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1 Introduction

Generally speaking, the local limit theorem describes how the density of a sum of random variables
follows the normal curve. Historically the local limit theorem appeared before the celebrated central
limit theorem, which supplanted it, especially when it became clear that the CLT could be proved
using the fundamental tool of characteristic functions (in the work of the russian school). In later
years almost sure versions of the CLT were investigated (the so called “Almost Sure Central Limit
Theorem” ASCLT); nowadays the theory of the ASCLT is completely settled; on the contrary,
the probem of establishing almost sure versions of the local limit theorem attracted attention only
recently. In these notes we review some classical local limit theorems and present the latest results
in the theory of the Almost Sure Local Limit Theorem (ASLLT).

2 The Local Limit Theorem

2.1 The DeMoivre – Laplace theorem and the Gnedenko local limit theorem

The following result is perhaps the oldest local limit theorem; it was stated by A. DeMoivre in
Approximatio ad Summam Terminorum Binomii (a+ b)n in Seriem expansi (1733); for a complete
DeMoivre’s biography see [1].

Theorem 2.1 Let gn(k) be the probability of getting k heads in n tosses of a coin which gives a
head with probability p. Then

lim
n→∞

gn(k)(
1√

2npq
e
− (k−np)2

2npq

) = 1,

uniformly for k such that
∣∣k−np√

npq

∣∣ remains bounded.
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Actually, DeMoivre proved this result only for a fair coin (p = 1/2). It was Pierre-Simon Laplace
who proved it in full generality in Théorie Analytique des probabilités (1812).

We refer to [2] for a proof.

Notice that p = E[X1] and pq = V arX1. Hence we could expect a general result of the form:
Let (Xn)n>1 be a sequence of i.i.d. random variables, with E[X1] = µ, V arX1 = σ2. Then

P (Sn = k) ≈ 1√
2πnσ

e−
(k−nµ)2

2nσ2

if
∣∣k−nµ√

npq

∣∣ is bounded.

But certainly this cannot be true in general: if

X1 =

{
−1 with probability q

1 with probability p

and k is odd, then P (S2n = k) = 0.

Let’s check what happens in the above situation with p = q = 1
2 and for even k, say k = 2h.

Since µ = 0 and σ2 = 1, we should obtain (with 2n in place of n and 2h in place of k)

P (S2n = 2h) ≈ 1
2
√

πn
e−

h2

n ,

with h√
n

bounded. Let’s see whether this is true; for the sake of simplicity we shall consider a

sequence (hn) such that hn√
n
→n

x√
2
. The above formula becomes

P (S2n = 2hn) ≈ 1
2
√

πn
e−

x2

2 . (1)

On the contrary, a careful calculation gives

Theorem 2.2 In the previous situation (p = q = 1
2 ,

hn√
n
→n

x√
2
) we have

lim
n→∞

√
nP (Sn = 2hn) =

1√
π

e−
x2

2 . (2)

Proof. Postponed to the next section.
¤

Hence a general theorem should roughly state that

P (Sn = k) ≈ c√
2πnσ

e−
(k−nµ)2

2nσ2

if k is a value of Sn and
∣∣k−nµ√

npq

∣∣ is bounded, for a suitable c. But what is c? Comparing (1) and
(2), we notice that the main difference is a factor of 2 in the second member of (2); where does it
come from? We also notice that in this case the support of S2n is concentrated on even integers,
and two successive even integers differ by 2. So one guesses that c = 2 in our case, and in general
c is maybe connected with the gap between successive values of Sn.

In the sequel we shall see the correct formulation of the general theorem, which, taking into
account the possibility of a periodicity in the values of Sn, settles completely the question, not
only in the previous example, but also in the case of a general sequence (Xn)n>1. We need some
preliminaries. In what follows we set L(a, λ) := a + λZ = {a + λk, k ∈ Z}.
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Definition 2.3 A random variable X has a lattice distribution if there exist two constant a and
λ > 0 such that P (X ∈ L(a, λ)) = 1.

We shall denote by φ the characteristic function of X, i.e. φ(t) = E[eitX ]. The next results links
the concept of lattice distribution to the behaviour of the characteristic function.

Theorem 2.4 There are only three possibilities:
(i) there exists a t0 > 0 such that |φ(t0)| = 1 and |φ(t)| < 1 for every 0 < t < t0. In this case

X has a lattice distribution.
(ii) |φ(t)| < 1 for every t 6= 0 (non lattice distribution).
(iii) |φ(t)| = 1 for every t ∈ R: In this case X is constant a.s. (degenerate distribution).

The proof of Theorem 2.4 (see next section) shows in particular that

Corollary 2.5 In case (i) of Theorem 2.4, we have

2π

t0
= max{λ > 0 : ∃ a ∈ R, P (X ∈ L(a, λ)) = 1}.

Corollary 2.5 justifies the following

Definition 2.6 In case (i) of the preceding Theorem 2.4, the number

Λ =
2π

t0
= max{λ > 0 : ∃ a ∈ R, P (X ∈ L(a, λ)) = 1}

is called the (maximal) span of the distribution of X.

Remark 2.7 In case (i), when it is possible to choose a = 0 (hence P (X ∈ ΛZ) = 1), we say that
X has arithmetic distribution. Moreover φ is periodic, with period t0. In fact, since Λ = 2π

t0
, we

have
φ(t + t0) =

∑

k∈Z
P (X = Λk)ei(t+t0) 2π

t0
k =

∑

k∈Z
P (X = Λk)eit 2π

t0
k = φ(t).

Some examples. (i) Let

X1 =

{
−1 with probability 1

2

1 with probability 1
2 .

Then φ(t) = 1
2

(
eit + e−it

)
= cos t, and |φ(t)| = 1 if and only if t = nπ, n ∈ Z. Hence t0 = π,

and the maximal span of the distribution is 2π
t0

= 2.

(ii) Let X1 have standard gaussian law. Then φ(t) = e−
t2

2 . In this case |φ(t)| = 1 only for t = 0.
(iii) If X1 = c (c some constant) we have φ(t) = eitc, and |φ(t)| = 1 for every t.

We state the first local theorem, due to B.V. Gnedenko (1948) (see [3]).

