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ASYMPTOTIC RESULTS FOR WEIGHTED MEANS OF RANDOM VARIABLES
WHICH CONVERGE TO A DICKMAN DISTRIBUTION, AND SOME NUMBER

THEORETICAL APPLICATIONS
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Abstract. This paper studies some examples of weighted means of random variables. These weighted
means generalize the logarithmic means. We consider different kinds of random variables and we prove
that they converge weakly to a Dickman distribution; this extends some known results in the literature.
In some cases we have interesting connections with number theory. Moreover we prove large deviation
principles and, arguing as in [R. Giuliano and C. Macci, J. Math. Anal. Appl. 378 (2011) 555–570], we
illustrate how the rate function can be expressed in terms of the Hellinger distance with respect to the
(weak) limit, i.e. the Dickman distribution.
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1. Introduction 1

In this paper we prove large deviation principles for some examples of weighted means {Zn : n ≥ 1} defined 2

by 3

Zn :=
1

L(n)

n∑
k=1

φ(k) − φ(k − 1)
φ(k)

Wk, (1.1)

where {Wn : n ≥ 1} is a sequence of real valued random variables, φ : N → [0,∞) is a strictly increasing 4

function such that 5

φ(0) = 0, lim
n→∞ φ(n) = ∞, and lim

n→∞
φ(n)

φ(n + 1)
= 1, (1.2)

and L(n) = Lφ(n) is defined by 6

L(n) :=
n∑

k=1

φ(k) − φ(k − 1)
φ(k)

· (1.3)
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1 Dipartimento di Matematica “L. Tonelli”, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy.
giuliano@dm.unipi.it
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In particular we consider logarithmic means, i.e. the case in which

φ(n) := n (for all n ≥ 1);

the term “logarithmic” comes from the equivalence relation L(n) =
∑n

k=1
1
n ∼ log n (throughout the paper we1

write xn ∼ yn (as n → ∞) to mean limn→∞ xn

yn
= 1). Logarithmic means have a relationship with the empirical2

measures which appear in the almost sure limit theorems in the literature. The most famous almost sure limit3

theorem is the so-called almost sure central limit theorem which was proved independently in [4, 13, 32] under4

strong moment assumptions; successive refinements appear in [14,25], in which only finite variance is required.5

A survey on the almost sure central limit theorem and some developments can be found in [2]. Wider classes6

of almost sure limit theorems are presented in [3, 22]; other different almost sure limits related to the extreme7

value theory can be found in [6, 12] (a more general result in this direction is proved in [11]).8

Large deviations give an asymptotic computation of small probabilities on an exponential scale (see e.g. [8]9

as a reference on this topic). Large deviation results for empirical measures associated to almost sure central10

limit theorems can be found in [19, 30]; in those references all the (common) moments of the random variables11

are finite, and the optimality of the moment assumptions is discussed in [28]. We also recall the large deviation12

results in [31] for the so-called Lévy strong arc-sine law (see [27]), and in [24] for a suitable class of weighted13

means.14

Now we briefly recall some basic preliminaries on large deviations (see e.g. [8], p. 4, 5). Let X be a topological
space equipped with its completed Borel σ-field. A sequence of X -valued random variables {Zn : n ≥ 1} satisfies
the large deviation principle (LDP for short) with speed function vn and rate function I if: limn→∞ vn = ∞;
the function I : X → [0,∞] is lower semi-continuous; we have the upper bound

lim sup
n→∞

1
vn

log P (Zn ∈ F ) ≤ − inf
x∈F

I(x) for all closed sets F,

and the lower bound
lim inf
n→∞

1
vn

log P (Zn ∈ G) ≥ − inf
x∈G

I(x) for all open sets G.

A rate function I is said to be good if its level sets {{x ∈ X : I(x) ≤ η} : η ≥ 0} are compact. In the LDPs15

presented in this paper we always have X = R; moreover we often apply the Gärtner Ellis Theorem (see e.g.16

Thm. 2.3.6 in [8]), and the rate functions are good.17

In all the LDPs in this paper (except one in the final section which gives a counterexample) the random18

variables {Zn : n ≥ 1} in (1.1) are defined by setting19

Wn :=
1

φ(n)

n∑
k=1

φ(k)Rk (1.4)

for suitable independent random variables {Rn : n ≥ 1}, and we prove that {Wn : n ≥ 1} converges weakly20

to a Dickman distribution; moreover the sequence {Rn : n ≥ 1} depends on a sequence of positive numbers21

{λn : n ≥ 1} such that22

lim
n→∞

1
φ(n)

n∑
k=1

φ(k)λk = ν, for some ν ∈ (0,∞), (1.5)

and the common rate function is23

I(x) :=
{

x log x
ν − x + ν if x ≥ 0

∞ if x < 0,
(1.6)

where 0 log 0 = 0.24
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Remark 1.1. By (1.2), the limit relation (1.5) always holds (with ν = 1) if we choose the sequence {λn : n ≥ 1} 1

defined by λn := φ(n)−φ(n−1)
φ(n) for all n ≥ 1. 2

The weak convergence results for the sequences {Wn : n ≥ 1} presented in this paper provide extensions of 3

some results in the literature (more precisely in [1] and [5]). Moreover a LDP presented in this paper is obtained 4

by combining other LDPs and a standard large deviation technique which is based on the concept of exponential 5

equivalence. All these results depend only on the asymptotic behavior of the function φ and of the sequence 6

{λn : n ≥ 1} in (1.2) and (1.5). 7

As it happens for the LDPs in [16], the rate function in (1.6) can be expressed in terms of condition (H) 8

(see Sect. 5 in this paper), i.e. a suitable formula with the Hellinger distance with respect to the weak limit 9

PW∞ of the sequence {Wn : n ≥ 1}. Actually we also present the LDP for a sequence of logarithmic means 10

{Zn : n ≥ 1} where the rate function does not meet condition (H); this might be explained noting that the 11

sequence {Wn : n ≥ 1} in this example is not a sequence of partial sums of random variables forming a triangular 12

array (as it happens for the other examples in this paper, and for the ones in [16]). 13

Throughout the paper we use the following symbols when a random variable Z is Dickman, Poisson, Bernoulli 14

or exponential distributed, respectively. 15

• Z
d∼ D(ν), for ν > 0, if 16

E
[
esZ

]
= exp

(
ν

∫ s

0

ey − 1
y

dy

)
= exp

(
ν

∫ 1

0

esy − 1
y

dy

)
for all s ∈ R. (1.7)

• Z
d∼ P(ν), for ν > 0, if Z is a random variable such that P (Z = k) = νk

k! e
−ν for all integer k ≥ 0. 17

• Z
d∼ B(p), for p ∈ [0, 1], if Z is a random variable such that P (Z = 1) = 1 − P (Z = 0) = p. 18

• Z
d∼ E(ν), for ν > 0, if Z is a random variable such that P (Z ≤ t) = 1 − e−νt for all t ≥ 0. 19

