1 Preliminaries

Let $\left(N_{t}\right)_{t \geq 0}$ be a collection of random variables. The parameter t is often interpreted as time.
Definition 1.1. $\left(N_{t}\right)_{t \geq 0}$ is a stochastic process.
Definition 1.2. The stochastic process $\left(N_{t}\right)_{t \geq 0}$ is said to be a counting process if N_{t} represents the total numbers of "events" that have occurred up to time t.

From this definition we see that the following properties must be verified
(i) $N_{t} \geq 0, \forall t \geq 0$;
(ii) N_{t} is integer-valued, $\forall t \geq 0$;
(iii) If $s<t$, then $N_{s} \leq N_{t}$.

The variable $N_{t}-N_{s}$ equals the number of events that have occurred in the time interval $(s, t]$; the family of random variables $\left(N_{t}-N_{s}\right)_{0 \leq s<t}$ are called the increments of the counting process $\left(N_{t}\right)_{t \geq 0}$.

Definition 1.3. A counting process is said to possess independent increments if the number of events occurred in disjoint times interval are independent.

Definition 1.4. A counting process is said to possess stationary increments if the distribution of the number of events occurred in any time interval depends only on the length of the time interval. This means that, for all $t_{1}<t_{2}$ and for all $s>0$ the increment $N_{t_{2}+s}-N_{t_{1}+s}$ (i.e. the number of events occurred in the time interval $\left.\left(t_{1}+s, t_{2}+s\right]\right)$ has the same distribution as the increment $N_{t_{2}}-N_{t_{1}}$ (i.e. the number of events occurred in the time interval $\left.\left(t_{1}, t_{2}\right]\right)$.

2 Poisson process: first definition

Let $W_{1}, W_{2}, W_{3} \ldots$ be independent random variables with law $\mathcal{E}(\lambda)$, where $\lambda>0$ is a given number. For every $t \geq 0$ define

$$
N_{t}=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leq t<W_{1} \\
1 & \text { if } & W_{1} \leq t<W_{1}+W_{2} \\
2 & \text { if } & W_{1}+W_{2} \leq t<W_{1}+W_{2}+W_{3} \\
\vdots & &
\end{array}\right.
$$

Definition 2.1. The family of random variables $\left(N_{t}\right)_{t \geq 0}$ is called a Poisson process having rate λ. Theorem 2.2. Let $0=t_{0}<t_{1}<t_{2}<t_{3}<\cdots<t_{n-1}<t_{n}=t$ be a partition of $[0, t]$. Then the increments

$$
\begin{aligned}
& Z_{1}=N_{t_{1}}-N_{t_{0}}=N_{t_{1}} \\
& Z_{2}=N_{t_{2}}-N_{t_{1}} \\
& Z_{3}=N_{t_{3}}-N_{t_{2}} \\
& \vdots \\
& Z_{n}=N_{t_{n}}-N_{t_{n-1}}
\end{aligned}
$$

are independent and Poisson distributed with parameters $\lambda t_{1}, \lambda\left(t_{2}-t_{1}\right), \ldots, \lambda\left(t_{n}-t_{n-1}\right)$.

3 Poisson process: second definition

Definition 3.1. The counting process $\left(N_{t}\right)_{t \geq 0}$ is said to be a Poisson process having rate λ if
(i) $N_{0}=0$;
(ii) The process has independent increments;
(iii) The number of events in any interval of length t is Poisson distributed with mean (parameter) λt. This means that, for all $h, t \geq 0$

$$
P\left(N_{t+h}-N_{h}=n\right)=\frac{(\lambda t)^{n}}{n!} \mathrm{e}^{-\lambda t}, \quad n=0,1,2, \ldots
$$

It follows from condition (iii) that a Poisson process has stationary increments and also

$$
E\left[N_{t}\right]=\lambda t
$$

which explains why λ is called the rate of the process.

4 Poisson process: third definition

To determine if a given counting process is actually a Poisson process, we must show that conditions (i), (ii) and (iii) of Section 3 are satisfied. Conditions (i) and (ii) are usually easily verified from our knowledge of the process. Condition (iii) is more difficult. For this reason an equivalent definition of a Poisson process is useful.

Definition 4.1. The counting process $\left(N_{t}\right)_{t \geq 0}$ is said to be a Poisson process having rate λ if
(i) $N_{0}=0$;
(ii) The process has stationary and independent increments;
(iii) $P\left(N_{\delta}=1\right)=\lambda \delta+o(\delta)$;
(iv) $P\left(N_{\delta} \geq 2\right)=o(\delta)$.

Theorem 4.2. Definitions 2.1, 3.1 and 4.1 are equivalent.
Proof. We show that definition 4.1 implies definition 3.1. Put

$$
P_{n}(t)=P\left(N_{t}=n\right)
$$

We may have n events at time $t+\delta$ if
(a) we have n events at time t and no event beteween t and $t+\delta$;
(b) we have $n-1$ events at time t and 1 event beteween t and $t+\delta$;
(c) we have less than $n-1$ events at time t and more than 1 event beteween t and $t+\delta$.