Let (Xn)n>1 be a sequence of i.i.d random variables, with E[Xi] = µ and VarXi = σ2 finite,
having lattice distribution with maximal span Λ. Let Sn = X1 + · · ·+ Xn. If P (Xi ∈ L(a,Λ)) = 1,
then P (Sn ∈ L(na,Λ) = 1.

Theorem 2.8 With the assumption stated above, we have

lim
n→∞ sup

N∈L(na,Λ)

∣∣∣
√

n

Λ
P (Sn = N)− 1√

2πσ
e−

(N−nµ)2

2nσ2

∣∣∣ = 0.
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Proof See next section; here we give some heuristics, assuming µ = 0. By the CLT we can write

P
(
Sn = N

)
≈ P

(
N − Λ

2
6 Sn 6 N +

Λ
2

)
= P

( N√
nσ

− Λ
2σ
√

n
6 Sn

σ
√

n
6 N√

nσ
− Λ

2σ
√

n

)

≈
∫ N√

nσ
+ Λ

2σ
√

n

N√
nσ
− Λ

2σ
√

n

1√
2π

e−
t2

2 dt =
∫ N√

n
+ Λ

2
√

n

N√
n
− Λ

2
√

n

1√
2πσ

e−
t2

2σ2 dt ≈ Λ√
n

1√
2πσ

e−
N2

2nσ2 .

¤
Actually, the complete formulation of Gnedenko’s result is (see [4], § 43)

Theorem 2.9 With the same assumptions as in Theorem 2.8, in order that

lim
n→∞ sup

N∈L(na,λ)

∣∣∣
√

n

λ
P (Sn = N)− 1√

2πσ
e−

(N−nµ)2

2nσ2

∣∣∣ = 0,

it is necessary and sufficient that λ = Λ.

The following result completes the theory (see [5], Th. 4.5.3):

Theorem 2.10 With the same assumptions as in Theorem 2.8, in order that

sup
N∈L(na,λ)

∣∣∣
√

n

λ
P (Sn = N)− 1√

2πσ
e−

(N−nµ)2

2nσ2

∣∣∣ = O(n−α), 0 < α <
1
2

it is necessary and sufficient that the following conditions are satisfied
(i)λ = Λ;
(ii) if F denotes the distribution function of X1, then, as u →∞,

∫
|x|>u x2F (dx) = O(u−2α).

We turn to study the nonlattice case, so we shall consider a sequence (Xn)n≥1 of i.i.d. random
variables with characteristic function φ such that |φ(t)| < 1 for every t 6= 0.

Remark 2.11 In the nonlattice case, most characteristic functions verify the so–called Cramer’s
condition, i.e. lim supt→∞ |φ(t)| < 1. Nevertheless there do exist characteristic functions of non-
lattice random variables, that do not verify Cramer’s condition. One example (due to A. Wintner,
see [6], footnote on p. 27) is as follows. Let

Y =

{
−1 with probability 1

2

1 with probability 1
2 .

Let (Yn)n>1 be a sequence of i.i.d random variables with the same law as Y ; the random series

X =
∑

k

Yk

k!

defines an a.s. random variable X the characteristic function of which is

φ(t) =
∞∏

k=1

cos
( t

k!

)
.

Now |φ(t)| = 1 if and only if t
k! is a multiple of π for each integer k, which is clearly impossible

unless t = 0 (let t
πk! = r, for a suitable non–zero integer r, and let p be a prime number greater

than k and of all the prime factors of r. Then the number

t

πp!
=

t

πk!
· 1
(k + 1) · · · · · p =

r

(k + 1) · · · · · p
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is not an integer).
On the other hand, it is not difficult to verify that

1− φ(2πN !) → 0, N →∞.

In fact, first recall that

sup
u∈R

1− cosu

u2
= C1 < ∞, sup

u∈R
1− e−u

u
= C2 < ∞.

Moreover, for u > −1
2 we have

log(1 + u) > u− C3u
2

for a suitable absolute constant C3 > 0. Hence, if N > 5 we obtain

1− φ(2πN !) = 1−
N∏

k=1

cos
(2πN !

k!

)

︸ ︷︷ ︸
=1

·
∞∏

k=N+1

cos
(2πN !

k!

)
= 1− exp

∞∑

k=N+1

log{cos
(2πN !

k!

)
− 1 + 1}

6 1− exp
{
−

∞∑

k=N+1

[
1− cos

(2πN !
k!

)]
− C3

∞∑

k=N+1

[
1− cos

(2πN !
k!

)]2}

6 C2

{ ∞∑

k=N+1

[
1− cos

(2πN !
k!

)]
+ C3

∞∑

k=N+1

[
1− cos

(2πN !
k!

)]2}

6 C2

{
C1(2π)2

∞∑

k=N+1

(N !
k!

)2
+ C3C1(2π)4

∞∑

k=N+1

(N !
k!

)4}

Now
∞∑

k=N+1

(N !
k!

)4
=

∞∑

k=N+1

1
(N + 1)4 · . . . k4

6
∞∑

k=N+1

1
(N + 1)2 · . . . k2

=
∞∑

k=N+1

(N !
k!

)2

and ∞∑

k=N+1

(N !
k!

)2
=

∞∑

k=N+1

1
(N + 1)2 · . . . k2

6
∞∑

k=N+1

1
k2
→ 0, N →∞.

The following result holds

Theorem 2.12 Let (Xn)n>1 be sequence of i.i.d. nonlattice random variables, with E[X1] = µ,
VarX1 = σ2 < ∞. If xn√

n
→ x and a < b,

lim
n→∞

√
nP (Sn − nµ ∈ (xn + a, xn + b)) = (b− a)

1√
2πσ

e−
x2

2σ2 .

The proof is postponed to the next section. The heuristics are as for Theorem 2.8.

The preceding theorem can be made more precise if the characteristic function has some further
property.

Theorem 2.13 If |φ| is integrable, then Sn−nµ
σ
√

n
has a density fn; moreover fn tends undiformly to

the standard normal density

η(x) =
1√
2π

e−
x2

2 .
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For the proof, see [2].

Theorem 2.9 is a particular case of a much wider result concerning random variables in the
domain of attraction of a stable law.

We first recall some definition. Consider a sequence of i.i.d. random variables (Xn)n>1 with
(common) distribution F (not necessarily lattice), and form as before the partial sums Sn =
X1 + · · ·+ Xn. Let G be a distribution.

