1 Preliminaries

Let $(N_t)_{t\geq 0}$ be a collection of random variables. The parameter t is often interpreted as time.

Definition 1.1. $(N_t)_{t\geq 0}$ is a stochastic process.

Definition 1.2. The stochastic process $(N_t)_{t\geq 0}$ is said to be a *counting process* if N_t represents the total numbers of "events" that have occurred up to time t.

From this definition we see that the following properties must be verified

- (i) $N_t \ge 0$, $\forall t \ge 0$;
- (ii) N_t is integer-valued, $\forall t \ge 0$;
- (iii) If s < t, then $N_s \le N_t$.

The variable $N_t - N_s$ equals the number of events that have occurred in the time interval (s, t]; the family of random variables $(N_t - N_s)_{0 \le s < t}$ are called the *increments* of the counting process $(N_t)_{t \ge 0}$.

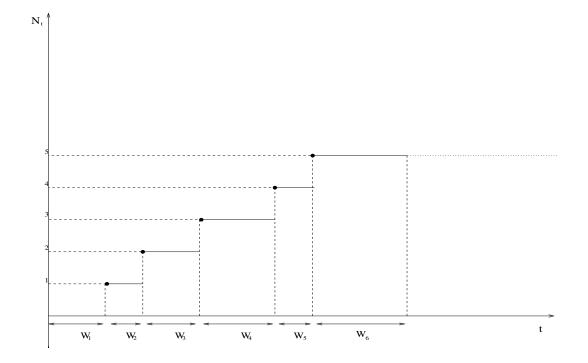
Definition 1.3. A counting process is said to possess *independent increments* if the number of events occurred in disjoint times interval are independent.

Definition 1.4. A counting process is said to possess *stationary increments* if the distribution of the number of events occurred in any time interval depends only on the length of the time interval. This means that, for all $t_1 < t_2$ and for all s > 0 the increment $N_{t_2+s} - N_{t_1+s}$ (i.e. the number of events occurred in the time interval $(t_1 + s, t_2 + s]$) has the same distribution as the increment $N_{t_2} - N_{t_1}$ (i.e. the number of events occurred in the time interval ($t_1 + s, t_2 + s$]) has the same distribution as the increment $N_{t_2} - N_{t_1}$ (i.e. the number of events occurred in the time interval (t_1, t_2)).

2 Poisson process: first definition

Let $W_1, W_2, W_3...$ be independent random variables with law $\mathcal{E}(\lambda)$, where $\lambda > 0$ is a given number. For every $t \ge 0$ define

$$N_t = \begin{cases} 0 & \text{if} & 0 \le t < W_1 \\ 1 & \text{if} & W_1 \le t < W_1 + W_2 \\ 2 & \text{if} & W_1 + W_2 \le t < W_1 + W_2 + W_3 \\ \vdots & & \\ \end{cases}$$



Definition 2.1. The family of random variables $(N_t)_{t\geq 0}$ is called a *Poisson process* having rate λ . **Theorem 2.2.** Let $0 = t_0 < t_1 < t_2 < t_3 < \cdots < t_{n-1} < t_n = t$ be a partition of [0, t]. Then the increments

$$Z_{1} = N_{t_{1}} - N_{t_{0}} = N_{t_{1}}$$

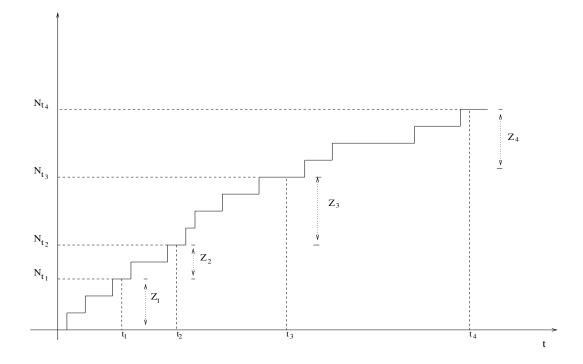
$$Z_{2} = N_{t_{2}} - N_{t_{1}}$$

$$Z_{3} = N_{t_{3}} - N_{t_{2}}$$

$$\vdots$$

$$Z_{n} = N_{t_{n}} - N_{t_{n-1}}$$

are independent and Poisson distributed with parameters $\lambda t_1, \lambda (t_2 - t_1), \ldots, \lambda (t_n - t_{n-1})$.



