Grover infflementatione
Trovace 1 el wfee M date $f:\{0,1\}^{n} \rightarrow\{0,1\} \quad f(w)=1 \quad f(x)=0 \times \neq \omega$

Black-box $\quad|j\rangle_{n}|y\rangle_{1} \rightarrow|j\rangle|y \oplus f(j)\rangle$
offeree $\left.U_{\omega}(1 j\rangle\right)=(-1)^{f(j)}|j\rangle$.
Gircuito

G. Diffusion

$$
\left.H^{\otimes n}(210\rangle^{\otimes a}<D 1^{\otimes n}-I^{\otimes n}\right) H^{\otimes n}
$$

1. Dobbiane "canbiare segro" allo stato $|\omega\rangle \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$. Le black box si sccupa di quent.
2. Opuare con ofacatre di d'ffutive che effetene em^{\prime} invasione ispeero alle media. (solo sui trimi m buts).

$$
\left.\sum \alpha_{j}\left|j>\rightarrow \sum_{j}\left(2\left(\sum_{k} \frac{\alpha_{k}}{2^{n}}\right)-\alpha_{j}\right)\right| j\right\rangle
$$

lo matice

$$
W=\frac{2}{2^{n}} \cdot\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & & \vdots \\
1 & \cdots & 1
\end{array}\right)-I^{\otimes n}
$$

roppresūa questa astirue

Ricondiaves de se $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ allon

$$
H^{\otimes q}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
H^{\otimes q-1} & H^{\otimes q-1} \\
H^{\otimes q-1} & -H^{\otimes q-1}
\end{array}\right)
$$

e quindi

$$
H_{j k}^{\otimes n}=\frac{1}{\sqrt{2^{n}}}(-1)^{j \cdot k}<\min _{\substack{\text { codolau } \\ i j \in\{0,1\}^{n}}}^{n}
$$

se allne defiviavo $R=\left(\begin{array}{ccc}2 & 0 \ldots & 0 \\ 0 & 0\end{array}\right)$
Si he

$$
\begin{aligned}
\left(H^{\otimes u} \cdot R H^{\otimes u}\right)_{j k} & =\left(H^{\otimes u}\right)_{j_{0}} R_{o o}\left(H^{\otimes u}\right)_{o k} \\
& =\frac{2}{2 n}
\end{aligned}
$$

dato de $R_{i k=0} \quad j, k \neq 0$

Da ai

$$
\begin{aligned}
W & =H^{\otimes n} R+I^{\otimes n}-I^{\otimes u}=H^{\otimes u} \cdot H \otimes u \\
& =H^{\otimes n}\left(R-I^{\otimes u}\right) H H^{\otimes u}= \\
& =H^{\otimes u} \underbrace{\operatorname{diag}(1,-1, \cdots,-1) H^{\otimes u}}_{F}
\end{aligned}
$$

Conce cortruise F ?
l'effetee di F è couebiace il signo del colfficien te di ofui stato $|j\rangle$ della base tranue $|0\rangle$!

Jurece di F prianeo as̃ruize - F cle coculsia il seguo a $|0\rangle$ a lassuia gei allui $j>$ ùvaiati - Tauto le mabici di $\bar{F} e-F$ è ue eaun biomento difase globale e quindi implemeutano de stessa operasione.

Absiamo il gate $Z=\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right)$ quindi $C Z=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0\end{array}\right)($ sue 2 quints), quindi proviaus a convire un gate che
de cambia it seguo di $|-1\rangle$ e lescia qui albir ì variabi. Judictiamo crn $C^{n-1} z$ il qate de applicato a iv qubits applice Z all'évusino se glialti smo tettill>.

