
9 Fermat’s and Euler’s Theorems 193

fpn(a) = fp( fp(· · ·(a) · · · )).

Since the composition of homomorphisms is a homomorphism (an easy exercise),
we have that

(a+b)p
n
= fpn(a+b) = fpn(a)+ fpn(b) = ap

n
+bp

n
.

⊓"

Exercises.

71. Let m= 15, then (m) = 4. Verify that for every number a,

a5 ≡ a (mod m).

72. Let m= 41 ·11= 451. Verify that

11 (m)+1 ≡ 11 (mod m).

73. Show that (m) < (m) for every odd composite number m.

74. Find examples of p,q primes>10 so that (pq) = p−1.

75. Let a,b,c be integers and p a prime. Show that

(a+b+ c)p≡ ap+bp+ cp (mod p).

Generalize.

76. Find integers a,b so that

(a+b)4 ̸≡ a4+b4 (mod 4).

77. Show that for all integers a,b and every n> 0,

(a+b)n ≡ an+bn (mod 2).

F. Finding High Powers Modulo m

For finding inverses by Euler’s theorem and for other applications, we often need to
find the least nonnegative residue of a high power of a number modulo m.
For example, one way to find the inverse of 87 modulo 179 is as 87177 mod 179.
But if we put 87177 into a calculator, it will either choke or give us something

like “1.972 E+343”, which is useless for discovering that 107 is the inverse of 87
modulo 179.
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To find 87177 modulo 179, it is helpful to write the exponent in base 2 and then
find the result using a sequence of squarings modulo 179. We first find that 179=
128+32+16+1. Then we compute

87
872 ≡ 51 (mod 179),
874 ≡ 512 ≡ 95 (mod 179),
878 ≡ 952 ≡ 75 (mod 179),
8716 ≡ 752 ≡ 76 (mod 179),
8732 ≡ 762 ≡ 48 (mod 179),
8764 ≡ 482 ≡ 156 (mod 179),
87128 ≡ 1562 ≡ 171 (mod 179).

Since 179= 128+32+16+1, we have

87179 = 87128+32+16+1

= 87128 ·8732 ·8716 ·87
≡ (171)(48)(76)(87)
≡ 107 (mod 179).

An efficient way to do the computations is as follows: write the exponent, 177, in
base 2: 177= (10110001)2. Then write down that base 2 number with an S inserted
in the spaces between adjacent digits:

1S0S1S1S0S0S0S1.

Now replace each 1 by X and erase each 0, to get

XSSXSXSSSSX .

Beginning with the number 1, view X and S, from left to right, as operations to
compute a177 (mod m), as follows: X means, multiply the result by a and reduce
modulom; and Smeans, square the result and reduce modulom. If we do not reduce
modulo m, we would get:

X S S X S
1 → a → a2 → a4 → a5 → a10
X S S S S X
→ a11 → a22 → a44 → a88 → a176 → a177

If we reduce modulo m at each step, we get the least nonnegative residue of a101
(mod m) at the end. Thus
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X : 1 ·87≡ 87 (mod 179)
S : 87 ·87≡ 51 (mod 179)
S : 51 ·51≡ 95 (mod 179)
X : 95 ·87≡ 31 (mod 179)
S : 31 ·31≡ 66 (mod 179)
X : 66 ·87≡ 14 (mod 179)
S : 14 ·14≡ 17 (mod 179)
S : 17 ·17≡ 110 (mod 179)

S : 110 ·110≡ 107 (mod 179)
S : 107 ·107≡ 172 (mod 179)
X : 172 ·87≡ 107 (mod 179).

So
87177 ≡ 107 (mod 179).

Exercises.

