0

for ` = 1, . . . , t. If H ⊆ V is a maximal subgroup, there exists a subgroup Λ of Zn generated by
the vectors of

D(I) = {λ− µ
∣∣ λ, µ ∈ I}

and such that H = HΛ.

Remark 10.9. n particular, the cosets T = aH ⊆ V are all obtained from subgroups contained
in a−1V (and D(I) does not change).

Example 10.10. Let V : {
∑n
i=0 a`,ixi = 0} for ` = 1, . . . , t, with x0 = 1. Given a partition

P = Λ1 ∪ · · · ∪ Λk of {0, . . . , n} let ∼ be the associated equivalence relation (i ∼ j iff i, j belong
to the same Λr). Then the set

HP = {x : xi = xj if i ∼ j}
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is a subgroup of Gnm, and its cosets Hg are defined by

xig
−1
i = xjg

−1
j if i ∼ j.

Such a coset is contained in V iff

∀x ∈ HPg,
∑
i∈Λ1

a`,ixi = · · · =
∑
i∈Λk

a`,ixi = 0

In other words, points in V a are degenerate solutions – those for which there is a proper subsum
equal to 0.

Remark 10.11. In the previous example, if i ∼ 0 one needs to have xi = x0 = 1 (so these ‘extra
equations’ that we didn’t write down explicitly, but are there)

10.4 Back to the proof of theorem 10.2

There is an easy case: α ∈W a. Write

W a =

k⋃
i=1

⋃
a∈Si

Hia,

with k finite, Hi tori, and Si potentially infinite.

Example 10.12. In G3
m, taking V = {x1 + x2 + x3 = 0} and H = {(t, t, t) : t ∈ Gm}, then

V =
⋃
α∈V Hα and V 0 = ∅ (even more directly, take V = W ×Gm ⊆ GNm: then V 0 = ∅).

It follows that there exists a torus H (of positive dimension n − h > 0), lying in a finite set
depending only on V , and a point g ∈ Gnm, such that α ∈ Hg ⊆ W . Of course one could take
g = α. After applying an automorphism of Gnm which depends only on V we may assume that
H = {1}h×Gn−hm . Let W ′ = {x ∈ Ghm : (x1, . . . , xn)×Gn−hm ⊆W}. We now know W ′×Gn−hm ⊆W
and (α1, . . . , αn) ∈ V ′. We’d like to proceed by induction: we notice that

dim(W ′) + (n− h) ≤ dimW ≤ n− 2,

hence dim(W ′) ≤ h− 2 and W ′ has codimension at least 2. This allows us to apply the inductive
hypothesis (notice that the case n = 2 is trivial since dimW = 0).

Hence we may assume α ∈W 0. We may further assume that α is not a torsion point. Indeed,
if it is, using the fact that W 0 does not contain positive-dimension torsion subvarieties we obtain
that α is contained in a 0-dimensional torsion subvariety of W 0, but there are only finitely many
of these.

11 06.06.2018 – GCD of lacunary polynomials

11.1 An example: GCD of two lacunary polynomials

Consider the two polynomials

f(t) = tu+v − 5tu + 2tv+1 + 6tv − 5t− 15

g(t) = 3tu+v − 2tu + 3tv+1 + 9tv − 2t− 6

We linearise the problem by considering linear polynomials

F (x1, . . . , x5) = 2x1− 5x2 + 2x3 + 6x4− 5x5− 15G(x1, . . . , x6) = 3x1− 2x2 + 3x3 + 9x4− 2x5− 6

The vector a is (u+ v, u, v + 1, v, 1).
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1. We look for a ’small’ torus that contains the image of ϕa, namely {(tu+v, tu, tv+1, tv, t}. We
may take

T ′ = {x ∈ G5
m : x1x

−1
2 x−1

4 = 1}.
We then have

τ : G5
m → G5

m

x 7→ (x3, x4, x3, x5, x1x
−1
2 x−1

4 )

and
τ−1 : G5

m → G5
m

y 7→ (y1y2y5, y1, y3, y2, y4)

The map ψ (or rather, the ’piece’ of ψ from G4
m to G5

m) is obtained as τ−1 ◦ ι, where
ι(y1, . . . , y4) = (y1, . . . , y4, 1), and is therefore given by ψ(y1, . . . , y4) = (y1y2, y1, y3, y2, y4).
Finally, ϕ′a is obtained as ρ ◦ ϕa = π ◦ τ ◦ ϕα, where π : G5

m → G4
m is the projection on the

first 4 components. We have therefore described the following commutative diagram:

G5
m Gm

(tu+v,tu,tv+1,t)
oo

(tu,tv,tv+1,t)
uuG4

m

y 7→(y1y2,y1,y3,y2,y4)

OO

2. Again we look for a small torus containing the image of ϕ′a = {(tu, tv, tv+1, t)
∣∣ t ∈ Gm}. We

may take
T ′ = {y ∈ G4

m : y2y
−1
3 y4 = 1}.

We now want to change variables so as to bring this torus to {y4 = 1}; we take

τ : G4
m → G4

m

y → (y1, y2, y4, y2y
−1
3 y4)

with inverse
τ−1 : G4

m → G4
m

z → (z1, z2, z2z3z
−1
4 , z3)

Now ι(z1, z2, z3) = (z1, z2, z3, 1) and the new ’piece’ of τ is ψ−1 ◦ ι. We obtain the new
diagram

G5
m Gm

(tu+v,tu,tv+1,t)
oo

(tu,tv,tv+1,t)
uu

(tu,tv,1)

qq

G4
m

y 7→(y1y2,y1,y3,y2,y4)

OO

G3
m

z 7→(z1,z2,z2z3,z3)

OO

3. Now we should look for a ’small’ torus containing the image of ϕ′′a, which is {(tu, tv, t) : t ∈
Gm}. If u, v are large enough11, there is no such ’small’ torus, so this phase of the algorithm
is finished.