So, for $n=0$, by independence (assumption (ii)) we have

$$
P_{0}(t+\delta)=P\left(N_{t+\delta}=0\right)=P\left(N_{t}=0, N_{t+\delta}-N_{t}=0\right)=P_{0}(t) P\left(N_{t+\delta}-N_{t}=0\right)
$$

By stationarity (assumption (ii)) we have
$P\left(N_{t+\delta}-N_{t}=0\right)=P\left(N_{\delta}=0\right)=1-P\left(N_{\delta}>0\right)=1-P\left(N_{\delta}=1\right)-P\left(N_{\delta} \geq 2\right)=1-\lambda \delta+o(\delta)$.
where the last equality follows from assumptions (iii) and (iv). Hence we have obtained

$$
P_{0}(t+\delta)=P_{0}(t)(1-\lambda \delta+o(\delta))
$$

Rearranging and dividing by δ we get

$$
\frac{P_{0}(t+\delta)-P_{0}(t)}{\delta}=-\lambda P_{0}(t)+\frac{o(\delta)}{\delta}
$$

and letting $\delta \rightarrow 0$

$$
P_{0}^{\prime}(t)=-\lambda P_{0}(t)
$$

By integrating this simple differential equation we obtain

$$
P_{0}(t)=c e^{-\lambda t}, \quad c \in \mathbb{R}
$$

We have the initial condition $P_{=}(0)=P\left(N_{0}=0\right)=1$ by assumption (i), which yields

$$
P_{0}(t)=e^{-\lambda t}
$$

For $n>0$, we obtain

$$
\begin{aligned}
& P_{n}(t+\delta)=P\left(N_{t+\delta}=n\right) \\
& =P\left(N_{t}=n, N_{t+\delta}-N_{t}=0\right)+P\left(N_{t}=n-1, N_{t+\delta}-N_{t}=1\right)+\sum_{k=2}^{n} P\left(N_{t}=n-k, N_{t+\delta}-N_{t}=k\right) \\
& =P\left(N_{t}=n\right) P\left(N_{t+\delta}-N_{t}=0\right)+P\left(N_{t}=n-1\right) P\left(N_{t+\delta}-N_{t}=1\right)+\sum_{k=2}^{n} P\left(N_{t}=n-k\right) P\left(N_{t+\delta}-N_{t}=k\right)
\end{aligned}
$$

by the independence of the increments (assumptions (ii)). Continuing, we notice that, by assumption (iv)

$$
\begin{aligned}
0 & \leq \sum_{k=2}^{n} P\left(N_{t}=n-k\right) P\left(N_{t+\delta}-N_{t}=k\right)=\sum_{k=2}^{n} o(\delta) P\left(N_{t}=n-k\right) \leq o(\delta) \sum_{k=0}^{n} P\left(N_{t}=n-k\right) \\
& =o(\delta) P\left(N_{t} \leq n\right) \leq o(\delta)
\end{aligned}
$$

which means that

$$
\sum_{k=2}^{n} P\left(N_{t}=n-k\right) P\left(N_{t+\delta}-N_{t}=k\right)=o(\delta)
$$

Hence, by assumptions (i) and (ii)

$$
\begin{aligned}
& P_{n}(t+\delta)=P_{n}(t)(1-\lambda \delta+o(\delta))+P_{n-1}(t)(\lambda \delta+o(\delta))+o(\delta) \\
& =(1-\lambda h) P_{n}(t)+\lambda \delta P_{n-1}(t)+o(\delta) .
\end{aligned}
$$

Thus, rearranging and dividing by δ, we obtain

$$
\frac{P_{n}(t+\delta)-P_{n}(t)}{\delta}=-\lambda P_{n}(t)+\lambda P_{n-1}(t)+\frac{o(\delta)}{\delta}
$$

letting $\delta \rightarrow 0$ yields

$$
P_{n}^{\prime}(t)=-\lambda P_{n}(t)+\lambda P_{n-1}(t)
$$

and multiplying both members by $e^{\lambda t}$,

$$
e^{\lambda t}\left\{P_{n}^{\prime}(t)+\lambda P_{n}(t)\right\}=\lambda e^{\lambda t} P_{n-1}(t) .
$$

or

$$
\frac{d}{d t}\left(e^{\lambda t} P_{n}(t)\right)=\lambda e^{\lambda t} P_{n-1}(t)
$$

We already know that $P_{0}(t)=e^{-\lambda t}$; from this and the preceding formula we deduce

$$
\frac{d}{d t}\left(e^{\lambda t} P_{1}(t)\right)=\lambda
$$

integrating

$$
e^{\lambda t} P_{1}(t)=\lambda t+c, \Longrightarrow P_{1}(t)=(\lambda t+c) e^{-\lambda t}
$$

and, since $P_{1}(0)=P\left(N_{0}=1\right)=0$, we conclude with

$$
P_{1}(t)=\lambda t e^{-\lambda t} .
$$

We proceed by induction: assume that

$$
P_{n-1}(t)=\frac{(\lambda t)^{n-1}}{(n-1)!} \mathrm{e}^{-\lambda t} .
$$

Then (see above)

$$
\frac{d}{d t}\left(e^{\lambda t} P_{n}(t)\right)=\lambda e^{\lambda t} P_{n-1}(t)=\frac{\lambda^{n} t^{n-1}}{(n-1)!} ;
$$

integrating

$$
e^{\lambda t} P_{n}(t)=\frac{\lambda^{n} t^{n-1}}{(n-1)!}+c, \Longrightarrow P_{n}(t)=\left(\frac{\lambda^{n} t^{n}}{n!}+c\right) e^{\lambda t}
$$

since $P_{n}(0)=P\left(N_{0}=n\right)=0$, we conclude with

$$
P_{n}(t)=\frac{\lambda^{n} t^{n}}{n!} e^{\lambda t}
$$

as claimed.

5 Examples

Typical examples of Poisson processes are
(a) customers that arrive to the checkout counter of a convenience store;
(b) atoms emitted by a radioactive substance (eg. uranium);
(c) spikes fired by a neuron;
(d) cars that arrive to the toll barrier of a highway...

References

[1] M. Dwass, Probability and Statistics. Benjamin, New York, 1970.
[2] Sheldon M. Ross, Introduction to Probability Models, Academic Press, 2014