NetA se $n=2$

Cos se abbiamo $C^{n-1} Z$

$$
-F=x^{\otimes n}\left(C^{n-1} Z\right) x^{\otimes n}
$$

li smo malti modi pee costruire $C^{n-1} Z$. Une modo:

- implenentare $C^{n-2} x$ e $C Z$

Es. $n=4 \quad c^{3} z$

Peu cruchedere ricordíanero cte 'I unvers ottimale di ifterationi ì

$$
k \simeq \frac{\pi}{4} \sqrt{2^{n}}
$$

Vedvoum ore conce infflementace uncircu to de trova f t.c

$$
\begin{aligned}
& f(5)=1 \text { e } f(x)=0 \\
& 0 \leq x \leq 7 \\
& n=3 \quad \# \text { passi ettimale } k \simeq 2.2 \\
& \Rightarrow k=2 .
\end{aligned}
$$

Suiviamo U_{f} -
Voghiques de coucbi il segno a 101 - 2uindi te μ sians $C^{2} Z$, de cambia il seguo se thelti 1

oracolo
Diffusione $H^{\otimes_{3}} F H^{\otimes 3}=H^{\otimes_{3} \underbrace{\otimes_{3}}_{F} C_{z}^{2} z X^{Q^{3}}}+^{\otimes_{3}}$

Se voficiand $\quad g(001)=1$
U_{g} -

Esumpi Gwover 1 volta
2 valte
3 valte
emfornte i risultati.

Eseupio (E-1:3-SAT).
Probleura:
Datia ${\underset{1}{i}}_{C_{k}}$ sue n vaciabies booleame, x_{1}, \ldots, x_{n}, cm 3 beecrali fu dausola C_{1}, \ldots, Cne dove vua clausala ì cone forta di or e not.
Deteruinare se esiste un asseguavento di $x_{1}, x_{2} x_{3}$ tall cle ofui C_{i} ho esattamente 1 letecrale tero

Es $\left(x_{1} \nabla x_{2} \nabla \neg x_{3}\right) \quad(L G 110)$
Possibili asseg nourenti cm 1 Selo vero.
$101,011,000$,

Riduciano LG-110
i gate de ricmosee de esiste 1 solo assegramento vero pee $x_{1} \nabla x_{2} \nabla \neg x_{3}$.

Allre

Conce face pee risolvere?

1. O RACOLO usiavo 8 plsits.

- 3 imput
- 1 ancella
- 3 pee memorirtare la validità deele 3 frum ule
- 1 per valne oracolo Se vera conctivatiore è valide $L G \longrightarrow|\underline{x}\rangle|1\rangle$ Caleolianno ture e
pri contolliano de i lisultati sians telti 1 ossia $\operatorname{ccc} x$

ei baste sapue $|x\rangle$ e $|y\rangle$

$$
\theta(|x\rangle|y\rangle)=|x\rangle|y \oplus f(x)\rangle
$$

AlTenzione: tweti i valri ete hou sewous varue ripristinati al valore eivisiall!
A queño peecto differsione

$$
W=H^{\otimes 3} x^{\otimes 3} C_{z}^{3} x^{\otimes 3}+f^{\otimes 3}
$$

Je definitiva

Esempio -
LCSAT3-IG 1 Ghaver
LCSAT3-2G 2 Grover

Altia applicasion. MQ
Trovare le soluarioni di' lue sistence di ep, poliveniali quaduatiche su F_{2}

Per ora limeitianoai a: 2 equationi ie 3 vaciabils di grado 2 e suppociovino de esista une sola Solusione.

Problene 1. len sistena di epneaisi quadraticle su F_{2} è dato de un "Cubo" $\left(\lambda_{i j}^{(k)}\right)$ $\operatorname{sen} \Psi_{2}$ e wer vetere $\left(v_{1} \ldots v_{u}\right) \in F_{2}{ }^{n}$ Vogliaum trovare $\left(x_{1}, \ldots\right.$, sun $) \in F_{2} n$ t.c.