4. We then write F (x), G(x) in the new coordinates:

F (x) = 2z1z2 − 5z1 + 2z2z3 + 6z2 − 5z3 − 15 = F̃ (z)

G(x) = 3z1z2 − z1 + 3z2z3 + 9z2 − 2z3 − 6 = G̃(z)

5. We compute P = gcd(F̃ , G̃) = z1 + z3 + 3

6. The conclusion is that, up to cyclotomic factors (and for u, v � 1), the gcd of f, g is
P (tu, tv, t) = tu + t+ 3.

11and ’sufficiently independent’ – for example, u = v leads to a small torus
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11.2 Continuation of the proof of theorem 10.2

11.2.1 Geometry of numbers

Let Λ be a lattice of rank r in Zn. Let W = Λ⊗Z R ⊆ Rn, dimR(W ) = r. Consider the associated
quadratic form

Q(x1, . . . , xr) = ‖
r∑
j=1

xjλ
(j)‖22 =

∑
i,j

qi,j(λ)xixj

It is possible to show that the following three numbers agree:

1. vol
({∑r

i=1 tiλ
(i)
∣∣ 0 ≤ ti < 1

})
2. |det qij |

3.

∥∥∥∥determinants r × r minors of
(
λ

(i)
j

)
i,j

∥∥∥∥2

2

(squared L2-norm of the vector whose entries are

the determinants of r × r minors of
(
λ

(i)
j

)
i,j

Furthermore, these three numbers are independent of the choice of the basis λ(j); their common
value is denoted by vol(W/Λ), or simply by vol(Λ). The following hold:

1. vol(Λ) ≤
∏r
j=1 ‖λ(j)‖2 (Hadamard’s inequality)

2. vol(Λ∨) = vol(Λ)

3. there exist u(1), . . . , u(r) ∈ Λ, linearly independent (but not necessarily a basis), such that∏r
j=1 ‖u(j)‖ � vol(Λ) (Minkowski’s theorem)

11.2.2 Application to the construction of ’small’ tori

We’ve seen yesterday that we may assume α ∈ V 0 and α 6∈ (Gnm)tors.
Let T = {(ζ1ta1 , . . . , ζntan)

∣∣ t ∈ Gm}, where ζ ∈ (Gm)ntors and (a1, . . . , an) is primitive. Recall
that the hypothesis is α ∈W ∩ T , W ⊆ V , codimW ≥ 2.

Write Λ = 〈a〉 ⊆ Zn. We have vol(Λ∨) = vol(Λ) � ‖a‖, and by Minkowski there are vectors
u(1), . . . , u(n−1) ∈ Λ∨, linearly independent, such that

‖u(1)‖ · · · ‖u(n−1)‖ � ‖a‖.

We may assume ‖u(1)‖ ≤ · · · ≤ ‖u(n−1)‖.
Let T2 be the torus defined by

xu
(1)

= · · · = xu
(n−2)

= ω,

where ω can be chosen to be defined over Q(ζ).

Since u(1), . . . , u(n−2) are in Λ∨, T ⊆ T2, and moreover

deg T2 � ‖u(1)‖ · · · ‖u(n−2)‖ � ‖a‖(n−2)/(n−1),

where the last inequality is obtained by combining

‖u(1)‖ · · · ‖u(n−2)‖ ≤ ‖u(n−1)‖n−2

and
‖a‖ � ‖u(1)‖ · · · ‖u(n−1)‖ � (‖u(1)‖ · · · ‖u(n−2)‖)1+ 1

n−2 .
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11.2.3 First case: α is an isolated component of W ∩ T2

Let K be the field of definition of W , [K : Q] = δ. Let E = K(ζ1, . . . , ζn). We have that W and
T2 are both defined over E, and for every σ : E(α) ↪→ C, σ|E = id, one has σ(α) ∈ W ∩ T2. It

follows that, setting D := [E(α) : E] we have D ≤ deg(W ∩ T2)� ‖a‖1−
1

n−1 deg(W ).
By a special case of the Bounded Height Conjecture12, the fact that

α ∈ V 0 ∩ T ⊆ V 0 ∩
⋃
{torsion cosets of dimension 1}

implies h(α)� 1.
We also have a lower bound on the height of α. Write α = (ζ1ξ

a1 , . . . , ζnξ
an), where ξ is not a

torsion point (=root of unity). Then we have

h(α)�
n∑
i=1

h(αi) =
∑
i

|ai|h(ξ)� ‖a‖h(ξ).

On the other hand, the fact that a is primitive implies K(ξ1, . . . , ξn, α) = K(ζ1, . . . , ζn, ξ), from
which we obtain

[E(α) : E] = [E(ξ) : E].

Thus we have an inequality of the form [E(ξ) : Q(ξ1, . . . , ξn)] ≤ δD. We would like to apply
Dobrowolski, but unfortunately this would involve the degree of ξ over Q, which depends on the
roots of unity ζ1, . . . , ζn. A finer version of Dobrowolski due to Amoroso-Zannier yields h(ξ)�ε,δ

D−1−ε (the point here is that one controls the degree of ξ over some cyclotomic extension).
Putting everything together we obtain

D−1−ε‖a‖ � h(α)� 1,

hence
‖a‖1/(1+ε) � D � ‖a‖1−

1
n−1 deg(W ),

which in particular gives ‖a‖
1−ε′
n−1 � deg(W ), where

ε′ = (n− 1)

(
1− 1

1 + ε

)
< 1 if ε <

1

n− 2
.

The conclusion is that the degree of T is limited in terms of deg(W ), hence we may simply choose
T ′ = T .

12 07.06.2018 – Conclusion of the proof of theorem 10.2

Recall that we are trying to prove:

Theorem 12.1 (Bombieri-Zannier 1998, Schinzel’s conjecture; see theorem 10.2). Let V be a
subvariety of Gnm defined over a number field13 K of degree ≤ δ by polynomials of näıve height at
most h0 and of degree ≤ d0. Let W be a Q-irreducible component of V of codimension at least 2.
Let T be a torsion coset of dimension 1. Suppose there is a point α ∈ W ∩ T : then there exists a
torsion coset T ′ with deg(T ′) ≤ B(V ) such that α ∈ T ′.