The distribution D(ν) is related to the Dickman function (see e.g. [34], Sect. III.5.4). The Dickman function
ρ(x) is defined as the continuous solution of the delay differential equation

uρ′(u) + ρ(u − 1) = 0 (u > 1)

with the initial condition ρ(u) = 0 for u ∈ [0, 1]. This function plays an important role in analytic number 20

theory: see the fundamental paper [21] and, again (Sect. III.5.4 in [34]). Since its introduction in the thirties 21

by Dickman for the study of the asymptotic behavior of the frequency of numbers containing prime factors of 22

a certain relative magnitude (see [9]), the Dickman function has revealed its usefulness in a large variety of 23

problems, not only of number-theoretic nature: we refer to the paper [23], where an extensive list of references 24

is given. We only add the recent paper [7]. 25

In particular, if we denote the Euler’s constant by γ, we get the equality
∫∞
0 ρ(x)dx = eγ and the moment 26

generating function (1.7) by (Thm. 7 in Sect. III.5.4 in [34]). The moment generating function (1.7) can also 27

be found in other references (see e.g. Eq. (2.5) in [20], where K(α) is identically equal to 1) and equation (66) 28

in [1]. The probability density function f(x) := e−γρ(x)1(0,∞)(x) concerns a random variable Z
d∼ D(1). 29

The outline of the paper is as follows. The weak convergence results for {Wn : n ≥ 1} in (1.4) (for some choices 30

of the sequence {Rn : n ≥ 1}) and the main large deviation results for the weighted means {Zn : n ≥ 1} in (1.1) 31

(for some choices of the sequence {Wn : n ≥ 1} which converges weakly to D(ν)) are proved in Sections 2 and 3, 32

respectively. In Section 4 we apply one of our weak convergence results and we recover a result of [5], where 33

a probabilistic model for square-free numbers is introduced; this shows that our approach is useful because we 34

do not need to consider specific properties of the prime numbers sequence. Finally, in Section 5, we discuss 35

condition (H): we illustrate how the (common) rate function can be expressed in terms of the Hellinger distance 36

with respect to the weak limit PW∞ = D(ν) of {Wn : n ≥ 1}, and we present a counterexample in which 37

condition condition (H) does not hold. 38
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2. Weak convergence results1

In this section we prove weak convergence results for the sequence {Wn : n ≥ 1} in (1.4) when the sequence2

{Rn : n ≥ 1} is as in the following examples.3

Example 2.1. Let {λn : n ≥ 1} be a sequence of positive numbers such that (1.5) holds. Let {Rn : n ≥ 1} be4

independent random variables such that Rn
d∼ P(λn) for all n ≥ 1.5

Example 2.2. Let {Rn : n ≥ 1} be independent, nonnegative and integer valued random variables such that6

lim
n→∞

1
φ(n)

n∑
k=1

φ(k)E[Rk] = ν and lim
n→∞

1
φ(n)

n∑
k=1

φ(k)P (Rk = 1) = ν. (2.1)

We prove Propositions 2.5 and 2.6 which concern Examples 2.1 and 2.2, respectively. In this way we generalize7

Lemmas 1 and 2 in [1] (see Sect. 4.3). Proposition 2.6 allows to recover the weak convergence result in [5] as a8

particular case (see Sect. 4 for details). The following lemmas are useful.9

Lemma 2.3. Let {an : n ≥ 1} and {b(n)
k : n ≥ k ≥ 1} be complex numbers such that10

lim
n→∞ an = a for some a ∈ C, (2.2)

11

lim
n→∞

n∑
k=1

b
(n)
k = b for some b ∈ C, (2.3)

12

lim
n→∞ b

(n)
k = 0 for all k ≥ 1, (2.4)

13

C := sup

{
n∑

k=1

|b(n)
k | : n ≥ 1

}
< ∞. (2.5)

Then: (i) limn→∞
∑n

k=1 akb
(n)
k = ab; (ii) limn→∞

∑n−1
k=1 akb

(n)
k = ab if limn→∞ b

(n)
n = 0.14

Proof. Statement (i) is a part of Toeplitz Lemma in [29] (p. 250). Moreover, since

n−1∑
k=1

akb
(n)
k =

n∑
k=1

akb
(n)
k − anb(n)

n ,

statement (ii) follows from (i), limn→∞ b
(n)
n = 0 and (2.2). �15

Lemma 2.4. Assume that (1.2) and (1.5) hold. Then limn→∞ λn = 0.16

Proof. Just notice that17

λn =
1

φ(n)

n∑
k=1

φ(k)λk − φ(n − 1)
φ(n)

· 1
φ(n − 1)

n−1∑
k=1

φ(k)λk → ν − ν = 0 as n → ∞. �18

Now we are ready to prove the weak convergence results for each one of the examples above.19

Proposition 2.5. Let φ : N → [0,∞) be a strictly increasing function such that (1.2) holds. Let {λn : n ≥ 1}20

and {Rn : n ≥ 1} be as in Example 2.1. Then {Wn : n ≥ 1} in (1.4) converges weakly to PW∞ = D(ν) as21

n → ∞.22
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Proof. We have to check that

lim
n→∞ E

[
esWn

]
= exp

(
ν

∫ 1

0

esy − 1
y

dy

)
(for all s ∈ R)

by (1.7). The moment generating function of Wn is

E
[
esWn

]
=

n∏
k=1

exp
(
λk

{
es φ(k)

φ(n) − 1
})

= exp

(
n∑

k=1

λk

{
es φ(k)

φ(n) − 1
})

.

By Abel’s partial summation formula, we have 1

n∑
k=1

λk

{
es φ(k)

φ(n) − 1
}

=
n∑

k=1

φ(k)λk
es φ(k)

φ(n) − 1
φ(k)

2

=
n∑

k=1

φ(k)λk
es φ(n)

φ(n) − 1
φ(n)

−
n−1∑
k=1

k∑
j=1

φ(j)λj

(
es φ(k+1)

φ(n) − 1
φ(k + 1)

− es φ(k)
φ(n) − 1
φ(k)

)
, 3

4

and therefore 5
n∑

k=1

λk

{
es φ(k)

φ(n) − 1
}

=
1

φ(n)

n∑
k=1

φ(k)λk(es − 1) −
n−1∑
k=1

akb
(n)
k , (2.6)

where 6

ak :=
1

φ(k)

k∑
j=1

φ(j)λj and b
(n)
k := φ(k)

(
es φ(k+1)

φ(n) − 1
φ(k + 1)

− es φ(k)
φ(n) − 1
φ(k)

)
· (2.7)

Now we take the limit as n → ∞ in (2.6) and, by (1.5), we have to show that 7

lim
n→∞

n−1∑
k=1

akb
(n)
k = νb, where b := es − 1 −

∫ 1

0

esx − 1
x

dx. (2.8)

This will be done by applying Lemma 2.3 for the coefficients in (2.7). Firstly (2.2) holds with a = ν by (1.5); (2.4)
and b

(n)
n → 0 can be easily checked by inspection (we recall that φ(n) → ∞ and φ(n)

φ(n+1) → 1 by (1.2)); if we

consider (2.7) with λk = φ(k)−φ(k−1)
φ(k) for all k ≥ 1 (as in Rem. 1.1), and therefore ak = 1 for all k ≥ 1 (we recall

that φ(0) = 0), by (2.6) we have

n∑
k=1

b
(n)
k = es − 1 −

n∑
k=1

φ(k) − φ(k − 1)
φ(k)

{
es φ(k)