$$
\sum_{1 \leq i, j \leq n} \lambda_{i j}^{(k)} x_{i} x_{j}=v_{k}
$$

Problane 2 Diciarno de we Sistence i ì fruma "conremiente" se è dato da we "cubo" $\binom{\lambda_{i j}^{(k)}}{(k)}$ con $\lambda_{i j}^{(k)}=0$ se $i>j$. Jualtee $v=(1, \ldots, 1)$.
bexu
Ofui sostenear se peiò ricoudrus a lun sistene equivalente one $m+1$ equationi o $n+1$ vaniabile de à ui frue cruveniente.
Basta defirive

$$
\begin{aligned}
& \lambda_{i j}^{\prime(k)}= \begin{cases}\lambda_{i j}^{(k)} & i=j \leq u \\
\lambda_{i j}^{(k)}+\lambda_{j i}^{(k)} & 1<j<u \\
1+v_{k} & i=j=n+1 \\
0 & \text { allinuenti }\end{cases} \\
& \lambda_{i j}^{1(m+1)}= \begin{cases}1 & i=j=n+1 \\
0 & \text { altimenecti }\end{cases}
\end{aligned}
$$

Cost miano be racolo. (fifpuo' fare meghio).
Defivi ano

$$
\begin{aligned}
& y_{i}^{(k)}=\sum_{1 \leq j \leq n} \lambda_{i j}^{(k)} x_{j} \\
& E^{(k)}=\sum_{1 \leq i \leq n} x_{i} y_{i}^{(k)}
\end{aligned}
$$

$\cos \left(x_{i}\right)$ è soluiione $\Leftrightarrow E^{(k)}=1 \forall k$
Es. $\left\{\begin{array}{l}\left.x_{1}\left(1+x_{2}\right\lrcorner x_{3}\right)+x_{2} x_{3}=1 \\ x_{1}\left(1+x_{3}\right)=1\end{array}\right.$
$P_{e e}$ vedue se x è solurione
Definei amo

otsia $n+m+2$ registie e $r=|1\rangle$ se x è sobetione $r=|0\rangle$ alfimenti
oss. $1+z=\bar{z}$, que redi priano iresuize $y_{1}^{(1)}$ in t.
Vedianeo l'éseneforo

praggineger $x_{2} x_{3}$ usioveo vin Toffei

$$
T\left(x_{1}, t, e_{1}\right)
$$

$$
\begin{array}{cc}
\left|x_{1}\right\rangle \\
\left|x_{2}\right\rangle & \left|x_{1}\right\rangle \\
\left|x_{3}\right\rangle & \left|x_{2}\right\rangle \\
\left|1+x_{2}+x_{3}\right\rangle & \left|x_{3}\right\rangle \\
e_{1}=|0\rangle \quad\left|1+x_{2}+x_{3}\right\rangle \\
|0\rangle & \left|x_{1}\left(1+x_{2}+x_{3}\right)\right\rangle \\
\vdots & |0\rangle \\
|0\rangle & |0\rangle
\end{array}
$$

Poi bisogue "rifristinare" t
basta afplicace a ritroso le trasfomanin folte pue mettue $y_{1}^{(1)}$ ie t

$$
\begin{aligned}
& \left|x_{1}\right\rangle \\
& \left.x_{2}\right\rangle \\
& \left|x_{3}\right\rangle \\
& \left|1+x_{2}+x_{3}\right\rangle-\llbracket \mid \\
& j
\end{aligned} \quad \begin{aligned}
& \left|x_{1}\right\rangle \\
& \left|x_{2}\right\rangle \\
& \left|x_{3}\right\rangle
\end{aligned}
$$

Poi agfivegiano $y_{2}^{(1)}=x_{2} x_{2}$
$a \quad e_{1}$

Cintiveriacuo con le altu equalimi per visperize $x_{1}\left(1+x_{3}\right)$ bie e_{2} usiavero

Alle fine $\mid y>1$ se telea; ger $\left|E_{1}\right\rangle=|1\rangle$. Postiano usare un m.quisits Toffoli.
Fatto l'sracolo baste applicaue l'opecatre di diffeessoure di $G_{\text {. }}$

Esenepio
QE-2