So far we have seen the following:

1. we may assume W = V : the field of definition of W and its degree can be estimated in terms
of those of V ;

12which is now a theorem of Habegger, proven by Zannier in the special case needed here
13in fact, we want all geometrically irreducible components to also be defined over that same number field
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2. we may assume that α is in V 0 and α is not a torsion point;

3. Let α ∈ V 0 and let T = {(ζ1ta1 , . . . , ζntan
∣∣ t ∈ Gm} with ζ ∈ (Gnm)tors and a ∈ Zn \ {0}

primitive. By methods of geometry of numbers we have shown: there exists a torsion coset
T2 of dimension 2, T2 ⊇ T , such that deg(T2)� |a|1−1/(n−1) (whereas deg T ≈ |a|)

4. We have seen how to handle the first case: {α} is an isolated component of V ∩ T2. In this
case,

deg(T )
1−ε
n−1 �ε,δ,d0 1 + h0.

In proving this, we have assumed a case of the Bounded Height Conjecture: ∀α ∈ V 0 ∩⋃
{torsion cosets of dimension 1}, then h(α) �δ,d0 1 + h0. We have also used a relative

version of Dobrowolski.

We now consider the second case.

12.1 Anomalous intersections and the structure theorem

Definition 12.2. Let V be irreducible and let T be a translate14. We say that an irreducible
subvariety Y of V ∩T is anomalous (or more precisely V -anomalous) if dimY > 0 and dimY >
dimV − codim(T ).

Remark 12.3. This is not the same as atypical, because we are considering all translates and
not just torsion cosets. Notice that Y atypical of positive dimension implies Y anomalous. Fur-
thermore, every translate Y of positive dimension which is contained in V is anomalous.

Definition 12.4. We set V 0,a = V \
⋃
{anomalous subvarieties} ⊂ V 0.

Theorem 12.5 (Corollary of the structure theorem). Any V -anomalous varieties are contained
in Hg, where H is a proper subtorus of Gnm of degree controlled by deg(V ) and g is a point of Gnm
(not a torsion point, and on whose height we say nothing).

Coming back to the proof of theorem 10.2, suppose that α belongs to a component Y of
dimension ≥ 1 of V ∩ T2. Then dimY ≥ 1 > 2 − 2 ≥ dim(T2) − codim(V ), so Y is anomalous.
By theorem 12.5, there exists a translate T ′ = Hg with Y ⊆ T ′ and deg T ′ �n,d0 1. Everything
is going (almost) smoothly: we would be done if we knew that g is a torsion point.

Notice that Y ⊆ T2 ∩ T ′, which is a union of translates. Let K be an irreducible component
of T2 ∩ T ′ that contains Y ; the dimension of K is 1 or 2. If dimK = 1, then Y = K (because
dimY = 1 and K is irreducible), hence α ∈ K = Y ⊆ V , and since K is a translate this contradicts
the fact that α was taken in V 0. Hence K is of dimension 2, and therefore is a component of T2,
and in particular a torsion coset. Thus K ⊆ T ′ contains a torsion point, and therefore T ′ is itself
a torsion coset.

12.2 Remarks on the dependence of the result on the height

In case 2 we have found a torsion coset of bounded degree with the additional property that the
bound is independent of the height of V . With some care, one obtains the following: suppose
∃α ∈W ∩ T , where α ∈ V 0 is not a torsion point. Then:

1. either deg(T )
1−ε′
n−1 �n,δ,d0 1 + h0 (so T itself has small height,

2. or there exists a torsion coset T ′ with deg(T ′)�n,d0 1 (that is, the degree of T ′ is bounded
also uniformly in the height)

Notice however that we have the assumption α ∈ V 0 (and not torsion), and that this condition
is necessary, as shown by the following example.

14not necessarily by a torsion point
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Example 12.6 (α ∈ V 0 is necessary for uniformity). Let V = {(2, 2a)} × Gm ⊂ G3
m and notice

that V 0 = ∅. The point α =
(
2, 2a, 2b

)
belongs to V ∩ T , where T = {(t, ta, tb) : t ∈ Gm}. The

degree of T is essentially max{|a|, |b|}, so the first conclusion cannot hold (h0 ≈ log a, so deg(T )
is certainly not bounded uniformly in terms of h0 when b→∞). On the other hand, α does not
belong to a torus of height bounded uniformly in both a and b (when a, b → ∞), so the second
conclusion also does not hold.

Remark 12.7. The problem in the previous example is that when one make the reduction to the
case α ∈ V 0 the coordinate 2b of the torus simply disappears. This, however, is a purely technical
problem, and we’ll say later how to go around it.

12.3 Application to the study of multiple roots of lacunary polynomials

We have already discussed the following theorem:

Theorem 12.8. Let F,G ∈ Z[x1, . . . , xn] be linear polynomials, and let a ∈ Zn \ {0} a primitive
vector. Assume that |a|1/2(n−1) > c(n)(1 + max{log |fi|, log |gi|}. Set

fa(t) = F (ta) = f0 + f1t
a1 + · · ·+ fnt

an

and
ga(t) = G(ta) = g0 + g1t

a1 + · · ·+ gnt
an .

There exist morphisms ρ : Gnm → Gn−km and ψ : Gn−km → Gm, of size bounded by a function of n
alone, such that setting ϕa(t) = ta and ϕ′a = ρ ◦ ϕa one has

1. ϕa = ψ ◦ ϕ′a

2. setting P = gcd(F ◦ ψ,G ◦ ψ) and h = P ◦ ϕ′a, we have that if

gcd(fa, ga)

h

vanishes on ξ, then:

(a) either ξ is a root of unity

(b) or there exists a proper subset Λ of {0, . . . , n} such that∑
i∈Λ

fiξ
ai =

∑
i∈Λ

giξ
ai = 0. (?)

Remark 12.9. (?) might happen because it is possible that some coefficients of a stay small even
though |a| → ∞.

Corollary 12.10 (Multiple roots of lacunary polynomials). With the same setting, there exist a
finite number of ρ, ψ as above, each of size at most c(n, F ), such that if ξ is a multiple root of
fa(t) and is not a root of unity, then there exists a polynomial P such that P 2 | F ◦ ψ and ξ is a
root of P ◦ P ◦ ϕ′a.

Proof. The idea is of course to use the derivative criterion for multiple roots (more precisely, if ξ
is a double root of fa, then ξ is a root of both fa and tf ′a).

Given F (x) = f0 +f1x1 + . . .+fnxn, we take G(x) = f1a1x1 + . . .+fnanxn. The only problem
is that the subgroup (that is, a) shows up in the coefficients.