3 Poisson process: second definition

Definition 3.1. The counting process $(N_t)_{t\geq 0}$ is said to be a *Poisson process* having rate λ if

- (i) $N_0 = 0;$
- (ii) The process has independent increments;
- (iii) The number of events in any interval of length t is Poisson distributed with mean (parameter) λt . This means that, for all $h, t \ge 0$

$$P(N_{t+h} - N_h = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}, \qquad n = 0, 1, 2, \dots$$

It follows from condition (iii) that a Poisson process has stationary increments and also

$$E[N_t] = \lambda t$$

which explains why λ is called the *rate* of the process.

4 Poisson process: third definition

To determine if a given counting process is actually a Poisson process, we must show that conditions (i), (ii) and (iii) of Section 3 are satisfied. Conditions (i) and (ii) are usually easily verified from our knowledge of the process. Condition (iii) is more difficult. For this reason an equivalent definition of a Poisson process is useful.

Definition 4.1. The counting process $(N_t)_{t\geq 0}$ is said to be a *Poisson process* having rate λ if

- (i) $N_0 = 0;$
- (ii) The process has stationary and independent increments;
- (iii) $P(N_{\delta} = 1) = \lambda \delta + o(\delta);$

(iv) $P(N_{\delta} \ge 2) = o(\delta).$

Theorem 4.2. Definitions 2.1, 3.1 and 4.1 are equivalent.

Proof. We show that definition 4.1 implies definition 3.1. Put

$$P_n(t) = P(N_t = n).$$

We may have *n* events at time $t + \delta$ if

- (a) we have n events at time t and no event between t and $t + \delta$;
- (b) we have n-1 events at time t and 1 event between t and $t+\delta$;
- (c) we have less than n-1 events at time t and more than 1 event between t and $t+\delta$.

So, for n = 0, by independence (assumption (ii)) we have

$$P_0(t+\delta) = P(N_{t+\delta} = 0) = P(N_t = 0, N_{t+\delta} - N_t = 0) = P_0(t)P(N_{t+\delta} - N_t = 0)$$

By stationarity (assumption (ii)) we have

$$P(N_{t+\delta} - N_t = 0) = P(N_{\delta} = 0) = 1 - P(N_{\delta} > 0) = 1 - P(N_{\delta} = 1) - P(N_{\delta} \ge 2) = 1 - \lambda \delta + o(\delta).$$

where the last equality follows from assumptions (iii) and (iv). Hence we have obtained

$$P_0(t+\delta) = P_0(t) \Big(1 - \lambda \delta + o(\delta) \Big).$$

Rearranging and dividing by δ we get

$$\frac{P_0(t+\delta) - P_0(t)}{\delta} = -\lambda P_0(t) + \frac{o(\delta)}{\delta}$$

and letting $\delta \to 0$

$$P_0'(t) = -\lambda P_0(t).$$

By integrating this simple differential equation we obtain

$$P_0(t) = ce^{-\lambda t}, \qquad c \in \mathbb{R}.$$

We have the initial condition $P_{=}(0) = P(N_0 = 0) = 1$ by assumption (i), which yields