φ(n) − 1
}

+ b(n)
n

and this yields (2.3) with b as in (2.8) because

n∑
k=1

φ(k) − φ(k − 1)
φ(k)

{
es φ(k)

φ(n) − 1
}

=
n∑

k=1

φ(k) − φ(k − 1)
φ(n)

· es φ(k)
φ(n) − 1

φ(k)/φ(n)

is a suitable Riemann sum for the integral
∫ 1

0
esx−1

x dx; (2.5) follows from (2.3) because {b(n)
k : n − 1 ≥ k ≥ 0} 8

are nonnegative numbers (since, for each fixed s ∈ R, the function x �→ esx−1
x is nondecreasing, and the function 9

φ is increasing). � 10

Proposition 2.6. Let φ : N → [0,∞) be a strictly increasing function such that (1.2) holds. Let {Rn : n ≥ 1} 11

be as in Example 2.2. Then {Wn : n ≥ 1} in (1.4) converges weakly to PW∞ = D(ν) as n → ∞. 12
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Proof. We follow the same lines as the proof of Lemma 2 in [1], and the above Proposition 2.5 plays the role of
Lemma 1 in [1]. The only difference is that here we have the coefficients {φ(n) : n ≥ 1} instead of φ(n) = n as
in [1]. We set R̃n := Rn ∧ 1, and we have R̃n ≤ Rn and P (Rn = 1) ≤ E[R̃n] ≤ E[Rn] (for all n ≥ 1). Moreover,
if we set λn := E[R̃n], conditions (1.5) and

lim
n→∞

1
φ(n)

n∑
k=1

φ(k)
∣∣∣E[Rk] − E[R̃k]

∣∣∣ = 0

hold by (2.1). So it remains to show that W̃n := 1
φ(n)

∑n
k=1 φ(k)R̃k converges weakly to D(ν) (as n → ∞). In

order to do that we can construct (as in Lem. 2 in [1]) a sequence of independent random variables {R∗
n : n ≥ 1}

such that R∗
n

d∼ P(λn) for all n ≥ 1 and

0 ≤ 1
φ(n)

n∑
k=1

φ(k)
∣∣∣E[R̃k] − E[R∗

k]
∣∣∣ ≤ 1

φ(n)

n∑
k=1

φ(k)λ2
k;

then, by Proposition 2.5, we only have to prove1

lim
n→∞

1
φ(n)

n∑
k=1

φ(k)λ2
k = 0. (2.9)

To this extent we recall that λn → 0 by Lemma 2.4; thus, for all ε > 0, there exists n0 ≥ 1 such that λn < ε for2

all n > n0; therefore, for n > n0, we have3

0 ≤
n∑

k=1

φ(k)λ2
k =

n0∑
k=1

φ(k)λ2
k + ε

n∑
k=n0+1

φ(k)λk =
n0∑

k=1

φ(k)λ2
k + ε

(
n∑

k=1

φ(k)λk −
n0∑

k=1

φ(k)λk

)
4

5

and, if we divide by φ(n), we get (2.9) by (1.5) and by the arbitrariness of ε > 0. �6

3. Large deviation results7

In this section we prove some LDPs for weighted means {Zn : n ≥ 1} defined by (1.1), which are governed8

by the good rate function I defined by (1.6). The following hypotheses on the strictly increasing function9

φ : N → [0,∞) in (1.2) play a crucial role:10

• the function φ is concave, i.e.11

{φ(n) − φ(n − 1) : n ≥ 1} is non-increasing; (3.1)

• limn→∞ L(n) = ∞, where L(n) is defined by (1.3).12

Moreover we set

sj,n :=
n∑

k=j

φ(k) − φ(k − 1)
φ2(k)

·

In the sequel the following lemma is useful.13

Lemma 3.1. Let φ : N → [0,∞) be the strictly increasing function in (1.2) and let L(n) be defined by (1.3).14

(i) Assume that (3.1) holds. Then s1,∞ < ∞; for n > j ≥ 1, we have15

φ(j)sj,n − φ(j + 1)sj+1,n ≥ 0; (3.2)

for n ≥ j ≥ 2, we have16

1 − φ(j)
φ(n + 1)

≤ φ(j)sj,n ≤ φ(j)
φ(j − 1)

≤ c, for some c ≥ φ(n)
φ(n − 1)

for all n ≥ 2. (3.3)
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(ii) Assume that (1.5) and limn→∞ L(n) = ∞ hold. Then 1

lim
n→∞

1
L(n)

n∑
k=1

λk = ν. (3.4)

Proof. Throughout this proof we call φ the piecewise linear function on [0,∞) which interpolates the values 2

{φ(n) : n ≥ 1}. 3

We start with the proof of part (i). We have 4

1
φ(j)

− 1
φ(n)

=
∫ n

j

φ′(x)
φ2(x)

dx =
n∑

k=j+1

∫ k

k−1

φ′(x)
φ2(x)

dx ≥
n∑

k=j+1

1
φ2(k)

∫ k

k−1

φ′(x)dx = sj+1,n, (3.5)

and we easily get s1,∞ < ∞. Now the proof of (3.2). We have 1
φ(j) − sj+1,n ≥ 1

φ(n) ≥ 0 by (3.5) and, since 5

φ(j)sj,n − φ(j + 1)sj+1,n =φ(j)
{

φ(j) − φ(j − 1)
φ2(j)

+ sj+1,n

}
− φ(j + 1)sj+1,n 6

=
φ(j) − φ(j − 1)

φ(j)
− (φ(j + 1) − φ(j))sj+1,n, 7

8

by the concavity condition (3.1) (together with 1
φ(j) − sj+1,n ≥ 0 obtained above) we have

φ(j)sj,n − φ(j + 1)sj+1,n ≥ (φ(j + 1) − φ(j))
{

1
φ(j)

− sj+1,n

}
≥ 0.

We conclude with the proof of (3.3). We have

sj,n ≥
n∑

k=j

φ(k + 1) − φ(k)
φ2(k)

=
n∑

k=j

1
φ2(k)

∫ k+1

k

φ′(x)dx ≥
n∑

k=j

∫ k+1

k

φ′(x)
φ2(x)

dx = − 1
φ(n + 1)

+
1

φ(j)

(the first inequality holds by (3.1)) and sj,n ≤ 1
φ(j−1) by (3.5); thus we get (3.3) by multiplying by φ(j), and

the existence of a finite value c such that c ≥ φ(n)
φ(n−1) for all n ≥ 2 follows from limn→∞

φ(n)
φ(n+1) = 1 (see (1.2)).

Now we prove part (ii). By Abel’s partial summation formula and some computations, we can write

n∑
k=1

λk =
n∑

k=1

(φ(k)λk)
1

φ(k)
=

1
φ(n)

n∑
k=1

φ(k)λk +
n−1∑
k=1

⎛
⎝ 1

φ(k)

k∑
j=1

φ(j)λj

⎞
⎠ φ(k + 1) − φ(k)

φ(k + 1)
·

Hence
1

L(n)

n∑
k=1

λk =
1

φ(n)L(n)

n∑
k=1

φ(k)λk +
n−1∑
k=1

akb
(n)
k

where

ak :=
1

φ(k)

k∑
j=1

φ(j)λj and b
(n)
k :=

φ(k + 1) − φ(k)
φ(k + 1)L(n)

·

Note that 1
φ(n)L(n)

∑n
k=1 φ(k)λk → 0 by (1.5) and limn→∞ L(n) = ∞; therefore we complete the proof if we

show that

lim
n→∞

n−1∑
k=1

akb
(n)
k = ν.