Suppose, for ease of exposition, that (?) is not satisfied. We may then apply the previous
theorem (unless a is very small, the inequality |a|1/2(n−1) > c(n)(1 + max{log |fi|, log |gi|} will be
satisfied): after a bounded change of variables, I have new polynomials (still denoted by F,G)

F (x) = f0 + f1y
b1 + · · ·+ fny

bn
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G(x) = a1f1y
b1 + · · ·+ fnany

bn

where b1, . . . , bn ∈ Zn−k and y = (y1, . . . , yn−k). Equivalently,

fa = F (ta
′
), tga = G(ta

′
)

where a = Ba′ for some integral matrix B ∈ Matn,n−k(Z). Now ξ is a root of h(t) = P (ta
′
), where

P = gcd(F,G). We would like to be more precise and show that P is a multiple factor of F .
Let P =

∑
Pby

b, so that h(t) =
∑
Pbt
〈b,a′〉, and consider the differential operator

∆ := a′1y1
∂

∂y1
+ · · ·+ a′n−kyn−k

∂

∂yn−k
.

Remark 12.11. The reason to introduce ∆ is that for b ∈ Zn−k the polynomial yb is an eigenvector
of ∆ corresponding to the eigenvalue 〈b, a′〉.

We obtain
∆F =

∑
fi〈bi, a′〉ybi =

∑
fiaiy

bi = G.

Hence (since we have P | F and P | ∆F ) we obtain that either P 2 | F or P is an eigenvector for
∆. But in the latter case λP = ∆P =

∑
Pb〈b, a′〉yb, which implies that 〈b, a′〉 is constant, hence

h(t) is a monomial, contradiction (a monomial does not have roots in Gm). We deduce as desired
that P 2 | F .

13 12.06.2018 – Tools used in the proof of theorem 10.2

Let V ⊆ Gnm be a Q-irreducible subvariety of dimension r. In proving theorem 10.2 we assumed
the following two results:

1. Bounded height: let α ∈ V 0 ∩ T with T of codimension 1: then h(α)� 1

2. Given Y a V -anomalous component, there exists a translate T which contains Y and which
satisfies deg T �n (deg V )µ(n,r)

Today we start working towards the proof of these results. Some notation:

Notation 13.1. 1. V ⊆ Gnm is a Q-irreducible subvariety of dimension r

2. Y ⊆ V is a maximal V -anomalous subvariety: Y is contained in a translate Hg, where H
is a torus of codimension h, g is a point in Gnm, and s := dimY > dimV − codim(H), that
is, s > r − h.

Remark 13.2. 1. V is contained in a (proper) translate if and only if V is V -anomalous

2. if Y is V -anomalous, we may assume s = r − h + 1 (simply eliminate equations from the
torus until its dimension is the correct one).

Theorem 13.3 (Special case of the structure theorem). Let Y be V -anomalous. There exists Hg

containing Y and such that degH � (deg V )µ(n,r).

Lemma 13.4 (Lemma 1). The theorem is true if Y = V .

Sketch of proof. We know that V is contained in a translate. Let x1, . . . , xn ∈ C(V ) be multiplic-
ately independent modulo constants. Let y1, . . . , yr be a transcendence basis given by sufficiently
generic linear combinations of x1, . . . , xn.

C(V )

∆:=deg(V )

C(y1, . . . , yr)

purely transcendental

C
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On the field C(y1, . . . , yr) we have a set of nonarchimedean valuations that satisfy the product
formula. Writing R = P `11 · · ·P

`k
k ∈ C[y] for the factorisation in irreducibles, the product formula

is simply the statement
k∑
i=1

`i deg(Pi) + (−deg(R)) = 0.

We define h(R) to be its degree; if R is a rational function, R =
∏
P
ei
i∏

Q
fj
j

, then h(R) =
∑
fi deg(Qi)+

max{0,degR}. The following (trivially) hold:

1. h(R) = 0⇔ R ∈ C;

2. if R 6∈ C, then h(R) ≥ 1.

All these absolute values on C(y) can be extended to absolute values on C(V ), thus giving a
geometric height on C(V ).

Remark 13.5 (Lehmer’s conjecture in the geometric setting). For all γ ∈ C(V ) \ C we have
h(γ) ≥ ∆−1

Proof. Let γ be as in the statement, with conjugates γ1, . . . , γ∆. let σ be an elementary symmetric
function in γ1, . . . , γ∆ such that ϑ := σ(γ1, . . . , γ∆) 6∈ C (this is possible because γ is not in C: if
all the ). We obtain

1 ≤ h(ϑ) ≤ h(γ1) + · · ·+ h(γ∆),

using the fact that σ(· · · ) is a sum of monomials of degree at most ∆. The coefficients are irrelevant
(they are in C, hence they have height 0), so

|
∑

cλγ
λ| ≤ max γλ ≤

∆∏
j=1

max{1, |γj |}λj .

Using
∑∆
j=1 λj ≤ ∆ we obtain the desired estimate. Finally, since γ1, . . . , γ∆ are conjugate, we

obtain
1 ≤ h(ϑ) ≤

∑
h(γi) = ∆h(γ).

We will admit the following lemmas:

Lemma 13.6. h(x1), . . . , h(xn) ≤ 1

In our case, the xi are multiplicatively dependent on V (modulo constants); using this fact
and elementary geometry of numbers, one obtains:

Lemma 13.7. For every L ∈ N, there exists a ∈ Zn \ {0}, |a| ≤ L, such that

h(xa) ≤ cL−1/(n−1) max{h(xi)} ≤︸︷︷︸
previous lemma

cL−1/(n−1).

Choosing L = 1 + [c∆n−1] in the previous lemma we find an a of bounded degree and such
that h(xa) < ∆−1. Since any non-constant function has height at least ∆−1, this implies that xa

is constant on V , hence that V is contained in the translate defined by xa = CV for a suitable
constant CV .

43



13.1 Chow forms

Let uj = (uj0, . . . , u
j
n), for j = 0, . . . , r, be r+ 1 ‘packets’ of n+ 1 variables. Consider the ‘generic’

linear forms

Lj =

n∑
i=0

uijxi.