Definition 2.14 The domain of attraction of G is the set of distributions F having the following
property: there exists two sequences (an) and (bn) of real numbers, with bn →n ∞, such that

Sn − an

bn

L−→G

as n →∞.

Though not relevant for us, we recall that G possesses a domain of attraction iff G is stable, i.e.

Definition 2.15 A non-degenerate distribution G is stable if it satisfies the following property:
let X1 and X2 be independent variables with distribution G; for any constants a > 0 and b > 0 the
random variable aX1 + bX2 has the same distribution as cX1 + d for some constants c > 0 and d.
Alternatively, G is stable if its characteristic function can be written as

ϕ(t; µ, c, α, β) = exp [ itµ−|ct|α (1−iβ sgn(t)Φ) ]

where α ∈ (0, 2], µ ∈ R, β ∈ [−1, 1]; sgn(t) is just the sign of t and

Φ =

{
tan πα

2 if α 6= 1
− 2

π log |t| if α = 1.

The parameter α is the exponent of the distribution.

Remark 2.16 The normal law is stable with exponent α = 2.

The complete Local Limit Theorem reads as follows (see [5], Th. 4.2.1 )

Theorem 2.17 Let Xn have lattice distribution with maximal span Λ. In order that, for some
choice of constants an and bn

lim
n→∞ sup

N∈L(na,λ)

∣∣∣bn

λ
P (Sn = N)− g

(N − an

bn

)∣∣∣ = 0,

where g is the density of some stable distribution G with exponent 0 < α ≤ 2,

it is necessary and sufficient that
(i) the common distribution F of the Xn belongs to the domain of attraction of G;
(ii) λ = Λ (i.e. maximal).
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2.2 Some proofs

The proofs of the present section follow [7], pp. 129–134.

Proof of Theorem 2.2 If −n ≤ h ≤ n, then S2n = 2h if and only if n + h variables resulted in 1
and n− h in −1, which gives

√
nP (S2n = 2h) =

√
n

(
2n

n + h

)
1

22n
=
√

n

22n

(2n)!
(n + h)!(n− h)!

.

We have to calculate the second member for h = hn ∼ x√
2

√
n, which implies that both n− hn and

n + hn go to infinity as n → ∞; thus we can apply Stirling formula and with a little algebra we
obtain √

n

22n

(2n)!
(n + hn)!(n− hn)!

∼ 1√
π

√
n2

n2 − h2
n

(
1 +

h2
n

n2 − h2
n

)n
·
(
1− 2hn

n + hn

)hn

,

and now it’s an easy exercise to verify that
√

n2

n2 − h2
n

→ 1;

(
1 +

h2
n

n2 − h2
n

)n
→ e

x2

2 ;

(
1− 2hn

n + hn

)hn → e−x2
.

¤

Proof of Theorem 2.4 We prove first that

{t > 0 : |φ(t)| = 1} =
{

t > 0 : P
(
X ∈ L

(
a,

2π

t

))
= 1 for some a

}
=: E. (3)

Thus the case in (i) means that X has a lattice distribution and moreover

max{λ > 0 : ∃ awithP (X ∈ L(a, λ)) = 1} = max{λ > 0 : λ =
2π

t
, t ∈ E} =

2π

t0
.

Let’s prove (3). Assume first that P
(
X ∈ L(a, 2π

t )
)

= 1 for some a. Then

φ(t) = E[eitX ] =
∑

k∈Z
P

(
X = a +

2π

t
k
)
eit(a+ 2π

t
k) = eita

∑

k∈Z
P

(
X = a +

2π

t
k
)
ei2πk = eita.

Conversely, assume that |φ(t)| = 1 and let U = cos tX, V = sin tX. Then

E[U2] + E[V 2] = E[U2 + V 2] = 1 = |φ(t)|2 =
∣∣∣E[U ] + iE[V ]

∣∣∣
2

= E2[U ] + E2[V ],

which means that (
E[U2]−E2[U ]

)
+

(
E[V 2]−E2[V ]

)
= 0.

By Cauchy–Schwartz inequality, the two summands are non–negative, hence they are both equal
to 0. By the second part of the the same Cauchy–Schwartz inequality (E2[ST ] = E[S2]E[T 2] if and
only if αS+βT = 0 for some α and β), we deduce (taking S = U and T = 1) that U = c1 and V = c2,
where c1 and c2 are two constants such that c2

1 + c2
2 = 1. So there exists α such that c1 = cosα and
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c2 = sinα and the equalities U = c1 and V = c2 are equivalent to eitX = eiα; this means that the
value of tX is one of the numbers in L(α, 2π) , so that P

(
X ∈ L(α

t , 2π
t )

)
= P (tX ∈ L(α, 2π)) = 1.

We pass to prove the tricotomy. Assume that (ii) doesn’t hold, which means that there exists
t0 6= 0 such that |φ(t0)| = 1. Since |φ(−t0)| = |φ(t0)| = |φ(t0)| = 1, without loss of generality we
can assume that t0 > 0. Put

E = {t > 0 : |φ(t)| = 1}.
Two cases are possible (a) τ := inf E > 0. This implies that

|φ(τ)| = lim
tn∈E↓τ

|φ(tn)| = 1;

moreover, by the infimum property of τ , |φ(t)| < 1 if 0 < t < τ . Hence case (a) corresponds to (i).
(b) τ := inf E = 0. Then there exists a sequence (tn)n>1 such that tn ↓ 0, and |φ(tn)| = 1. From the
first part of the proof it follows that there exists a sequence an such that P

(
X ∈ L(an, 2π

tn
)
)

= 1.

With no loss of generality we can assume that − π
tn

< an 6 π
tn

(if not, just put ãn = an + kn
2π
tn

,
where kn ∈ Z is such that − π

tn
(2kn + 1) < an 6 − π

tn
(2kn − 1). Then L(an, 2π

tn
) = L(ãn, 2π

tn
) and

− π
tn

< ãn 6 π
tn

).

Now observe that P (X = an) = P
(
X ∈

(
− π

tn
, π

tn

])
→ P (X ∈ R) = 1 (since tn → 0); this

implies that P (X = a) = 1 for some a: in fact, let a be such that P (X = a) > 0; then the
set E = {n ∈ N : an = a} is infinite (if not, let N = maxE; then, for every n > N we have
{X = an} ⊆ {X 6= a}, hence 1 = limn P (X = an) 6 P (X 6= a)). Hence

P (X = a) = lim
n→∞,n∈E

P (X = an) = 1.