8 R. GIULIANO AND C. MACCI

This will be done by applying Lemma 2.3. Firstly (2.2) holds with a = ν by (1.5); (2.4) and b
(n)
n → 0 can be

easily checked by inspection (we recall that L(n) → ∞ and, by (1.2), φ(n)
φ(n+1) → 1); (2.3) holds with b = 1 noting

that
n∑

k=1

b
(n)
k =

1
L(n)

n−1∑
k=1

φ(k + 1) − φ(k)
φ(k + 1)

+ b(n)
n =

L(n) − 1
L(n)

+ b(n)
n → 1 as n → ∞;

(2.5) follows from (2.3) because {b(n)
k : n − 1 ≥ k ≥ 0} are nonnegative numbers (we recall that the function φ1

is increasing). �2

Now we are ready to prove the first LDP.3

Proposition 3.2. Let φ : N → [0,∞) be a strictly increasing function such that (1.2), (3.1) and limn→∞ L(n) =4

∞ hold. Let {λn : n ≥ 1} and {Rn : n ≥ 1} be as in Example 2.1. Then {Zn : n ≥ 1} defined by (1.1) and (1.4)5

satisfies the LDP with speed function vn = L(n) and good rate function I defined by (1.6).6

Proof. We prove that

lim
n→∞

1
L(n)

log E

[
eθ

∑n
k=1

φ(k)−φ(k−1)
φ2(k)

∑k
j=1 φ(j)Rj

]
= ν(eθ − 1)

for all θ ∈ R. Since the right hand side above is finite and differentiable for all θ ∈ R, the LDP holds by the
Gärtner Ellis Theorem with good rate function I defined by the Legendre transform

I(x) := sup
θ∈R

{
θx − ν(eθ − 1)

}
,

which coincides with the rate function I in the statement of the proposition. It is useful to handle the above7

expression as follows. Since the random variables {Rn : n ≥ 1} are independent and Rn
d∼ P(λn) for all n ≥ 1,8

we have9

log E

[
eθ

∑n
k=1

φ(k)−φ(k−1)
φ2(k)

∑k
j=1 φ(j)Rj

]
= log E

[
eθ

∑n
j=1 φ(j)Rjsj,n

]
10

=
n∑

j=1

log E

[
eθφ(j)Rjsj,n

]
=

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
;11

12

thus we have to prove that

lim
n→∞

1
L(n)

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
= ν(eθ − 1)

for all θ ∈ R.13

The case θ = 0 is immediate. We give all the details only for the case θ > 0 because the case θ < 0 can be
treated similarly. Firstly, by taking into account s1,∞ < ∞ and (3.3) with the constant c therein (see Lem. 3.1)
and φ(n)

φ(n−1) → 1 (see (1.2)), for all ε > 0 there exists j0 ≥ 2 such that for n ≥ j > j0 we have φ(j)sj,n ≤ 1 + ε;
therefore

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
≤ λ1

(
eθφ(1)s1,∞ − 1

)
+

j0∑
j=2

λj

(
eθc − 1

)
+

n∑
j=j0+1

λj

(
eθ(1+ε) − 1

)

and, if we divide by L(n), we get

lim sup
n→∞

1
L(n)

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
≤ ν(eθ − 1)
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by (3.4) and the arbitrariness of ε. Now we prove the matching lower bound. We start noting that, by Abel’s 1

partial summation formula, we have 2

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
=

n∑
j=1

λj

(
eθ

φ(n)−φ(n−1)
φ(n) − 1

)
+

n−1∑
j=1

j∑
k=1

λk

(
eθφ(j)sj,n − eθφ(j+1)sj+1,n

)
3

≥
n−1∑
j=1

j∑
k=1

λk

(
eθφ(j)sj,n − eθφ(j+1)sj+1,n

)
. 4

5

Moreover eθφ(j)sj,n − eθφ(j+1)sj+1,n ≥ 0 by (3.2); then, by (3.4), for all ε ∈ (0, ν) there exists n0 such that for 6

n > n0 + 1 we have 7

n−1∑
j=1

j∑
k=1

λk

(
eθφ(j)sj,n − eθφ(j+1)sj+1,n

)
≥

n0∑
j=1

j∑
k=1

λk

(
eθφ(j)sj,n − eθφ(j+1)sj+1,n

)
8

+ (ν − ε)
n−1∑

j=n0+1

L(j)
(
eθφ(j)sj,n − eθφ(j+1)sj+1,n

)
9

10

and (as far as the last sum is concerned) 11

n−1∑
j=n0+1

L(j)
(
eθφ(j)sj,n − eθφ(j+1)sj+1,n

)
12

=
n−1∑
j=1

L(j)
(
eθφ(j)sj,n − eθφ(j+1)sj+1,n

)
−

n0∑
j=1

L(j)
(
eθφ(j)sj,n − eθφ(j+1)sj+1,n

)
; 13

14

thus, by putting the pieces together (we recall that 0 ≤ eθφ(j)sj,n − eθφ(j+1)sj+1,n ≤ eθφ(j)s1,∞ with s1,∞ < ∞,
and the finite sums are negligible when we divide by L(n) because L(n) → ∞), we obtain

lim inf
n→∞

1
L(n)

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
≥ (ν − ε) lim inf

n→∞
1

L(n)

n−1∑
j=1

L(j)
(
eθφ(j)sj,n − eθ(j+1)sj+1,n

)
.

Now we concentrate our attention on the last right hand side here above. From Abel’s partial summation formula 15

we get 16

n−1∑
j=1

L(j)
(
eθφ(j)sj,n − eθφ(j+1)sj+1,n

)
17

=
n∑

j=1

φ(j) − φ(j − 1)
φ(j)

(
eθφ(j)sj,n − 1

)
−

n∑
j=1

φ(j) − φ(j − 1)
φ(j)

(
eθφ(n)sn,n − 1

)
18

=eθφ(1)s1,n − 1 +
n∑

j=2

φ(j) − φ(j − 1)
φ(j)

(
eθφ(j)sj,n − 1

)
− L(n)

(
eθ(1−φ(n−1)

φ(n) ) − 1
)
; 19

20

then, by (3.3) and φ(1)s1,n > 0, we have 21

n−1∑
j=1

L(j)
(
eθφ(j)sj,n − eθφ(j+1)sj+1,n

)
≥

n∑
j=2

φ(j) − φ(j − 1)
φ(j)

(
eθ(1− φ(j)

φ(n+1) ) − 1
)
− L(n)

(
eθ(1−φ(n−1)

φ(n) ) − 1
)

, 22
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and therefore we obtain

lim inf
n→∞

1
L(n)

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
≥ (ν − ε) lim inf

n→∞
1

L(n)

n∑
j=2

φ(j) − φ(j − 1)
φ(j)

(
eθ(1− φ(j)