Let P = P(V ) ⊆ C[x0, . . . , xn] be the proper, prime, homogeneous ideal of V . We construct an
ideal

P̃ =
{
F ∈ P[u0, . . . , ur]

∣∣ ∃M ≥ 1, xM0 F ∈ (P, L0, . . . , Lr) ⊆ C[x, u]
}

Theorem 13.8. P̃ is a multihomogeneous principal ideal; any generator F is called a Chow
form.

Remark 13.9. F (u0, . . . , ur) = 0 if and only if V ∩ {L0 = . . . = Lr = 0} 6= ∅ in Pn.

Let now S0, . . . , Sr be variable15 antisymmetric matrices of size (n+ 1)× (n+ 1).

Remark 13.10. Let α ∈ Pn. Suppose that αSjα = 0: then the linear forms Sjα vanish on α,
and therefore, assuming that α lies on V , we have F (S0α, . . . , Srα) = 0.

Consider the generic polynomial16 F (S0x, . . . , Srx) ∈ C[x][S0, . . . , Sr] and denote by P1, ...,
PN all the coefficients of F (S0x, . . . , Srx). Set P1 = (P1, . . . , PN ).

Proposition 13.11. P is the only isolated component of P1

Furthermore, P is naturally endowed with a quasi-basis P1, . . . , PN ; one has degPj ≤ ∆(r+1).
From now on, we dehomogeneise the Pj by taking x0 = 1.

13.2 Jacobian matrices

Define

J(V ) =

(
∂Pi
∂xj

)
i=1,...,N
j=1,...,n

;

notice that we have de-homogeneised (there is no x0). Given h n-tuples of complex numbers
z1, . . . , zh ∈ Cn, we further define

J(z1, . . . , zh) =


J(V )

z1
1/x1 . . . z1

n/xn
z2

1/x1 . . . z2
n/xn

...
zh1 /x1 . . . zhn/xn


Remark 13.12. These extra rows correspond to the partial derivatives ∂xz

∂xj
= xz

zj
xj

. Therefore

J(z1, . . . , zh) corresponds to the Jacobian matrix of the intersection V ∩ translate.

Notation 13.13. Given a matrix M with coefficients in C(x1, . . . , xn) and Y ⊆ V , we write
rankY (M) for the rank of M considered as a matrix in C(Y ). In other words, we replace the xi
(considered as variables) with the xi (considered as functions on Y ).

Remark 13.14. Notice that the Jacobian matrix of a translate depends only on the underlying
torus and not on the point we translate by.

15that is: all the coefficients under the diagonal are free variables, all the coefficients on the diagonal are 0, and
all those above the diagonal are the opposite of the corresponding free variables

16this is a polynomial in the coefficients of x and in all the variables that are the coefficients of the Sj

44



13.3 More on the proof of theorem 13.3

Recall our setting: Y is an s-dimensional subvariety of Gnm contained in a translate Hg. Suppose

H is given by xa
1

= · · · = xa
h

= 1, and let ϕi = xa
i

(considered as a function on Y ). Let

ϕ : Gnm → Ghm
x 7→ (ϕ1, . . . , ϕh)

and write w for ϕ(g) = ϕ(Hg).

Lemma 13.15 (Lemma 2).

rankY J(a1, . . . , ah, V ) ≤ n− r + h− 1 = n− s.

Proof. Hg is given by the equations ϕi = wi. It follows that

P1, . . . , PN , PN+1 := ϕ1 − w1, . . . , PN+h := ϕh − wh ∈ I(Y )

since Y ⊆ V ∩Hg. By the Jacobian criterion,

rankY

(
∂Pi
∂xj

)
i=1,...,N+h
j=1,...,n

≤ n− dimY = n− s

Now using remark 13.12 we obtain(
∂Pi
∂xj

)
i=1,...,N+h
j=1,...,n

= J(a1, . . . , ah;V ),

and the lemma follows: notice that the rows we add differ from xz
zj
xj

by xz, which are invertible

functions on all of Gnm.

Lemma 13.16 (Lemma 3). Suppose rankV J(a1, · · · , ah;V ) ≤ n− r+h−1. Then ϕ1, . . . , ϕh are
algebraically dependent on V .

Proof. There are at least N + h− (n− r+ h− 1) = N −n+ r+ 1 linear relations among the rows
of J(a1, . . . , ah;V ) with coefficients in C(V ). Each such relation is of the form

γ1
∂P1

∂xj
+ · · ·+ γ1N

∂PN
∂xj

+ γN+1

a
(1)
j

xj
+ · · ·+ γN+h

ahj
xj

= 0, j = 1, . . . , n. (2)

Suppose by contradiction that ϕ1, . . . , ϕh are algebraically independent over C. This implies that
the derivations ∂

∂ϕk
(which are naturally defined on the transcendental extension C(ϕ1, . . . , ϕh)

contained in C(V )) extend to C(V ): we now use this fact to prove the following lemma.

Lemma 13.17. We have

γ1
∂P1

∂xj
+ · · ·+ γN

∂PN
∂xj

= 0 on V,

and this for every j = 1, . . . , n.

Proof. We have Pi(x1, . . . , xn) ≡ 0 on V since the Pi belong to the ideal of V , so on V we have
the equation

0 =
∂Pi(x)

∂ϕ`
=

n∑
j=1

∂Pi
∂xj

∂xj
∂ϕ`

.

From equation (2), multiplying by
∂xj
∂ϕ`

and summing over j,

0 = γN+1

n∑
j=1

a
(i)
j

xj

∂xj
∂ϕ`

+ · · ·+ γN+h

n∑
j=1

a
(h)
j

xj

∂xj
∂ϕ`

` = 1, . . . , h
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On the other hand,

δi,` =
∂ϕi
∂ϕ`

= xai
n∑
j=1

a
(i)
j

xj

∂xj
∂ϕ`

= ϕi

n∑
j=1

a
(i)
j

xj

∂xj
∂ϕ`

;

replacing
∑n
j=1

a
(i)
j

xj

∂xj
∂ϕ`

with δi,`ϕ
−1
i in the previous equation we obtain 0 = γN+`ϕ

−1
` for ` =

1, . . . , n, which is what we wanted to show.

These N − n+ r+ 1 independent relations remain independent, hence rank J(V ) ≤ N − (N −
n+ r + 1) = n− r − 1. Given that P1, . . . , Pn is a quasi-basis of P, by the Jacobian criterion we
get a contradiction.