¤

Proof of Theorem 2.8. With no loss of generality we can assume that µ = 0 (just consider the
centered sums Sn − nµ). We put N = x

√
n and for the sake of brevity we denote

pn(x) = P (Sn =
√

nx), x ∈ Ln :=
L(na,Λ)√

n
;

η(x) =
1√

2πσ2
e−

x2

2σ2 , x ∈ R.

Recall the inversion formula for a lattice random variable Y with span θ and characteristic function
ψ:

P (Y = x) =
θ

2π

∫ π
θ

−π
θ

e−itxψ(t)dt.

We want to apply it to Y = Sn√
n
, θ = Λ√

n
, ψ(t) = φn

(
t√
n

)
. We obtain

√
n

Λ
pn(x) =

√
n

Λ
P

( Sn√
n

= x
)

=
1
2π

∫ π
√

n
Λ

−π
√

n
Λ

e−itxφn
( t√

n

)
dt. (4)

Recall the inversion formula for absolutely continuous random variable with density f and charac-
teristic function ψ:

f(x) =
1
2π

∫

R
e−itxψ(t)dt.
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We apply it to Y ∼ N(0, σ2) and obtain

η(x) =
1
2π

∫

R
e−itxe−

t2σ2

2 dt. (5)

Subtracting (5) from (4) and using the inequality |e−itx| 6 1 we get,

∣∣∣
√

n

Λ
pn(x)− η(x)

∣∣∣ 6 1
2π

{∫ π
√

n
Λ

−π
√

n
Λ

∣∣φn
( t√

n

)
− e−

t2σ2

2

∣∣dt + 2
∫ ∞

π
√

n
Λ

e−
t2σ2

2 dt
}

, (6)

and notice that the second member doesn’t depend on x. Moreover, by the integrability of t 7→
e−

t2σ2

2 , we have immediately

lim
n→∞

∫ ∞

π
√

n
Λ

e−
t2σ2

2 dt = 0,

hence it remains to prove that also the first integral goes to 0 as n → ∞. First, putting Γn =
(−π

√
n

Λ , π
√

n
Λ ) we write

∫ π
√

n
Λ

−π
√

n
Λ

∣∣φn
( t√

n

)
− e−

t2σ2

2

∣∣dt =
∫

R
1Γn(t)

∣∣φn
( t√

n

)
− e−

t2σ2

2

∣∣dt =
∫ A

−A
+

∫

R\(−A,A)
, (7)

for every constant A > 0. For the first integral we have
∫ A

−A
1Γn(t)

∣∣φn
( t√

n

)
− e−

t2σ2

2

∣∣dt 6
∫ A

−A

∣∣φn
( t√

n

)
− e−

t2σ2

2

∣∣dt → 0, (8)

since φn
(

t√
n

)
→ e−

t2σ2

2 as n → ∞ (as in the proof of the CLT) and |φn
(

t√
n

)
− e−

t2σ2

2

∣∣ 6 2, so
that we can use the dominatd convergence theorem.

We pass to consider the second integral in (7).
Recall that the characteristic function ψ of a random variable Y having n–th moment verifies

∣∣∣ψ(u)−
n∑

k=0

E
[(iuY )k

k!

]∣∣∣ 6 E
[
min

{ |uY |n+1

(n + 1)!
,
2|uY |n

n!

}]

(see [7], formula (3.7), p.101). Applying for ψ = φ and n = 2 ( E[X1] = 0 and E[X2
1 ] = σ2) we get

∣∣∣φ(u)− 1 +
u2σ2

2

∣∣∣ 6 u2

3!
E[min{|u||X1|3, 6|X1|2}];

thus by the triangular inequality

φ(u)| 6
∣∣∣φ(u)− 1 +

u2σ2

2

∣∣∣ +
∣∣∣1− u2σ2

2

∣∣∣ 6
∣∣∣1− u2σ2

2

∣∣∣ +
u2

2
E[min{|u||X1|3, 6|X1|2}]. (9)

Since min{|u||X1|3, 6|X1|2} → 0 as u → 0 and min{|u||X1|3, 6|X1|2} 6 6|X1|2, by the dominated
convergence theorem we get E[min{|u||X1|3, 6|X1|2}] → 0 as u → 0, so we can pick δ > 0 such that
E[min{|u||X1|3, 6|X1|2}] 6 σ2

2 for |u| < δ, which by (9) implies

|φ(u)| 6
∣∣∣1− u2σ2

2

∣∣∣ +
u2

2
· σ2

2
.

By choosing δ <
√

2
σ the above becomes

|φ(u)| 6 1− u2σ2

2
+

σ2u2

4
= 1− u2σ2

4
6 e−

u2σ2

4 , (10)

9



by the elementary inequality 1− z 6 e−z. We apply (10) with u = t√
n

and obtain

∣∣∣φ
( t√

n

)∣∣∣
n

6 e−
t2σ2

4 , |t| 6 δ
√

n.

Hence, putting ∆n = (−δ
√

n, δ
√

n), we have (second summand in (7))
∫

{R\(−A,A)
1Γn(t)

∣∣φn
( t√

n

)
− e−

t2σ2

2

∣∣dt 6
∫

{R\(−A,A)}∩∆n

∣∣φn
( t√

n

)
− e−

t2σ2

2

∣∣dt +
∫

{R\(−A,A)}∩∆c
n

1Γn(t)
∣∣φn

( t√
n

)
− e−

t2σ2

2

∣∣dt, (11)

and now
∫

R\(−A,A)}∩∆n

∣∣φn
( t√

n

)
− e−

t2σ2

2

∣∣dt 6
∫

{R\(−A,A)}∩∆n

∣∣φ
( t√

n

)∣∣ndt +
∫

{R\(−A,A)}∩∆n

e−
t2σ2

2 dt

6
∫

{R\(−A,A)}∩∆n

e−
t2σ2

2 dt +
∫

{R\(−A,A)}∩∆n

e−
t2σ2

2 dt 6 2
∫ ∞

A
e−

t2σ2

2 dt. (12)

We pass to evaluate the second integral in (11). Notice that |t|√
n

6 π
Λ < 2π

Λ for t ∈ Γn, hence, by
Theorem 2.4 (i) and the continuity of |φ|,

sup
t∈Γn∩∆c

n

∣∣φ(
t√
n

)
∣∣ 6 sup

δ<|t|≤ π
Λ

|φ(t)| =: ρ < 1.