φ(n+1) ) − 1
)

by taking into account that φ(n)
φ(n+1) → 1 (see (1.2)). Finally we get1

lim inf
n→∞

1
L(n)

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
≥ (ν − ε) lim inf

n→∞
1

L(n)

n∑
j=2

φ(j) − φ(j − 1)
φ(j)

(
eθ(1− φ(j)

φ(n+1) ) − 1
)

2

≥ (ν − ε)

⎛
⎝lim inf

n→∞
eθ

L(n)

n∑
j=2

φ(j) − φ(j − 1)
φ(j)

(
e−θ φ(j)

φ(n+1) − 1
)

3

+ lim inf
n→∞

1
L(n)

n∑
j=2

φ(j) − φ(j − 1)
φ(j)

(eθ − 1)

⎞
⎠ ,4

5

with some manipulations, and therefore

lim inf
n→∞

1
L(n)

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
≥ ν(eθ − 1)

by taking into account that

0 ≥ lim inf
n→∞

n∑
j=2

φ(j) − φ(j − 1)
φ(j)

(
e−θ φ(j)

φ(n+1) − 1
)

=
∫ 1

0

e−θx − 1
x

dx > −∞

(we are dealing with a Riemann sum for the indicated integral) and by the arbitrariness of ε. �6

In what follows a symbol ∗ will be attached to all items in Proposition 3.2. Thus we have φ∗, L∗(n), {s∗j,n :7

n ≥ j ≥ 1}, {λ∗
n : n ≥ 1} and {R∗

n : n ≥ 1}, and all the hypotheses on them. Our aim is to prove a result8

without the concavity assumption (3.1); however, in some sense, φ needs to exhibit the same behavior as the9

concave function in Proposition 3.2, i.e. we require that10

lim
n→∞

φ(n) − φ(n − 1)
φ∗(n) − φ∗(n − 1)

= 1. (3.6)

The following lemma will be useful and its proof is immediate.11

Lemma 3.3. Let φ∗, L∗(n), {s∗j,n : n ≥ j ≥ 1} and {λ∗
n : n ≥ 1} be the items in Proposition 3.2, with all the12

hypotheses on them. Let φ : N → [0,∞) be a strictly increasing function and let {λn : n ≥ 1} be a sequence of13

positive numbers such that (1.2), (1.5) and (3.6) hold. Then:14

lim
n→∞

φ(n) − φ(n − 1)
φ∗(n + 1) − φ∗(n)

= 1; (3.7)

15

lim
n→∞

φ(n)
φ∗(n)

= 1; (3.8)

16

L(n) ∼ L∗(n); (3.9)

17
n∑

k=1

λk ∼
n∑

k=1

λ∗
k; (3.10)

s1,∞ < ∞.

Now we are ready to prove another LDP.18
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Proposition 3.4. Let φ∗, L∗(n), {s∗j,n : n ≥ j ≥ 1}, {λ∗
n : n ≥ 1} and {R∗

n : n ≥ 1} be the items in 1

Proposition 3.2, with all the hypotheses on them. Let φ : N → [0,∞) be a strictly increasing function such 2

that (1.2) and (3.6) hold. Let {λn : n ≥ 1} and {Rn : n ≥ 1} be as in Example 2.1. Then {Zn : n ≥ 1} defined 3

by (1.1) and (1.4) satisfies the LDP with speed function vn = L(n) and good rate function I defined by (1.6). 4

Proof. We follow the same lines as Proposition 3.2 where we proved that

lim
n→∞

1
L∗(n)

n∑
j=1

λ∗
j

(
eθφ∗(j)s∗

j,n − 1
)

= ν(eθ − 1)

for all θ ∈ R. Then, by also taking into account (3.9), we have to prove that

lim
n→∞

1
L∗(n)

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
= ν(eθ − 1)

for all θ ∈ R. 5

The case θ = 0 is immediate. We give all the details only for the case θ > 0 because the case θ < 0 can be 6

treated similarly. Let ε ∈ (0, 1) be arbitrarily fixed; there exists n0 such that for n ≥ j > n0 we have 7

(1 − ε)φ∗(n) < φ(n) < (1 + ε)φ∗(n), (3.11)

8

(1 − ε)
n∑

k=1

λ∗
k <

n∑
k=1

λk < (1 + ε)
n∑

k=1

λ∗
k (3.12)

9

(1 − ε)s∗j,n < sj,n < (1 + ε)s∗j,n (3.13)

by (3.8), (3.10) and (3.9) (together with Cesaro Theorem and some computations), respectively. We give all the
details only for the upper bound

lim sup
n→∞

1
L∗(n)

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
≤ ν(eθ − 1)

because the matching lower bound can be proved similarly. Let j0 be such that n > j0 > n0 and write

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
=

j0∑
j=1

λj

(
eθφ(j)sj,n − 1

)
+

n∑
j=j0+1

λj

(
eθφ(j)sj,n − 1

)
;

we have 0 ≤ 1
L∗(n)

∑j0
j=1 λj

(
eθφ(j)sj,n − 1

) ≤ 1
L∗(n)

∑j0
j=1 λj

(
eθφ(j)s1,∞ − 1

) → 0 because s1,∞ < ∞; so we can
take the second sum only into account, and we notice that

n∑
j=j0+1

λj

(
eθφ(j)sj,n − 1

)
≤

n∑
j=j0+1

λj

(
eθ(1+ε)2φ∗(j)s∗

j,n − 1
)

by (3.11) and (3.13). Moreover, by a standard argument, we can consider
∑n

j=1 λj

(
eθ(1+ε)2φ∗(j)s∗

j,n − 1
)

in 10

place of the last sum and, by Abel’s partial summation formula, we get 11

n∑
j=1

λj

(
eθ(1+ε)2φ∗(j)s∗

j,n − 1
)

12

=
n∑

j=1

λj

(
eθ(1+ε)2

(
φ∗(n)−φ∗(n−1)

φ∗(n)

)
− 1

)
+

n−1∑
k=1

k∑
j=1

λj

(
eθ(1+ε)2φ∗(k)s∗

k,n − eθ(1+ε)2φ∗(k+1)s∗
k+1,n

)
. 13

14
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The first term can be neglected when we divide by L∗(n) (and n goes to infinity); in fact we have 0 ≤1
φ∗(n)−φ∗(n−1)

φ∗(n) ≤ φ∗(1)
φ∗(n) → 0 by (3.1) and φ∗(n) → ∞ (by (1.2)), and 1

L∗(n)

∑n
k=1 λk → ν (this is a conse-2

quence of (3.4) and (3.9)). So, by also taking into account (3.12), we estimate the second term as follows:3

n−1∑
k=1

k∑
j=1

λj

(
eθ(1+ε)2φ∗(k)s∗

k,n − eθ(1+ε)2φ∗(k+1)s∗
k+1,n

)
4

=
j0∑

k=1

k∑
j=1

λj

(
eθ(1+ε)2φ∗(k)s∗

k,n − eθ(1+ε)2φ∗(k+1)s∗
k+1,n

)
5

+
n−1∑

k=j0+1

k∑
j=1

λj

(
eθ(1+ε)2φ∗(k)s∗

k,n − eθ(1+ε)2φ∗(k+1)s∗
k+1,n

)
6

≤
j0∑

k=1

k∑
j=1

λj

(
eθ(1+ε)2φ∗(k)s∗

1,∞
)