More precisely: if P1 = P, this is really a contradiction with the Jacobian criterion. Otherwise,
P is the only isolated component of P1, so there exists a Q 6∈ P such that P ⊆ Q−1P1, and the
same argument applies.

Lemma 13.18 (Lemma 4). Let, as before, Y ⊆ V be anomalous of dimension s. Let Y ⊆ Hg,
where H = kerϕ is of codimension h and

ϕ : Gnm → Ghm
x 7→ (xa1 , . . . , xah).

As before, denote by ϕi the function xai . Suppose that the following hold:

1. Y 6⊆ Vsing

2. trdegC(ϕ1, . . . , ϕh) = h− 1

3. w is not a singular point of ϕ(V ).

Then there exists z ∈ Cn, z 6= 0, such that

rankY J(z;V ) ≤ n− r.

Proof. We start by remarking that ϕ(V ) is of dimension h−1 (by the assumption on the transcend-
ence degree), hence ϕ(V ) is a hypersurface in Ghm. Classical results imply that there are derivations
δ1, . . . , δr on C(V ) such that δ`(xj) is regular outside of Vsing and the vectors (δ`(x1), . . . , δ`(xn))
(for ` = 1, . . . , r) are linearly independent over C(V ).

Let F (y1, . . . , yh) = 0 be the equation of ϕ(V ) in Ghm. We have F (ϕ1, . . . , ϕh) ≡ 0 on V , hence

0 = δ` (F (ϕ1, . . . , ϕh)) =

h∑
i=1

Fi(ϕ)δ`(ϕi),

where Fi =
∂F

∂xi
. On the other hand,

δ`(ϕi) = ϕi

n∑
j=1

a
(i)
j

xj
δ`(xj).

It follows, as in the proof of the previous lemma,

n∑
j=1

h∑
i=1

Fi(ϕ)ϕi
a

(i)
j

xj
δ`(xj) = 0 on V.
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Since Y is not contained in the singular locus, we can specialise17 on Y and, setting zj =∑h
i=1 Fi(w)wia

(i)
j , we obtain the relation

n∑
j=1

zj
xj
δ`(xj) = 0 on Y.

As for the Chow equations of V we have

0 = δ`(P (x1, . . . , xn)) =

n∑
j=1

∂Pi
∂xj

δ`(xi) on V, hence on Y.

Combining the previous relations we obtain

J(z;V ) t (δ`(x1), . . . , δ`(xn)) = 0, ` = 1, . . . , r on Y

Hence we have found r independent vectors in the kernel of J(z;V ), which is therefore of rank at
most n− r. It remains only to see that z is not the zero vector.

This follows combining three remarks: one is that a(1), . . . , a(h) ∈ Zn are linearly independent
over Q, hence also over C. The second is that wi 6= 0 for i = 1, . . . , h (since w ∈ Ghm). Finally,
there is an index i such that Fi(w) 6= 0, because w is nonsingular in ϕ(V ).

14 13.06.2018 – Proof of (the special case we need of) the
structure theorem

We are in the process of proving the structure theorem; so far, we’ve established the following
lemmas:

Lemma 14.1 (Lemma 1, cf. lemma 13.4). The theorem is true if Y = V .

Lemma 14.2 (Lemma 2, cf. lemma 13.15).

rankV J(a1, . . . , ah;V ) ≤ n− r + h− 1 = n− s.

Lemma 14.3 (Lemma 3, cf. lemma 13.16). Suppose rankV J(a1, . . . , ah;V ) ≤ n−r+h−1. Then
ϕ1, . . . , ϕh are algebraically dependent on V .

Lemma 14.4 (Lemma 4, cf. lemma 13.18). Suppose Y 6⊆ Vsing and that w is not singular in
ϕ(V ). If

trdegV C(ϕ1, . . . , ϕh) = h− 1,

then there exists z ∈ Cn \ {0} such that rank JY (z;V ) ≤ n− r.

Today we complete the proof, using yet another lemma:

Lemma 14.5 (Lemma 5). If ∃z ∈ Cn \ {0} such that rankV J(z;V ) ≤ n − r, then V is V -
anomalous.

For the proof, see section 15.1.

Proof of the structure theorem. By induction on r = dimV . Let ∆ := deg(V ).
By lemma 14.1 we can assume Y ( V , hence s ≤ r − 1 and in particular r ≥ 2. Furthermore,

by lemma 14.2 we have rankY J(a1, . . . , ah;V ) ≤ n− r + h− 1 = n− s.
Suppose rankV J(a1, . . . , ah;V ) > n−r+h−1. Then there exists a minor F of J(a1, . . . , ah;V ),

of size at least ≥ n− r+h, which is not identically 0 on V but is identically 0 on Y . Let V ′ be an

17recall that wi is the i-th coordinate of the image of V
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irreducible component of V ∩ {F = 0} containing Y . Now dimV ′ = r − 1 and Y is (even more)
anomalous in V ′. Moreover, by Bézout we have

deg(V ′) ≤ deg(F ) deg(V )� ∆2.

By induction, we can choose µ(n, r) = 2µ(n, r − 1).
Suppose instead rankV J(a1, . . . , ah;V ) ≤ n − r + h − 1. By lemma 14.3, ϕ1, . . . , ϕh are

algebraically dependent on V , hence dimϕ(V ) ≤ h − 1 (and in fact equality holds18). Let W :=
ϕ(V ); it is a hypersurface of Ghm. By the usual theorem on the dimension of the fibers of morphisms,
there is a (Zariski) open dense subset U of W such that ∀u ∈ U and for every component Z of
V ∩ ϕ−1(u) we have

dimZ = dimV − dimW = r − (h− 1) = s.

By shrinking U if necessary, we may further assume Wsing ∩ U = ∅. We want to apply Lemma
14.4 with Y ← Z.

Suppose for now that Z 6⊆ Vsing. Then by Lemma 14.4 there exists z ∈ Cn, z 6= 0, such that
rankZ1

J(z;V ) ≤ n − r. On the other hand, Lemma 14.5, combined with the fact that V is not
V -anomalous19, yields that rankV J(z;V ) > n− r. Proceeding as above, we find that there exists
a minor F of J(z;V ), of rank n− r and not identically 0 on V , which is ≡ 0 on Z.