This implies that
∫

{R\(−A,A)}∩∆c
n

1Γn(t)
∣∣φn

( t√
n

)
− e−

t2σ2

2

∣∣dt 6
∫

{R\(−A,A)}
1Γn(t)

∣∣φn
( t√

n

)∣∣ndt +
∫

{R\(−A,A)∩∆c
n}

e−
t2σ2

2 dt

6 π

Λ
√

nρn + 2
∫ ∞

δ
√

n
e−

t2σ2

2 dt → 0. (13)

¿From (7),(8), (11), (12), (13) we conclude that

lim sup
n→∞

∫ π
√

n
Λ

−π
√

n
Λ

∣∣φn
( t√

n

)
− e−

t2σ2

2

∣∣dt 6 2
∫ ∞

A
e−

t2σ2

2 dt,

for every A > 0, and by the arbitrariness of A we deduce

lim
n→∞

∫ π
√

n
Λ

−π
√

n
Λ

∣∣φn
( t√

n

)
− e−

t2σ2

2

∣∣dt = 0.

¤

Proof of Theorem 2.12. We shall assume µ = 0, and we denote as before η(x) = 1√
2πσ2

e−
x2

2σ2 .
Let δ > 0 and consider the Polya’s density

h0(y) =
1
π
· 1− cos(δy)

δy2
.

Its Fourier transform is

ĥ0(u) =
∫

eiuyh0(y)dy =

{
1− ∣∣u

δ

∣∣, for |u| ≤ δ

0, otherwise .

10



Now put hθ(y) = eiθyh0(y), so that

ĥθ(u) =
∫

eiuyhθ(y)dy =
∫

ei(u+θ)yh0(y) dy = ĥ0(u + θ). (14)

Claim

lim
n→∞

√
nE

[
hθ(Sn − xn)] = η(x)

∫
hθ(y)dy ∀θ.

Before proving the claim, we show that it gives our statement. Let µn be the law of Sn − xn. Put

αn =
∫

h0(y)µn(dy) = E
[
h0(Sn − xn)]

and define the probability measures

νn(B) =
1
αn

∫

B
h0(y)µn(dy); ν(B) =

∫

B
h0(y)dy.

Now, by the claim, for all θ,
∫

eiθyνn(dy) =
1
αn

∫
eiθyh0(y)µn(dy) =

√
n√

nαn
E

[
eiθ(Sn−xn)h0(Sn − xn)]

=
√

nE
[
hθ(Sn − xn)]√

nE
[
h0(Sn − xn)]

→
∫

hθ(y)dy =
∫

eiθyh0(y) dy =
∫

eiθyν(dy).

This relation says that the characteristic function of νn converges to the characteristic function of
ν, hence, by the continuity theorem, that νn ⇒ ν.

Now, for |a| and |b| < 2π
δ , consider the function

κ(y) =
1

h0(y)
1(a,b)(y).

Notice that h0(y) 6= 0 for y < 2π
δ . Moreover the set {a, b} of discontinuity points of κ is negligible

with respect to ν; hence

P (Sn − xn ∈ (a, b))
αn

=
1
αn

∫
1(a,b)(y)µn(dy) =

1
αn

∫
κ(y)h0(u)µn(dy)

=
∫

κ(y)νn(dy) →
∫

κ(y)ν(dy) =
∫

1(a,b)(y)dy = b− a.

By the claim, √
nαn =

√
nE

[
h0(Sn − xn)] → η(x),

hence √
nP (Sn − xn ∈ (a, b)) =

√
nαn · P (Sn − xn ∈ (a, b))

αn
→ η(x)(b− a),

which is the conclusion.

So let’s prove the claim. The inversion formula for Fourier transform and (14) give

hθ(x) = eiθxh0(x) =
1
2π

∫
e−i(u−θ)xĥ0(u) du =

1
2π

∫
e−ivxĥ0(v + θ) dv =

1
2π

∫
e−ivxĥθ(v) dv.

11



Let’s integrate this relation with respect to µn (law of Sn − n). We find

E
[
hθ(Sn − xn)

]
=

1
2π

∫
µn(dx)

∫
e−ivxĥθ(v) dv =

1
2π

∫
dvĥθ(v)

∫
e−ivxµn(dx)

=
1
2π

∫
ĥθ(v)φn(−v)eivxn dv; (15)

notice that we are allowed to interchange the order of integration since e−ivxĥθ(v) is bounded
and has compact support, hence it is integrable with respect to the product measure µn ⊗ λ (λ
= Lebesgue measure). Notice also that

∫
e−ivxµn(dx) is the characteristic function of Sn − xn

calculated in −v, hence it equals φn(−v)eivxn . Now we pass to the limit with respect to n in (15).
Let [−M, M ] be an interval containing the support of ĥθ ; let δ > 0 be such that, for |v| 6 δ,

|φ(v)| 6 e−
σ2v2

2

(we have seen in the course of the preceding proof that such δ exists); split the integral∫
ĥθ(v)φn(−v)eivxn dv into the two summands (i)

∫
δ<|v|<M and (ii)

∫ δ
−δ.

(i) Since |ĥθ(v)| ≤ 1 we have

√
n

∫

δ<|v|<M
6

∫

δ<|v|<M
|φn(−v)|dv ≤ (2M)

√
n
(
{ sup

δ<|v|<M
|φ(v)|}

︸ ︷︷ ︸
=γ<1

)n
= 2M

√
nγn → 0, n →∞.

(ii) By the change of variable v = t√
n

we obtain

1
2π

√
n

∫ δ

−δ
ĥθ(v)φn(−v)eivxn dv =

1
2π

∫ δ
√

n

−δ
√

n
ĥθ

( t√
n

)
φn

(
− t√

n

)
e
i txn√

n dt

=
1
2π

∫

R
1(−δ

√
n,δ
√

n)ĥθ

( t√
n

)
φn

(
− t√

n

)
e
i txn√

n dt.