$$P_0(t) = e^{-\lambda t}.$$

For n > 0, we obtain

$$P_n(t+\delta) = P(N_{t+\delta} = n)$$

= $P(N_t = n, N_{t+\delta} - N_t = 0) + P(N_t = n - 1, N_{t+\delta} - N_t = 1) + \sum_{k=2}^n P(N_t = n - k, N_{t+\delta} - N_t = k)$
= $P(N_t = n)P(N_{t+\delta} - N_t = 0) + P(N_t = n - 1)P(N_{t+\delta} - N_t = 1) + \sum_{k=2}^n P(N_t = n - k)P(N_{t+\delta} - N_t = k)$

by the independence of the increments (assumptions (ii)). Continuing, we notice that, by assumption (iv)

$$0 \le \sum_{k=2}^{n} P(N_t = n - k) P(N_{t+\delta} - N_t = k) = \sum_{k=2}^{n} o(\delta) P(N_t = n - k) \le o(\delta) \sum_{k=0}^{n} P(N_t = n - k)$$

= $o(\delta) P(N_t \le n) \le o(\delta).$

which means that

$$\sum_{k=2}^{n} P(N_t = n - k) P(N_{t+\delta} - N_t = k) = o(\delta).$$

Hence, by assumptions (i) and (ii)

$$P_n(t+\delta) = P_n(t)(1-\lambda\delta+o(\delta)) + P_{n-1}(t)(\lambda\delta+o(\delta)) + o(\delta)$$

= $(1-\lambda h)P_n(t) + \lambda\delta P_{n-1}(t) + o(\delta).$

Thus, rearranging and dividing by δ , we obtain

$$\frac{P_n(t+\delta) - P_n(t)}{\delta} = -\lambda P_n(t) + \lambda P_{n-1}(t) + \frac{o(\delta)}{\delta};$$

letting $\delta \to 0$ yields

$$P'_n(t) = -\lambda P_n(t) + \lambda P_{n-1}(t)$$

and multiplying both members by $e^{\lambda t}$,

$$e^{\lambda t} \{ P'_n(t) + \lambda P_n(t) \} = \lambda e^{\lambda t} P_{n-1}(t).$$

or

$$\frac{d}{dt} \left(e^{\lambda t} P_n(t) \right) = \lambda e^{\lambda t} P_{n-1}(t).$$

We already know that $P_0(t) = e^{-\lambda t}$; from this and the preceding formula we deduce

$$\frac{d}{dt} \left(e^{\lambda t} P_1(t) \right) = \lambda;$$

integrating

$$e^{\lambda t}P_1(t) = \lambda t + c, \Longrightarrow P_1(t) = (\lambda t + c)e^{-\lambda t}$$

and, since $P_1(0) = P(N_0 = 1) = 0$, we conclude with

$$P_1(t) = \lambda t e^{-\lambda t}.$$

We proceed by induction: assume that

$$P_{n-1}(t) = \frac{(\lambda t)^{n-1}}{(n-1)!} e^{-\lambda t}.$$

Then (see above)

$$\frac{d}{dt} \left(e^{\lambda t} P_n(t) \right) = \lambda e^{\lambda t} P_{n-1}(t) = \frac{\lambda^n t^{n-1}}{(n-1)!};$$

integrating

$$e^{\lambda t}P_n(t) = \frac{\lambda^n t^{n-1}}{(n-1)!} + c, \Longrightarrow P_n(t) = \left(\frac{\lambda^n t^n}{n!} + c\right)e^{\lambda t};$$

since $P_n(0) = P(N_0 = n) = 0$, we conclude with

$$P_n(t) = \frac{\lambda^n t^n}{n!} e^{\lambda t},$$

as claimed.

5 Examples

Typical examples of Poisson processes are

- (a) customers that arrive to the checkout counter of a convenience store;
- (b) atoms emitted by a radioactive substance (eg. uranium);
- (c) spikes fired by a neuron;
- (d) cars that arrive to the toll barrier of a highway...

References

- [1] M. Dwass, Probability and Statistics. Benjamin, New York, 1970.
- [2] Sheldon M. Ross, Introduction to Probability Models, Academic Press, 2014