If instead Z ⊆ Vsing, then I just fix an equation F ≡ 0 on Vsing but not identically zero on V
(such an equation can be chosen of degree � ∆ for the argument using Chow forms).

Hence, in any case, we have an equation F ≡ 0 on Z which is not identically zero on V and
whose degree is� ∆. We apply Bézout again: choose V ′, a component of V ∩{F = 0} containing
Z. The dimension of V ′ is r − 1, and Z is anomalous in V ′. By induction, ∃aZ ∈ Zn \ {0} such
that |aZ | � ∆2µ(n,r−1) and xaZ is constant on Z.

Now the problem is that we want to choose an a which works for ‘almost all’ the Z. The union
of the Z that we are interested in is V ∩ϕ−1(U), which is dense in V . Now aZ depends on Z, and
there is no changing this fact; however, |aZ | is bounded uniformly in Z, hence – by pigeonhole –
there exists a ∈ Z \ {0} (with the same bound |a| � ∆2µ(n,r−1)) such that ϕh+1 := xa is constant
for any Z ⊆ Ω, where Ω is dense in V ∩ ϕ−1(U), and therefore in V .

Remark 14.6. Notice that this is not the same as saying that xa is constant on Ω! Otherwise (by
density) it would be constant on V , which is in general not possible because V is not (in general)
contained in a translate.

Fact. Recall that ϕ1, . . . , ϕh are algebraically dependent on V . We now claim that ϕh+1 is also
algebraically dependent from ϕ1, . . . , ϕh.

Proof of the fact. We may assume that ϕ2, . . . , ϕh are algebraically independent (the transcend-
ence degree is h− 1). Suppose by contradiction that ϕ2, . . . , ϕh, ϕh+1 are still algebraically inde-
pendent. Using the converse of lemma 14.3, we obtain

rankV J(a2, . . . , ah+1;V ) > n− r + h− 1.

Therefore there exists a minor F of this matrix, of size a least n − r + h, such that F is not
identically zero on V . It follows that there exists t ∈ Ω such that F (t) 6= 0. But t ∈ Z for one
of the ‘good’ Z, hence ϕh+1 is constant on Z. It follows that t ∈ Z belongs to a translate of
ϕ2 = . . . = ϕn+1 = 1. By lemma 14.2 we obtain

rankZ J(a2, . . . , ah+1;V ) ≤ n− r + h− 1,

but F is a minor (of size n−r+h−1) of this same matrix, which implies F ≡ 0 on Z, contradiction
(notice that t belongs to Z and F (t) 6= 0).

18this follows from the maximality of Y in the following way. If dimϕ(V ) < h − 1, then every component of
V ∩ ϕ−1(w) would have dimension at least r − dim(V ) > r − (h − 1) = s. Now each of these components is
V -anomalous, and one contains Y , contradiction

19otherwise we would have Y = V by maximality
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We are now in a position to finish the proof of the theorem.

Gnm
ϕ

��

Y ⊆ Hg

��
Ghm w

Remark 14.7. Y is a component of V ∩ ϕ−1(w), for otherwise Y would not be maximal.

Write V ∩ ϕ−1(w) = Y ∪ V0, where V0 is the union of the other irreducible components. Take
y ∈ Y \V0 and set wh+1 = ϕh+1(y). Also denote by ϕ̃ the morphism (ϕ1, . . . , ϕh+1) : Gnm → Gh+1

m .

With this notation, y ∈ V ∩ϕ̃−1(w̃) ⊆ V ∩ϕ−1(w). Hence y belongs to Ỹ , irreducible component

of V ∩ϕ̃−1(w̃). Since Ỹ is contained in one of the irreducible components of V ∩ϕ−1(w) and y does

not belong to V0 (which is the union of all the components different from Y ), we obtain Ỹ ⊆ Y .
We want to show that they are equal, which will imply the theorem.

Our Fact, combined with the algebraic dependence of ϕ1, . . . , ϕh on V , implies dim ϕ̃(V ) ≤
h− 1. By the fiber dimension theorem,

dim Ỹ ≥ r − (h− 1) = s = dimY,

which implies Y = Ỹ as desired.

15 14.06.2018 – Bounded height conjecture and conclusion

15.1 Schanuel, Ax, and the proof of lemma 14.5

Schanuel’s classical conjecture says the following:

(S1) α1, . . . , αn ∈ C Q− linearly independent⇒ trdegQ Q(α, exp(α)) ≥ n.

Schanuel himself has formulated a geometric version of his conjecture:

(S2) y1, . . . , yn ∈ tC[[t]] Q− linearly independent⇒ trdegC(t) C(t, y, exp(y)) ≥ n.

There is also a multi-dimensional version due to Ax:

(Ax)

y1, . . . , yn ∈ C[[t1, . . . , tm]] Q-linearly independent
implies

trdegQ Q(y, exp(y)) ≥ n+ rank
(
∂yi
∂tj

)
Remark 15.1. (Ax) with m = 0 implies (S1), and (S2) implies (Ax) with m = 1 if yi(0) = 0.

Less obviously, we have the following theorems of Ax:

Theorem 15.2 (Ax). (Ax) is true if we have yi(0) = 0 for i = 1, . . . , n

Theorem 15.3 (Ax). (Ax) is equivalent to (S1)

Lemma 15.4 (Cf. Lemma 14.5). Suppose that there exists z ∈ Cn\{0} such that rankV J(z;V ) ≤
n− r. Then V is V -anomalous, that is, there exists a ∈ Zn \ {0} such that ϕ(x) = xa is constant
on V .

Remark 15.5. Notice that in fact rankV J(z;V ) = n−r, because rankV J(z;V ) ≥ rankV J(V ) =
n− r.
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Proof of lemma 14.5. rankV J(V ) = n− r, so we have a linear relation (on V )

zj
xj

= γ1
∂P1

∂xj
+ · · ·+ γN

∂PN
∂xj

Here γi ∈ C(V ), and the equality holds for j = 1, . . . , n.
Take α ∈ V \Vsing. Let y1, . . . , yr be generic linear polynomials in x1, . . . , xn, and assume that

the yi vanish at α (in fact, I think we require that α is the only common zero of the yi, at least
in a neighbourhood of α).