The integrand is bounded by the integrable function e−
σ2t2

4 and, as n → ∞, it converges to

e−
σ2t2

2 eitxĥθ(0), so that we can use the dominated convergence theorem and find that its limit is

ĥθ(0)
( 1

2π

∫

R
e−

σ2t2

2 eitx dt
)

= ĥθ(0)η(x) = η(x)
∫

hθ(y) dy,

by the inversion formula and the definition of ĥθ ( ĥθ(0) =
∫

eiy0hθ(y) dy =
∫

hθ(y) dy). The claim
and the Theorem are proved.

¤

3 The Almost Sure Local Limit Theorem

3.1 The motivation

We recall the Classical Almost Sure Central Limit Theorem (originally proved in [8] and [9]). Let
(Xn)n>1 be i.i.d with E[X1] = µ, VarX1 = σ2, and set

Zn =
Sn − nµ

σ
√

n
.

12



The Central Limit Theorem states that, for every x ∈ R

E[1{Zn6x}] = P (Zn 6 x)−→
n

Φ(x) :=
∫ x

−∞

1√
2π

e−
t2

2 dt

The Almost Sure Central Limit Theorem states that, P−a. s., for every x ∈ R

1
log n

n∑

h=1

1
h

1{Zh6x}−→
n

Φ(x).

Let’s proceed by analogy. We treat first the case of Theorems 2.8–2.9 (i.e. in which the variables
are in the domain of attraction of the normal law), which is completely settled.

Let κn ∈ L(na,Λ) be such that
κn − nµ√

n
→ κ.

Theorems 2.8–2.9 imply that

E[
√

n1{Sn=κn}] =
√

nP (Sn = κn) → Λη(κ),

where as usual
η(x) =

1√
2πσ

e−
x2

2σ2 .

Thus, comparing with the case of the Central Theorem, a tentative Almost Sure Local Limit
Theorem (ASLLT from now on) should state that P−a. s.,

1
log n

n∑

h=1

1
h

(√
h1{Sh=κh}

)
=

1
log n

n∑

h=1

1√
h

1{Sh=κh}−→n Λη(κ).

Some history:

• In 1951 Chung and Erdös proved in [14]

Theorem 3.1 Let (Xn)n>1 be a centered Bernoulli process with parameter p. Then

1
log n

n∑

h=1

1√
h

1{Sh=0}−→
n

1√
2πp(1− p)

, a.s.

• In 1993 Csáki, Földes and Révész proved in [15]

Theorem 3.2 Let (Xn)n>1 be i.i.d. centered and with finite third moment. Then

1
log n

n∑

h=1

1
ph

1{ah6Sh6bh}−→n 1, a.s.

where pn = P (an 6 Sn 6 bn).

We notice that

• Theorem 3.1 is a particular case of our tentative ASLLT: just take κn = np.

• Theorem 3.2 generalizes Theorem 3.1: just take an = bn = 0 and recall Theorems 2.8–2.9.
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3.2 The ASLLT for random sequences in the domain of attraction of the normal
law

Let (Xn)n>1 be i.i.d. having lattice distribution F with maximal span Λ; assume that E[X1] =: µ,
VarX1 =: σ2 are finite. Throughout the following discussion, we shall always assume µ = 0 and
σ2 = 1. This will cause no loss of generality.

Definition 3.3 We say that the sequence (Xn)n>1 satisfies an ASLLT if

lim
n→∞

1
log n

n∑

h=1

1√
h

1{Sh=κh}
a.s.= Λη(κ),

for any sequence of integers (κn)n>1 in L(na,Λ) such that

lim
n→∞

κn − nµ√
n

= κ.

The first result concerns the situation of Theorem 2.10. It has been proved in [11]. Here is the
statement:

Theorem 3.4 (ASLLT with rate) Let ε > 0 and assume that E
[|X2+ε

1 |] < ∞. Then (Xn)n>1

satisfies an ASLLT. Moreover, if the sequence (κn)n>1 verifies the stronger condition

κn − nµ√
n

= κ + Oδ

(
(log n)−1/2+δ

)

then
n∑

h=1

1√
h

1{Sh=κh}=Λη(κ) + Oδ

(
(log n)−1/2+δ

)
.

Remark 3.5 If E
[|X2+ε

1 |] < ∞ for some positive ε, then the condition of Theorem 2.10

sup
N∈L(na,λ)

∣∣∣
√

n

λ
P (Sn = N)− 1√

2πσ
e−

(N−nµ)2

2nσ2

∣∣∣ = O(n−α), 0 < α <
1
2

is satisfied. In fact, since the span is maximal, by Theorem 2.10 all we have to check is that as
u →∞, ∫

|x|>u
x2F (dx) = O(u−2α),

which is true with α = ε/2 since
∫

|x|>u
x2F (dx) =

∫

|x|>u
|x|2+ε|x|−εF (dx) 6 E[|X2+ε

1 |]u−ε.

The key ingredients for the proof of Theorem 3.4 are
(i) a suitable correlation inequality, which will be illustrated later;
(ii) Theorem 2.10;
(iii) the notion of quasi orthogonal system.

Definition 3.6 A sequence of functions Ψ := (fn)n>1 defined on a Hilbert space H is said quasi–
orthogonal if the quadratic form on `2: (xn) 7→ ∑

h,k〈fh, fk〉xhxk is bounded (as a quadratic
form).

A useful criterion for quasi–orthogonality is furnished by the following result (see lemma 7.4.3 in
[12]; see also [13], p. 23).
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Lemma 3.7 In order that Ψ := (fn)n>1 be a quasi–orthogonal system, it is sufficient that

sup
h

∑

k

|〈fh, fk〉| < ∞.

Remark 3.8 If H = L2(T ), where (T, A, µ) is some probability space, then
∑

h,k〈fh, fk〉xhxk =∑
h,k

( ∫
fhfk dµ

)
xhxk. By Rademacher–Menchov Theorem, it is seen that the series

∑
n cnfn con-

verges if for instance cn = n−
1
2 (log n)−b with b > 3

2 (for more information on this point, see [10]).

Now we present the basic correlation inequality. Let Yh =
√

h
(
1{Sh=κh} − P (Sh = κh)

)
. We

put moreover when necessary
bn =

κn√
2n

, M = sup
n
|bn|.