7

+ (1 + ε)
n−1∑

k=j0+1

k∑
j=1

λ∗
j

(
eθ(1+ε)2φ∗(k)s∗

k,n − eθ(1+ε)2φ∗(k+1)s∗
k+1,n

)
.8

9

The first term is finite and therefore can be neglected when we divide by L∗(n) (and n goes to infinity). So, by a10

standard argument (already used above), and with a slight change of the last term, by Abel’s partial summation11

formula we get12

n−1∑
k=1

k∑
j=1

λ∗
j

(
eθ(1+ε)2φ∗(k)s∗

k,n − eθ(1+ε)2φ∗(k+1)s∗
k+1,n

)
13

=
n∑

j=1

λ∗
j

(
eθ(1+ε)2φ∗(j)s∗

j,n − 1
)
−

n∑
j=1

λ∗
j

(
eθ(1+ε)2φ∗(n)s∗

n,n − 1
)

.14

15

When we divide by L∗(n) (and n goes to infinity), we can use the content of the proof Proposition 3.2 for the
first sum and we can neglect the second sum. In fact, for the second sum, we have 0 ≤ φ∗(n)s∗n,n ≤ φ∗(1)

φ∗(n) (and

we know that φ∗(1)
φ∗(n) → 0) and 1

L∗(n)

∑n
k=1 λ∗

k → ν (this is a consequence of 1
L∗(n)

∑n
k=1 λk → ν obtained above

and (3.10)). In conclusion, by putting the pieces together, we have

lim sup
n→∞

1
L∗(n)

n∑
j=1

λj

(
eθφ(j)sj,n − 1

)
≤ (1 + ε)ν(eθ(1+ε)2 − 1)

and we conclude by letting ε go to zero. �16

The next proposition provides another LDP for {Zn : n ≥ 1} in (1.1), where {Wn : n ≥ 1} are defined17

by (1.4) and the random variables {Rn : n ≥ 1} are independent and Rn
d∼ B (

1 − e−λn
)

for all n ≥ 1. The18

main tool in the proof is a standard large deviation technique (see e.g. Thm. 4.2.13 in [8]) based on the concept19

of exponential equivalence (see e.g. Def. 4.2.10 in [8]).20

Proposition 3.5. Let φ and {λn : n ≥ 1} be as in Proposition 3.2 or in Proposition 3.4. Let {Wn : n ≥ 1}21

be defined by (1.4) and let {Rn : n ≥ 1} be independent random variables such that Rn
d∼ B (

1 − e−λn
)

for all22

n ≥ 1. Then {Zn : n ≥ 1} in (1.1) satisfies the LDP with speed function vn = L(n) and good rate function I23

defined by (1.6).24
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Remark 3.6. Proposition 3.5 holds also if Rn
d∼ B(λn) (in place of Rn

d∼ B (
1 − e−λn

)
), for n large enough to 1

have λn ∈ (0, 1]. In fact, if we apply Proposition 3.5 to
{
λ̂n : n ≥ 1

}
defined by λ̂n := log 1

1−λn
, the sequence 2{

1 − e−λ̂n : n ≥ 1
}

coincides with {λn : n ≥ 1}. 3

Proof of Proposition 3.5. In this proof {W ∗
n : n ≥ 1} and {R∗

n : n ≥ 1} are the sequences defined as {Wn : n ≥ 1} 4

and {Rn : n ≥ 1} in Proposition 3.2 or in Proposition 3.4; then, if we set Rn := R∗
n ∧ 1 (for all n ≥ 1), the 5

sequence {Rn : n ≥ 1} is indeed a version of the sequence appearing in the statement of this proposition. Hence 6

we prove the desired LDP by checking the exponential equivalence condition 7

lim sup
n→∞

1
L(n)

log P (Δn > δ) = −∞ (for all δ > 0), (3.14)

where

Δn :=

∣∣∣∣∣ 1
L(n)

n∑
k=1

φ(k) − φ(k − 1)
φ(k)

Wk − 1
L(n)

n∑
k=1

φ(k) − φ(k − 1)
φ(k)

W ∗
k

∣∣∣∣∣ .
Firstly 8

Δn =

∣∣∣∣∣∣
1

L(n)

n∑
k=1

φ(k) − φ(k − 1)
φ2(k)

k∑
j=1

φ(j)(Rj − R∗
j )

∣∣∣∣∣∣ 9

=
1

L(n)

∣∣∣∣∣∣
n∑

j=1

φ(j)sj,n(Rj − R∗
j )

∣∣∣∣∣∣ ≤
c ∨ (φ(1)s1,∞)

L(n)

n∑
j=1

|Rj − R∗
j |, 10

11

where c is as in (3.3). Hence

P (Δn > δ) ≤ P

⎛
⎝ c

L(n)

n∑
j=1

|Rj − R∗
j | > δ

⎞
⎠ = P

⎛
⎝ n∑

j=1

|Rj − R∗
j | >

δ

c
L(n)

⎞
⎠ .

For each arbitrarily fixed θ ≥ 0, we have

P

⎛
⎝ n∑

j=1

|Rj − R∗
j | >

δ

c
L(n)

⎞
⎠ ≤

E

[
eθ

∑n
j=1 |Rj−R∗

j |
]

eθ δ
c L(n)

=

∏n
j=1 E

[
eθ|Rj−R∗

j |
]

eθ δ
c L(n)

by the Chernoff bound, and therefore

1
L(n)

log P (Δn > δ) ≤ 1
L(n)

n∑
j=1

log E

[
eθ|Rj−R∗

j |
]
− θ

δ

c
·

Moreover 12

E

[
eθ|Rj−R∗

j |
]

= P (R∗
j = 0) + P (R∗

j = 1) +
∞∑

h=2

eθ|1−h|P (R∗
j = h) 13

= e−λj + λje−λj +
∞∑

h=2

eθ(h−1)
λh

j

h!
e−λj 14

= e−λj + λje−λj + e−θe−λj

(
eλje

θ − 1 − λjeθ
)

15

= e−λj + e−θe−λj

(
eλje

θ − 1
)

= e−λj

(
1 + e−θ

(
eλje

θ − 1
))

; 16
17
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hence, if from now on we set

ρn :=
eλneθ − 1

λneθ
,

we have1

1
L(n)

log P (Δn > δ) ≤ 1
L(n)

n∑
j=1

log
(
e−λj

(
1 + e−θ

(
eλje

θ − 1
)))

− θ
δ

c
2

= − 1
L(n)

n∑
j=1

λj +
1

L(n)

n∑
j=1

log (1 + λjρj) − θ
δ

c
·3

4

Then, by (3.4), we complete the proof if we show that, for all θ > 0,5

lim
n→∞

1
L(n)

n∑
j=1

log (1 + λjρj) = ν; (3.15)

in fact, if (3.15) holds, we deduce that

lim sup
n→∞

1
L(n)

log P (Δn > δ) ≤ −θ
δ

c

and we get (3.14) by letting θ go to infinity.6

In order to prove (3.15) we remark that, since λn → 0 (see Lem. 2.4), for all ε ∈ (0, 1) there exists n0 such
that