78. Find the least nonnegative residue (mod 34) of 1287.
79. Find the least nonnegative number a congruent to 269 (mod 71). Verify that
2a≡ 1 (mod 71).
80. Find the least nonnegative number a congruent to 569 (mod 71). Verify that
5a≡ 1 (mod 71).
81. Find the least nonnegative number a congruent to 3340 (mod 341).
82. Find the least nonnegative number a congruent to 51728 (mod 1729).
83. Find the least nonnegative residue (mod 101) of 1877.
84. (i) Find the least nonnegative number a congruent to 21194648 (mod 1194649)
Could 1194649 be prime?
(ii) Find the least nonnegative number a congruent to 31194648 (mod 1194649)

Is 1194649 prime?
85. Let m= 252601. Suppose we discover that

3126300 ≡ 67772 (mod 252601)
3252600 ≡ 1 (mod 252601)

Is then 252601 prime? composite? Or can we not decide for sure from the informa-
tion given?
86. Show how to adapt Russian Peasant Arithmetic (Chapter 2, Exercise 29 ) with
multiplication replacing addition and squaring replacing multiplying by 2, to effi-
ciently find ae and ae mod m for any numbers a,e and m.
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G. Modular Multiplication

When we find ae mod m as in Section F, every time we perform an operation (multi-
plication, squaring), we immediately reduce the result modulo m to bring the result
back to a number<m. (If we don’t, the size of the numbers can become unmanage-
ably large.)
For example, suppose the modulus m = 179 and we square 107 to get 1072 =

11449. To find its least non-negative residue modulo m, we divide 179 into 11449
and take the remainder.
But long division is the only algorithm in classical arithmetic that is not automatic.
Consider dividing 179 into 11449. We look for the first digit of the quotient.

Since 17 is bigger than 11, we can’t guess the first digit by dividing the first digit of
the divisor into the first digit or two of the dividend. So we start guessing with 9:

179 ·9= 1611;
179 ·8= 1432;
179 ·7= 1253;
179 ·6= 1074

and 1074 is less than 1144. So the first digit is 6.
We subtract 10740 from 11449 and get 709. Now we guess the next digit. How

many times does 179 go into 709? We try the first digit idea: since 1 goes into 7, 7
times, we start with 7:

179 ·7= 1253,
179 ·6= 1074,
179 ·5= 895,
179 ·4= 716,
179 ·3= 537,

and 537 is less than 709. So the second digit is 3, and the remainder is 709−537=
172.
Hence 11449 mod 179= 172, and so 107 ·107 mod 179 is 172.
To find the digits of the quotient, we needed to guess, and trial divide, nine times.
Evidently, we can learn how to do long division by guessing. But for program-

ming a computer, it could be helpful to find a systematic way to find the least non-
negative residue of a number without the trial dividing that is part of the long divi-
sion algorithm.
We present a method, due to P. Montgomery in 1985, which replaces the long

division by several multiplications. Here is how it works.
Given the modulus m, we choose a base, or radix r > m such that m is coprime

to r, and such that finding the least non-negative residue of any number modulo r
is easy. For example, if we are working with numbers written in the usual decimal
notation and the modulusm is coprime to 10, then we can choose r to be a power of
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10. For then the least non-negative residue of a number is just the rightmost digits
of the number.
For example, if r = 1000 then 324,554,217 modulo 1000 is 217, while 11449

modulo 1000 is 449.
In our example, if m= 179, then we can choose r = 1000.
For many applications, such as cryptography, the assumption that the modulusm

is coprime to 10 will always hold.

Precomputation. Given the modulus m and the base r > m, we first precompute
some constants for the algorithm. Since m and r are coprime, we can find numbers
r′ and m′ so that r′r−m′m= 1, or

r′r = 1+m′m,

where 0< r′ < m and 0< m′ < r. Note that r′ is the inverse of r modulo m.
We also find the least non-negative residue w of r2 mod m. The constants r′,m′

and w are used in the algorithm.

The algorithm. Now let b be a number<mr. We want to find b mod m.
We do it in two parts.

For the first part we find br′ mod m, as follows.
First, let s = bm′ mod r. (That, recall, is easy to do.) Then, multiplying by m

yields
sm= bm′m (mod mr),

and since s < r, then sm < rm and sm is the least non-negative residue of b′bm
modulo mr. Then

b+ sm≡ b+bm′m= b(1+m′m) = br′r (mod mr),

so b+ sm is a multiple of r. Divide the congruence

b+ sm≡ br′r (mod mr)

by r (again, easy to do), to get z= (b+ sm)/r. Then

z≡ br′ mod m.

We also have that
z< 2m.

To see this, recall that b< mr by assumption, and sm< mr. So rz = b+ sm< 2mr,
hence z< 2m.
The least non-negative residue c of br′ mod m is then either z, if z< m, or z−m,

if m≤ z< 2m.
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For the second part of the algorithm, multiply c and w, where w is the least non-
negative residue of r2 modulo m that we precomputed earlier. Then wc< m2 < mr,
and

wc≡ r2br′ ≡ br (mod m).