Proposition 3.9 Assume that the condition of Theorem 2.10 is satisfied, i.e.

r(n) := sup
N∈L(na,Λ)

∣∣∣
√

n

Λ
P (Sn = N)− 1√

2πσ
e−

(N−nµ)2

2nσ2

∣∣∣ = O(n−α), 0 < α <
1
2

(16)

Then there exists a constant C such that, for all integers m,n with 1 ≤ m < n

∣∣Cov(Ym, Yn)
∣∣ ≤ C

( 1√
n
m − 1

+
√

n

n−m
· 1
(n−m)α

)
.

Proof. By independence and equidistribution,

Cov(Ym, Yn) = E[Ym · Yn] =
√

mP (Sm = κm)
√

n
(
P (Sn−m = κn − κm)− P (Sn = κn)

)
.

By the assumption (16), we have

sup
m

√
mP (Sm = κm) ≤ C < ∞.

Now, if A :=
√

n
(
P (Sn−m = κn − κm)− P (Sn = κn)

)
, we have

|A| 6 √
n
∣∣∣P (Sn−m = κn − κm)− Λ√

2π(n−m)
e
− (κn−κm)2

2(n−m)

∣∣∣

+ Λ
√

n
∣∣∣ 1√

2π(n−m)
e
− (κn−κm)2

2(n−m) − 1√
2πn

e−
κ2

n
2n

∣∣∣

+
√

n
∣∣∣ Λ√

2πn
e−

κ2
n

2n − P (Sn = κn)
∣∣∣

=
√

n

n−m

∣∣∣
√

n−mP (Sn−m = κn − κm)− Λ√
2π

e
− (κn−κm)2

2(n−m)

∣∣∣

+
Λ√
2π

∣∣∣
√

n

n−m
e
− (κn−κm)2

2(n−m) − e−
κ2

n
2n

∣∣∣ +
∣∣∣ Λ√

2π
e−

κ2
n

2n −√nP (Sn = κn)
∣∣∣

=: A1 + A2 + A3.

By condition (16),

A1 :=
√

n

n−m

∣∣∣
√

n−mP (Sn−m = κn − κm)− Λ√
2π

e
− (κn−κm)2

2(n−m)

∣∣∣

6 Λ
√

n

n−m
r(n−m) 6 C

√
n

n−m

1
(n−m)α

.
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Furthermore

A3 :=
∣∣∣ Λ√

2π
e−

κ2
n

2n −√nP (Sn = κn)
∣∣∣ 6 Λr(n) 6 C√

n
6 C

√
m√
n

6 C

√
m√

n−√m
= C

1√
n
m − 1

.

It remains to estimate

A2 : =
Λ√
2π

∣∣∣
√

n

n−m
e
− (κn−κm)2

2(n−m) − e−
κ2

n
2n

∣∣∣ 6 Λ√
2π

∣∣∣
√

n

n−m
e
− (κn−κm)2

2(n−m) − e
− (κn−κm)2

2(n−m)

∣∣∣

+
Λ√
2π

∣∣∣e−
(κn−κm)2

2(n−m) − e−
κ2

n
2n

∣∣∣ =
Λ√
2π

e
− (κn−κm)2

2(n−m)

(√
n

n−m
− 1

)
+

Λ√
2π

∣∣∣e−
(κn−κm)2

2(n−m) − e−
κ2

n
2n

∣∣∣ =: A4 + A5.

Now
√

2π

Λ
A4 := e

− (κn−κm)2

2(n−m)

(√
n

n−m
− 1

)
6
√

n−√n−m√
n−m

=
1√

n−m
· m√

n +
√

n−m

=
1√

n
m − 1

·
√

m√
n +

√
n−m

6 1√
n
m − 1

6 1√
n
m − 1

,

since
√

x−√y 6 √
x− y if x > y > 0. On the other hand, by using the inequality |eu−ev| 6 |u−v|

if u 6 0 and v 6 0, we have
√

2π

Λ
A5 :=

∣∣∣e−
(κn−κm)2

2(n−m) − e−
κ2

n
2n

∣∣∣ 6
∣∣∣− (κn − κm)2

2(n−m)
+

κ2
n

2n

∣∣∣ =

∣∣∣− (
√

nbn −
√

mbm)2

n−m
+ b2

n

∣∣∣ =
∣∣∣−nb2

n −mb2
m + 2

√
mnbnbm

n−m
+ b2

n

∣∣∣

=
∣∣∣−nb2

n −mb2
m + 2

√
mnbnbm + nb2

n −mb2
n

n−m

∣∣∣ =
∣∣∣−b2

m + 2
√

n
mbnbm − b2

n
n
m − 1

∣∣∣

=
∣∣∣−(bn − bm)2 + 2bmbn

(√
n
m − 1

)
n
m − 1

∣∣∣ 6
2(bn + bm)2 + 2|bn||bm|

(√
n
m − 1

)
n
m − 1

6 2M2 2 +
(√

n
m − 1

)
n
m − 1

=
2M2

√
n
m − 1

.

¤

Now we are ready to sketch the main steps of the proof of Theorem 3.4.

(i) Fix any ρ > 1. By means of the basic correlation inequality, we prove the quasi–orthogonality
of the sequence

Zj =
∑

ρj6h<ρj+1

Yh

h
,

where as before
Yh =

√
h
(
1{Sh=κh} − P (Sh = κh)

)
.

(ii)By Remark 3.8, we obtain that the series

∑

j

Zj√
j(log j)b

converges as soon as b > 3
2 .
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(iii) By Kronecker’s Lemma

1√
n(log n)b

n∑

j=1

Zj =
1√

n(log n)b

n∑

j=1

∑

ρj6h<ρj+1

Yh

h
=

1√
n(log n)b

∑

16h<ρn+1

Yh

h
−→

n
0

(iv) The preceding relation yields easily (we omit the details)
√

log t

(log log t)b

( 1
log t

∑

h6t

Yh

h

)
=

1√
log t(log log t)b

∑

h6t

Yh

h
−→

t
0;

since
√

log t
(log log t)b −→t∞, this implies

1
log t

∑

h6t

Yh

h
=

1
log t

∑

h6t

1{Sh=κh}√
h

− 1
log t

∑

h6t

√
hP (Sh = κh)

h
−→

t
0

(v) Last, by Theorems 2.8–2.9

1
log t

∑

h6t

√
hP (Sh = κh)

h
−→

t
Λη(k),

and the result follows.
The second part of the Theorem is proved similarly.