1 − ε < ρn < 1 + ε

for all n > n0. Hence

n∑
j=1

log (1 + λjρj) =
n0∑

j=1

log (1 + λjρj) +
n∑

j=n0+1

log (1 + λjρj)

and we can concentrate our attention on the second sum. Firstly, since log(1 + z) ≤ z for all z > −1, we have

n∑
j=n0+1

log (1 + λjρj) ≤
n∑

j=n0+1

log (1 + λj(1 + ε)) ≤ (1 + ε)
n∑

j=n0+1

λj = (1 + ε)

⎛
⎝ n∑

j=1

λj −
n0∑

j=1

λj

⎞
⎠,

and we easily get the upper bound

lim sup
n→∞

1
L(n)

n∑
j=1

log (1 + λjρj) ≤ ν

by (3.4) and by the arbitrariness of ε. Now we take n1 > n0 such that λn < ε for all n > n1; moreover, from7

the inequality log(1 + z) ≥ z − z2

2 (for |z| small enough), we get8

n∑
j=n0+1

log (1 + λjρj) ≥
n∑

j=n0+1

log (1 + λj(1 − ε)) ≥ (1 − ε)
n∑

j=n0+1

λj − (1 − ε)2

2

n∑
j=n0+1

λ2
j9

≥(1 − ε)
n∑

j=n0+1

λj − (1 − ε)2

2

n1∑
j=n0+1

λ2
j −

ε(1 − ε)2

2

n∑
j=n1+1

λj ;10

11
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then we obtain the matching lower bound

lim inf
n→∞

1
L(n)

n∑
j=1

log (1 + λjρj) ≥ ν

by (3.4) and by the arbitrariness of ε. In conclusion the limit relation (3.15) is checked and the proof of the 1

proposition is complete. � 2

4. An example of interest in number theory 3

In this section we apply Proposition 2.6 to a sequence of random variables {Wn : n ≥ 1} which appears in the 4

probabilistic model for square-free numbers described in [5]. This sequence is given by suitable weighted means 5

of independent Bernoulli distributed random variables {Rn : n ≥ 1}, which is a particular case of Ex. 2.2. We 6

also discuss the difficulties to obtain the LDP from the results in Section 3. 7

Throughout this section we denote by 2 = p1 < p2 < p3 < . . . the prime numbers, arranged in increasing 8

order. We recall now the result proved in [5]. 9

Theorem 4.1. Let {Rn : n ≥ 1} be independent random variables such that Rn
d∼ B(1/(1 + pn)) for all n ≥ 1. 10

Let {Wn : n ≥ 1} be the sequence defined by Wn := 1
log pn

∑n
k=1 Rk log pk for all n ≥ 1. Then {Wn : n ≥ 1} 11

converges weakly to PW∞ = D(1) as n → ∞. 12

In the sequel we shall recover this result as a particular case of Proposition 2.6. This fact is interesting in 13

that it shows that the property stated in Theorem 4.1 is not peculiar of square-free numbers, as one could guess 14

looking at the proof given in [5] (based on deep properties of the prime numbers sequence). It is known that 15

pn ∼ n log n (4.1)

(see e.g. Thm. 8 in [18], p. 10) and 16

lim inf
n→∞

pn − pn−1

log pn
= 0 and lim sup

n→∞
pn − pn−1

log pn
= ∞ (4.2)

(see [17] or [33] for the first one, and [37] for the second one). For all n ≥ 1 we set

λn :=
1

1 + pn
and φ(n) := log pn.

By (4.1), for all ε ∈ (0, 1) there exists n0 such that

(1 − ε)n logn ≤ pn ≤ (1 + ε)n log n

for all n > n0. Then (1.2) holds because φ(n)
φ(n+1) → 1 as it is easily proved. Moreover

1
φ(n)

n∑
k=n0+1

φ(k)λk ≤ 1
log[(1 − ε)n logn]

n∑
k=n0+1

log[(1 + ε)k log k]
1 + pk

and, by the arbitrariness of ε, we get

lim sup
n→∞

1
φ(n)

n∑
k=n0+1

φ(k)λk ≤ 1
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after some standard manipulations (in particular we use Cesaro Theorem); so (1.5) holds because the matching1

lower bound can be derived similarly. Hence the weak convergence result stated in Proposition 2.6 is in force2

since we are dealing with Bernoulli distributed random variables {Rn : n ≥ 1} (and therefore this is a particular3

case of Ex. 2.2).4

We conclude with a brief discussion on the difficulties to obtain the LDP from the results in Section 3. Firstly5

we cannot apply Proposition 3.2; in fact the function φ is neither concave nor convex because (see [10]) the6

inequalities φ(n + 1) − φ(n) > φ(n) − φ(n − 1) and φ(n + 1) − φ(n) < φ(n) − φ(n − 1) hold infinitely often.7

Moreover, by (4.1),8

φ(n) ∼ log(n log n) ∼ log(1 + n) =: φ∗(n) (4.3)

where φ∗ is concave, but we cannot apply Proposition 3.4 either, because (3.6) is false. In fact, by the definition
of φ∗ in (4.3), (3.6) would mean that log(pn/pn−1)

log(1+ 1
n )

→ 1 and, since pn

pn−1
→ 1, by also taking into account (4.1)

we would have

1 = lim
n→∞n

(
pn

pn−1
− 1

)
= lim

n→∞n · pn − pn−1

pn−1
= lim

n→∞
pn − pn−1

log n
= lim

n→∞
pn − pn−1

log pn

which contradicts (4.2) once more.9

5. A discussion on the Hellinger distance and a further LDP10

We start by recalling the definition of the Hellinger distance H2[P1, P2] between two probability measures
P1 and P2 on the same measurable space Ω (see e.g. Sect. 3.2 in [26]; see also Sect. 14.5 in [35]):

H2[P1, P2] :=
1
2

∫
Ω

(√
dP1

dμ
−

√
dP2

dμ

)2

dμ,
for any measure μ such that P1 and P2

are absolutely continuous w.r.t. μ.

Note that we also have H2[P1, P2] = 1 − A[P1, P2] where A[P1, P2] :=
∫

Ω

√
dP1
dμ

dP2
dμ dμ is the Hellinger affinity.11

We always have a choice for μ, i.e. μ = P1 + P2.12

In [16] (see Sect. 4.1) it was illustrated how the rate functions found there can be expressed in terms of the
Hellinger distance with respect to the weak limit PW∞ of the sequence {Wn : n ≥ 1} (the logarithmic means
only are considered in [16]). More precisely, if I is one of the rate functions of the LDPs in [16], then it was
shown that

(H) :

⎧⎪⎨
⎪⎩

if I(x) < ∞, then we have the representation

I(x) := −c log(1 − H2[P (x), PW∞ ]) = −c logA[P (x), PW∞ ],

for some c > 0 and some probability measure P (x) which depends on x.