If we then repeat the first part on wc instead of b, we will end up with a number
d < m so that

d ≡ wcr′ ≡ brr′ ≡ b (mod m),

and so d is the least non-negative residue of b modulo m.
In outline, to find b mod m for b< mr:

• find s= bm′ mod r,
• compute z= (b+ sm)/r. Then z< 2m.
• determine c where c= z if z< m and c= z−m if z≥ m.
• find s′ = wcm′ mod r,
• compute z′ = (wc+ s′m)/r. Then z′ < 2m.
• determine d where d = z′ if z′ < m and d = z′ −m if z′ ≥ m.
Then d = b mod m.

Example 3. Let m = 179 and choose the radix r = 1000. For the precomputation,
we find that 179 ·581+1= 1000 ·104, and r2 = 10002 ≡ 106 (mod 179). So

r′ = 104,
m′ = 581,
w= 106.

For the algorithm itself, let b = 107 · 107 = 11449. We want to find b modulo
m= 179.
First, we find

s≡ bm′ = 11449 ·581 mod 1000.

We can find s efficiently by first reducing b = 11449 mod 1000 to get 449, then
multiplying 449 by m′ = 581 to get 260869, then reducing 260869 modulo 1000 to
get

s= 869.

Then sm= 869 ·179= 155551, the least non-negative residue of bm′m modulo mr.
So

b+ sm= 11449+155551= 167000
≡ b+bm′m= b(1+m′m) = br′r (mod rm)

is a multiple of r = 1000. So

z= (b+ sm)/r= 167000/1000= 167.

Then z= 167 satisfies

167≡ 11449 ·104= br′ mod 179.
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Since 167< 179, we have
c= 167.

Now we multiply c= 167 by the least non-negative residue w= 106 of r2 to get

wc= 167 ·106= 17702≡ br (mod m).

We find wc ·m′ = 17702 ·581= 10284862, then

s′ = wcm′ mod 1000= 862.

Then s′m= 862 ·179= 154298, and

wc+ s′m= 17702+154298= 172000
≡ wc+wcm′m= wc(1+m′m) = wcr′r (mod rm),

a multiple of r = 1000. So
z′ = 172.

Since 172< 179, we have
d = 172,

the least non-negative residue of b= 11449 modulo 179.

To sum up, once we set up Montgomery’s algorithm for a particular modulus m
and radix r by precomputingm′,r′ and w, the algorithm finds the least non-negative
residue of any number b<mr, replacing long division bymwith fivemultiplications
of numbers<m and five divisions by r. The guessing or trial division that can arise
in long division is eliminated.
TheMontgomery algorithm has been called the most efficient algorithm available

for modularmultiplication. It is being built into circuitry designed to do fast modular
multiplication of numbers of sizes up to 22048 (numbers of up to 616 digits). We’ll
see some applications of modular multiplication of large numbers in later chapters.
The original algorithm appeared in Montgomery (1985).

Exercises.

87. Use Montgomery’s algorithm to find
(i) 132 ·89 mod 179,
(ii) 167 ·148 mod 179.

88. Set up Montgomery’s algorithm for m= 267. Use it to find 167 ·239 mod 267.

89. Try this “pick a number” puzzle on a friend:
Pick something you know your friend does at least one day per week. Ask her:
“Write down howmany days last week you did [that thing]? Don’t show it to me.”

Call the secret number m. (m should be a number with 1≤ m≤ 7).
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Tell her to do the following:

• Take her secret number, add it to 42, call the result t.
• Take the units digit of t, multiply it by 7, take the units digit of the result, multiply
that by 7, add the result to t, then divide by 5. Call the result u.

• Then take the units digit of u, multiply it by 7, take the units digit of the result,
multiply that by 7, add the result to u, then divide by 10.

Then tell her that the number she computed was the number of days last week she
did [that thing].
(i) If she says you’re wrong, can you accuse her of making an error in her com-

putations?
(ii) Try to explain to her why it works (if it does!).
(iii) Write up the result of your trial.

90. Make up your own “pick a number” puzzle based on Montgomery’s algorithm.