¤

Theorem 3.4 concerns the case in which X1 has a moment 2+ ε. The case in which only second
moment exists has been treated in 2002 by M. Denker et S. Koch in [16], but their discussion is
incomplete. In particular, they give the following notion of ASLLT:

Definition 3.10 A stationary sequence of random variables (Xn)n>1 taking values in Z or R with
partial sums Sn = X1 + · · ·+ Xn satisfies an ASLLT if there exist sequences (an) in R and (bn) in
R+ with bn →∞ such that

lim
n→∞

1
log n

n∑

h=1

bn

n
1{Sn∈κn+I}

a.s.= g(κ)|I| as
κn − an

bn
→ κ,

where g denotes some density and I ⊂ R is some bounded interval. Further, |I| denotes the length
of the interval I in the case where X1 is real valued, and the counting measure of I otherwise.

We observe that this definition is incomplete: even in the restricted case of i.i.d. random
variables taking values in the lattice L(v0, Λ), consideration of the span Λ of X1 is missing. It
appears necessary to modify the above formula into

lim
n→∞

1
log n

n∑

h=1

bn

n
1{Sn∈κn+I}

a.s.= g(κ)#{I ∩ L(v0,Λ)} as
κn − an

bn
→ κ.

The problem has been solved once and for all by M. Weber in 2011 in [13]. Here is the result

Theorem 3.11 Let (Xn)n>1 be square integrable lattice distributed random variables with maximal
span Λ. Then (Xn)n>1 verifies an ASLLT.
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The proof is in two steps:
(i) first one makes the additional assumption (vk, k ∈ Z are the elements of the lattice)

P (X = vk) ∧ P (X = vk+1) > 0 for some k ∈ Z. (17)

With this assumption, the author proves a basic correlation inequality (similar to (16)) concerning
the (already used) variables

Yh =
√

h
(
1{Sh=κh} − P (Sh = κh)

)
.

More precisely one has

Proposition 3.12 Assume that (17) holds. Then there exists a constant C (depending on the
sequence (κn)) such that, for all integers m,n with 1 ≤ m < n

Cov(Ym, Yn) ≤ C
( 1√

n
m − 1

+
√

n

n−m
· 1
n−m

)
.

Then the ingredients for the proof are as before: the just stated correlation inequality, the notion
of quasi–orthogonal system and (this time) Theorem 2.8 (it is not possible to use Theorem 2.10
since in this case X1 has only the second moment).

(ii) In the second step the author uses a clever argument in order to get rid of assumption (17)
and obtain the result in full generality.

3.3 The ASLLT for random sequences in the domain of attraction of a stable
law with α< 2.

In this section we briefly sketch the main ideas of some recent work by R. Giuliano and Z. Szewczak
for random sequences in the domain of attraction of a stable law with α< 2. It is work in progress,
hence some points are yet missing.

Let (Xn)n≥1 be a sequence of i.i.d. random variables, such that their common distribution
F is in the domain of attraction of a stable distribution G (having density g) with exponent α
(0 < α < 2); see Definitions 2.14 and 2.15; in particular the sequences (an) and (bn) are as in
Definition 2.14. It is well known (see [5], p. 46) that bn = L(n)n1/α, where L is slowly varying
in Karamata’s sense. Assume that X1 has a lattice distribution with Λ being the maximal span.
Since X1 doesn’t possess second moment, the discussion of the preceding section doesn’t work in
this case. Anyway, we can attempt to use similar ingredients as before.

We shall content ourselves of the particular case in which both F and the limit distribution G
are symmetric By Remark 2 p. 402 of [17], we have an = 0. Put

Yn = bn

(
1{Sn=κn} − P (Sn = κn)

)
.

The first ingredient is the correlation inequality

Proposition 3.13 (i) For every pair (m, n) of integers, with 1 ≤ m < n, we have

∣∣Cov(Ym, Yn)
∣∣ = bmbn

∣∣∣P (Sm = κm, Sn = κn)− P (Sm = κm)P (Sn = κn)
∣∣∣

≤ C
{( n

n−m

)1/α L(n)
L(n−m)

+ 1
}

.
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(ii)For every pair (m,n) of integers, with 1 ≤ m < n, we have

∣∣Cov(Ym, Yn)
∣∣ = bmbn

∣∣∣P (Sm = κm, Sn = κn)− P (Sm = κm)P (Sn = κn)
∣∣∣

≤ C · L(n)



n1/α

( 1
e(n−m)c

+
1

enc

)
+

m
n(

1− m
n

)1+1/α
+

(
m
n(

1− m
2n

)2

)1/α


 .

Corollary 3.14 For large m and n ≥ 2m we have

bmbn

∣∣∣P (Sm = κm, Sn = κn)− P (Sm = κm)P (Sn = κn)
∣∣∣ ≤ C ·

(m

n

)ρ
,

with ρ := min( 1
α , 1).

The second ingredient is Theorem 2.17. Last, instead of quasi–orthogonality, we use the Gaal–
Koksma Strong Law of Large Numbers, i.e. (see [18], p. 134); here is the precise statement:

Theorem 3.15 Let (Zn)n>1 be a sequence of centered random variables with finite variance. Sup-
pose that there exists a constant β > 0 such that, for all integers m ≥ 0, n > 0,

E
[( m+n∑

i=m+1

Zi

)2
]
≤ C

(
(m + n)β −mβ

)
, (18)

for a suitable constant C independent of m and n. Then, for each δ > 0,

n∑

i=1

Zi = O(nβ/2(log n)2+δ), P − a.s.

We apply the above theorem to the sequence

Zj :=
ρj−1∑

h=ρj−1

Yh

h
.

The main result is as follows:

Theorem 3.16 Let α > 1 and assume that there exists γ ∈ (0, 2) such that

b∑

k=a

L(k)
k

≤ C(logγ b− logγ a).

Then (Xn)n>1 satisfies an ASLLT, i.e.

lim
N→∞

1
log N

N∑

n=1

bn

n
1{Sn=κn} = Λg(κ).

Remark 3.17 The slowly varying sequence L(k) = logσ k with σ < 1 verifies the assumption of
Theorem 3.16.
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[14] K. L. Chung and P. Erdös, Probability limit theorems assuming only the first moment., Mem.
Amer. Math. Soc., (1951), no. 6, 19pp.
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