In this section we show that condition (H) holds for the rate function I in equation (1.6) with PW∞ = D(ν).13

We also prove the LDP for a sequence {Zn : n ≥ 1} defined by (1.1) for a suitable sequence {Wn : n ≥ 1} which14

converges weakly to PW∞ = E(λ) (for some λ > 0), and we show that in this case the rate function does not15

meet condition (H).16

5.1. On the rate function I in equation (1.6)17

Notice that, for the examples in [16], the probability measure P (x) in condition (H) belongs to the exponential
family generated by the weak limit PW∞ of the sequence {Wn : n ≥ 1} (this feature was not highlighted in [16]).
This has some analogy with what happens in Cramér Theorem (see e.g. Thm. 2.2.3 in [8]). In fact, if {Xn : n ≥ 1}
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is a sequence of i.i.d. real valued random variables with law PX , the empirical means { 1
n

∑n
k=1 Xk : n ≥ 1}

satisfies the LDP with speed function vn = n and rate function Λ∗ defined by

Λ∗(x) := sup
θ∈R

{θx − Λ(θ)},

where Λ(θ) := log E[eθX1 ]; then, if we denote the relative entropy (or Kullback-Leibler divergence) between two
probability measures by H(·|·), for all x ∈ ({y ∈ R : Λ∗(y) < ∞})◦ we have

Λ∗(x) = H(P θ(x)
X |PX)

where {P θ
X : θ ∈ {η ∈ R : Λ(η) < ∞}} is the exponential family generated by PX , and θ = θ(x) is the solution 1

of the equation Λ′(θ) = x (this means that the expected value of the random variable X1 under the law P
θ(x)
X 2

is equal to x). We also recall that large deviation rate functions are often expressed in terms of the relative 3

entropy; see e.g. the discussion in [36]. 4

Then, by taking into account the weak convergence results in Section 2, we are led to consider the exponential 5

family generated by D(ν) for the examples in this paper. We set 6

κ(s) := ν

∫ s

0

ey − 1
y

dy, (5.1)

i.e. the function κ is the logarithm of the moment generating function in (1.7); then the exponential family
{Qs : s ∈ R} generated by the Dickman distribution D(ν) = Q0 is formed by the family of probability measures
with densities

dQs

dQ0
(x) := esx−κ(s)

with respect Q0. In other words Qs is the Esscher-Cramér tilt of the distribution Q0. Therefore the Hellinger
distance between Qs and Q0 is

H2[Qs, Q0] :=
1
2

∫ ∞

0

(√
dQs

dQ0
(x) − 1

)2

Q0(dx),

the Hellinger affinity is

A[Qs, Q0] =
∫ ∞

0

√
dQs

dQ0
(x)Q0(dx) =

∫ ∞

0

e
s
2 x−κ(s)

2 Q0(dx) = e−
κ(s)
2 +κ( s

2 )

and, by (5.1) and some computations, we obtain 7

− logA[Qs, Q0] =
κ(s)
2

− κ
(s

2

)
=

ν

2

∫ s

0

ey − 1
y

dy − ν

∫ s
2

0

ey − 1
y

dy 8

=
ν

2

∫ s

0

ey − 1
y

dy − ν

∫ s

0

ey/2 − 1
y/2

dy

2
= ν

∫ s

0

(ey/2 − 1)2

2y
dy. 9

10

In conclusion condition (H) holds for the rate function I in equation (1.6) with c = 1 and P (x) = Qs(x) (for all
x ≥ 0), where s(x) is a value such that

ν

∫ s(x)

0

(ey/2 − 1)2

2y
dy = x log

x

ν
− x + ν.

Note that in general we do not have a feasible expression of s(x); however we know that s(ν) = 0. For instance, if 11

we consider an increasing version of s(·), the range of values is [s(0),∞), and in particular we have s(0) � −16.593 12

when ν = 1. Another version of s(·) could be decreasing in [0, ν) and increasing in (ν,∞); in this case the range 13

of values is [0,∞), and in particular we have s(0) � 2.492 when ν = 1. 14
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5.2. A further LDP1

Here we concentrate the attention on the following example. We define the random variables {Wn : n ≥ 1}2

in (1.1), and we study the LDP of {Zn : n ≥ 1}, in the case of logarithmic means.3

Example 5.1. Let {Xλ,n : n ≥ 1} be independent random variables such that, for some λ > 0, Xλ,n
d∼ E(λ)4

for all n ≥ 1. We set Wn := n min{Xλ,1, . . . , Xλ,n} (for all n ≥ 1).5

Proposition 5.2. Let {Wn : n ≥ 1} be as in Example 5.1, and set φ(n) = n for all n ≥ 1. Then {Zn : n ≥ 1}6

in (1.1) satisfies the LDP with speed function vn = L(n) and good rate function I defined by I(x) := (
√

λx−1)27

for all x ≥ 0 and I(x) := ∞ for all x < 0.8

Proof. We remark that
n∑

k=1

φ(k) − φ(k − 1)
φ(k)

Wk =
n∑

k=1

min{Xλ,1, . . . , Xλ,k} (for all n ≥ 1).

Then, since L(n) ∼ log n, the proposition will be proved if we show that9

lim
n→∞

1
log n

log E

[
eθ

∑n
k=1 min{Xλ,1,...,Xλ,k}

]
=

{
θ/λ

1−θ/λ for θ < λ

∞ for θ ≥ λ
(5.2)

for all θ ∈ R; in fact, by the Gärtner Ellis Theorem, the LDP holds with good rate function I defined by

I(x) := sup
θ<λ

{
θx − θ/λ

1 − θ/λ

}
,

which coincides with the rate function I in the statement of the proposition.10

We remark that, for each fixed n ≥ 1, the random variable
∑n

k=1 min{Xλ,1, . . . , Xλ,k} has the same distri-
bution of 1

λ

∑n
k=1 min{X1,1, . . . , X1,k}. Then, by equation (3.5) in [15], we have

log E
[
eθ

∑n
k=1 min{Xλ,1,...,Xλ,k}]

log n
=

{
log

∏n
k=1(1+ θ/λ

k(1−θ/λ) )
log n if θ/λ < 1

∞ if θ/λ ≥ 1

(actually in that reference it was stated that θ/λ ∈ (0, 1), but only the condition θ/λ < 1 is necessary). Finally11

the limit relation (5.2) follows noting that, if θ < λ (there is nothing to prove if θ ≥ λ), we have12

lim
n→∞

log
∏n

k=1

(
1 + θ/λ

k(1−θ/λ)

)
log n

= lim
n→∞

∑n
k=1 log

(
1 + θ/λ

k(1−θ/λ)

)
log n

13

= lim
n→∞ n log

(
1 +

θ/λ

n(1 − θ/λ)

)
=

θ/λ

1 − θ/λ
14

15

by a standard application of Cesaro Theorem. �16

We conclude with a discussion on condition (H). It is known (and can be easily checked) that all the random
variables {Wn : n ≥ 1} are E(λ) distributed; thus they converge weakly to PW∞ = E(λ) (as n → ∞). Then,
since H2[E(λ1), E(λ2)] = (

√
λ1−

√
λ2)

2

λ1+λ2
(this equality can be checked by simple inspection), for the rate function

I in Proposition 5.2 we have

I(x) = (λx + 1)H2[E(1/x), E(λ)] (for all x ≥ 0),

and therefore condition (H) fails. This could be explained noting that the sequence {Wn : n ≥ 1} in Example 5.117

is not a sequence of partial sums of random variables forming a triangular array as it happens for other examples18

in this paper, and for the examples in [16].19
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