On the one hand, standard manipulations of derivatives20 yield∑
zj

1

xj

∂xj
∂y`

= 0 (3)

On the other, let xj = αj exp(Xj), where Xj ∈ C[[y1, . . . , yr]] are power series without constant
term (we will apply Ax’s theorem to the Xj). Rewriting (3) in terms of the Xj , we find

∂

∂y`
(z1X1 + · · ·+ znXn) = 0 ` = 1, . . . , r.

In particular, z1X1 + · · ·+ znXn is locally constant.
Hence t := trdegC C (X1, . . . , Xn, exp(X1), . . . , exp(Xn)) ≤ (n−1)+dimV : this follows because

there is a linear relation among the Xi and exp(Xj) parametrise V .

Theorem 15.2 implies t ≥ n + r′, where r′ = rank
(
∂Xj
∂y`

)
= r (the last equality should be

checked by an explicit computation, which we skip). This is a contradiction, which means that the
hypothesis in Ax’s theorem must fail. Hence X1, . . . , Xn are Q-linearly dependent, so x1, . . . , xn
are multiplicatively dependent on V , which is what we want.

15.2 Bounded height

Proposition 15.6. V ⊆ Gnm. Then the points in V 0 ∩
⋃
{torsion cosets of dimension 1} have

bounded height.

Sketch of proof. Write V as {f` = 0 : ` = 1, . . . , L}, where f` :=
∑
λ∈I a`,λx

λ ∈ Z[x] (or in fact

even Q[x]).
Write α = (ζ1ξ

a1
1 , . . . , ζnξ

an
n ) ∈ V 0, where the ζi are roots of unity21 and aj ∈ Z. We want to

show that h(α)� 1. The fact that α is in V 0 implies that there is no sub-sum of f` that vanishes

on α. This gives the following: if c1, . . . , cL are generic, and if we set f =
∑L
i=1 cifi =

∑
λ fλx

λ,
then ∑

fλξ
〈a,λ〉 = 0

and there are no nonzero subsums. Denote by m1 > · · · > mk the integers 〈a, λ〉 and assume
mk = 0 (otherwise we just shift). We now apply the following lemma:

Lemma 15.7. h(ξ)� m−1
1

The lemma is enough to conclude the proof: we have

h(α)� max |aj |h(ξ)� max |aj |
m1

� max |aj |
maxλ |〈a, λ〉|

;

now if the vectors λ generate Zn (or at least a full-rank sublattice) we have that maxλ |〈a, λ〉| is
comparable with max |aj |, and we are done. If not, one makes a change of coordinaes to reduce
to the case of a smaller ambient space.

20using
∂Xj
∂y`

= 1
xj

∂xj
∂y`

21which we take equal to 1 for simplicity

50



Proof of lemma 15.7. For r = 1, . . . , k − 1 let

γr = f1ξ
m1−mr + · · ·+ fr−1ξ

mr−1−mr + fr;

each of these expressions is nonzero, because there are no trivial subsums. On the other hand,∑k
j=1 fjξ

mj−mr = 0, so

−γr =
fr+1

ξmr−mr+1
+ · · ·+ fk

ξmr−mk
.

This imply that for every finite place v we have

|γr|v ≤ max{1, |ξ|v}−(mr−mr+1) max
i
|fi|v

while for v infinite
|γr|v ≤ kmax{1, |ξ|v}−(mr−mr+1) max

i
|fi|v

Applying the product formula over any field that contains all the numbers of interest we obtain

0 ≤ log k − (mr −mr+1)h(ξ) + h(f),

or equivalently (mr −mr+1)h(ξ) ≤ log k + h(f). Summing over r = 1, . . . , k − 1 we obtain

m1h(ξ) = (m1 −mk)h(ξ) ≤ k log k + kh(f)� 1.

15.3 Complements

15.3.1 Bounded height conjecture, full version

V ⊆ Gnm irreducible of dimension r. Let ρ ≥ r. We say that Y ⊆ V is ρ-anomalous if

1. dimY > 0

2. Y is contained in a translate Hg, where codim(H) = h and s > ρ− h.

Remark 15.8. In particular, Y is anomalous ⇔ Y is r-anomalous, and Y is (n − 1)-anomalous
if and only if Y is a translate of positive dimension contained in V . Indeed,

s > n− 1− h⇔ s > dim(Hg)− 1⇒ dimY ≥ dim(Hg),

and since Y ⊆ Hg this means Y = Hg.

Set
V oa,ρ := V \

⋃
Y ρ−anomalous

Y.

Remark 15.9. One has V oa,n−1 = V 0 and V oa := V oa,r = V \
⋃
{V − anomalous curves}

Theorem 15.10 (Habegger). V oa,ρ ∩
⋃
T torsion coset

codimT≥ρ
T has bounded height.

Remark 15.11. Theorem 15.10 implies proposition 15.6 by taking ρ = n− 1.

In particular,

V oa ∪
⋃
{T
∣∣ T torsion coset of codim(T ) ≥ dimV }

has bounded height.
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15.3.2 Structure theorem, full version

V ⊆ Gnm irreducible of dimension r ≥ 1.

1. ∀H torus of codimension h with 1 ≤ h ≤ r, the union ZH of the Y ⊆ V ∩Hg (for g varying

in Gnm) is a closed subset of Gnm. Moreover, HZH is not dense22 in Gnm.

2. There exists a finite set Φ of tori of codimension h (1 ≤ h ≤ r), each of degree �
(deg V )2r−1(n−1), such that every V -anomalous Y is a component of V ∩Hg for some H ∈ Φ
and g ∈ ZH .

We won’t prove this, but we make some remarks:

1. the theorem implies that V oa is open, because V oa = V \
⋃
H∈Φ ZH

2. HZH 6= Gnm. Let H ∈ Φ, and let

φ : gmn → Ghm
x 7→ (ϕ1, . . . , ϕh)

We have ZH = {Y
∣∣ ∃g ∈ Gnm : Y ⊆ V ∩Hg,dimY = r − h+ 1}. Given that ϕ contracts H

to a point, ϕ(ZH) is the set of the images via ϕ of the points g ∈ Gnm that we are considering.
Now HZH 6= Gnm is equivalent to ϕ(ZH) 6= Ghm.

22this seems not to be true for V = Gn
m, but I guess this is the only exception
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