GENERAL | ARTICLE

Decoding Reed—Solomon Codes Using

Euclid’s Algorithm

Priti Shankar

Reed—Solomon codes are indeed an elegant illus-
tration of a very practical application of abstract
algebra. An interesting discovery was the fact
that Euclid’s algorithm for finding greatest com-
mon divisors of polynomials, could be used for
decoding these codes. In this article we explain
this connection.

1. Introduction

Many of us who have seen the pictures sent back by the
spacecraft Voyager 2, have been struck by the fine qual-
ity of the images received. In 1989, when Voyager was
about 3 billion miles away from the Earth, it was able
to transmit high resolution images of Triton, Neptune’s
largest moon ( Figure 1). This great feat was in no small
measure due to the fact that the sophisticated commu-
nication system on Voyager had an elaborate error cor-
recting scheme built into it. A Reed-Solomon code was
used to enhance the reliability of the transmission. Each
codeword contained 223 bytes of data (a byte consisting
of 8 bits) and 32 bytes of redundancy. Without the error
correction scheme, Voyager would not have been able to
send the volume of data that it did, using a transmitting
power of only 20 watts. The spacecrafts Galileo (1991),
Mars Global Surveyor (1997), Mars Pathfinder (1997)
and Mars Exploration Rover (2004) have all used Reed—
Solomon codes in their data transmission schemes. It
would not be out of place to say that Reed-Solomon
codes have gone to the furthest reaches of the solar sys-
tem and beyond!

We owe to the genius of Claude Shannon', one of the

Priti Shankar is with the
Department of Computer
Science and Automation at
the Indian Institute of
Science, Bangalore. Her
interests are in theoretical
computer science and
error correcting codes.

Irving Reed and
Gus Solomon

' See Resonance, Vol.7, No.2,
2002.

Keywords

Error correcting codes, Reed-
Solomon codes, decoding algo-
rithms.

-

RESONANCE | April 2007

37



GENERAL | ARTICLE

Figure 1. Image of Triton
transmitted by Voyager 2.
(Courtesy. NASA/JPL-Caltech)

Figure 2. Shannon’s sche-
matic of a communication

finest scientific minds of the last century, the remark-
able discovery that reliable communication is possible,
even over an unreliable medium. In 1948, Shannon,
then a young mathematician, showed that arbitrarily re-
liable communication is possible at any rate below some-
thing called the channel capacity. Roughly speaking, the
channel capacity is its ultimate capability to transmit
information, and one can push the channel to this limit
and yet correct all the errors it makes using error cor-
rection. The illustration in Figure 2 shows Shannon’s
scheme for communicating reliably over an unreliable
channel. The message is sent over the channel, but be-
fore it is sent it is processed by an encoder. The encoder
combines the message with some redundancy, in order
to create a codeword . This makes it possible to detect
or correct errors introduced by the channel. At the re-
ceiver’s end, the codeword, which may be corrupted by

system. errors is decoded to recover the message.
i . channel . .
k bits n bits n bits k bits )
=s=nder | ENCOdET | = |decoder | TECEvE
messaje codeword received word message
noise
38 W RESONANCE | April 2007



GENERAL | ARTICLE

In mathematical terms the important components of a
coding scheme are as follows.

The encoder is an

The input alphabet is the set from which sym-
bols to be transmitted are drawn. We assume that
the input alphabet size is ¢ and that the symbols
are from I, the field of ¢ elements. The output al-
phabet is the set of symbols from which the chan-
nel produces outputs. Here we assume that the
output alphabet set is also [F,.

The message u is a block of symbols that the
sender wishes to transmit. For our purposes, w is
an arbitrary word of k& symbols from the finite field
Iy, that is u € .

The encoder is an algorithm that the sender uses
to pad the message u with redundant information.
It can be looked upon as a function enc : Ff —
[y that transforms a message of k symbols to a
codeword of n symbols.

The code C is the set of all possible codewords.
That is, C = {enc(u) : u € F}}.

Three important parameters of a code are

The block length of the code is the length n of
the codewords output by the encoder.

The dimension k of the code is the length of a
message word. This term is typically used for lin-
ear codes when the code forms a vector space.

The rate R of a code is the ratio of its dimension
to its block length, or R = k/n.

The received word y € F} is the output of the
channel which is a possibly corrupted version of
the codeword c.

RESONANCE | April 2007

algorithm that the
sender uses to
pad the message
u with redundant
information.

The received word
y € F)

is the output of the
channel which is a
possibly corrupted
version of the
codeword c.

-

39



GENERAL | ARTICLE

In 1975 Sugiyama

et al. discovered the
beautiful fact that one

can use Euclid’s

algorithm to decode a
class of codes called

Goppa codes and
hence also Reed-
Solomon codes.

e The decoder is an algorithm that the receiver
uses to recover the original message u from the
received word y. It can be looked upon as a func-
tion dec : Fy — IF’; that estimates a message word
of k symbols from the received word y of n sym-
bols.

The primary objective in coding theory is to design cod-
ing schemes with the best possible parameters and effi-
cient encoding/decoding algorithms. Linear block codes
defined below, are the best known error correcting codes
and are the codes of choice in most practical applica-
tions.

A code C with block length n over an alphabet F, is
a linear block code if it is a linear subspace of Fy,
the vector space of n-tuples over IF,. If C has dimension
k, we will call the code an (n, k), linear block code or
an (n, k) code if the underlying field is assumed to be
known.

Reed—Solomon codes are a class of linear block codes
discovered by Irving Reed and Gus Solomon in 1960.
While the codes were notable because of their elegant
mathematical structure, their practical versatility be-
came apparent only after the discovery in 1968, of an
efficient decoding algorithm by Elwyn Berlekamp [1].
In 1975 Sugiyama et al. [2] discovered the beautiful fact
that one can use Euclid’s algorithm to decode a class of
codes called Goppa codes and hence also Reed-Solomon
codes. We will describe this algorithm presently, but we
first present some background material.

2. Background

The Hamming distance between two n symbol words
is the number of corresponding positions in which they
differ. Thus if d symbol errors occur in a transmitted
codeword, the Hamming distance between the codeword
and the received word is d. The minimum distance of a

40

N\/\/\/\/\/ RESONANCE | April 2007



GENERAL | ARTICLE

code is the minimum of the Hamming distances between
all pairs of distinct codewords. For linear codes, this is
also the minimum Hamming weight of a codeword (that
is, the number of non-zero components of the word). In
general, if up to t symbol errors in an arbitrary codeword
have to be corrected, the minimum distance d,,;, must
satisfy
Aopin > 2t + 1.

2.1. Reed—Solomon Codes

From now on we will concentrate on fields with ¢ el-
ements. The construction of these large fields is illus-
trated in Box 1.

We will use the fact that the non-zero elements of every
such field can be generated by powers of a single element
called a primitive element of the field.

Box 1. Construction of Finite Fields

The basic building blocks for these large fields or extension fields, as they are called,
are the prime fields. I, is the field whose elements are the set {0,1,2,...p — 1} where
p is prime and all arithmetic is performed modulo p. We illustrate with the construc-
tion of a field with p = 2 and with 2% = 8 elements. Let V3(IFy) be the set of 3-tuples
a = (aga1ag) over Fy, with addition being defined component wise. Thus V3(F3) is the
set {000, 001,010,011, 100, 101, 110, 111}, and, for example, (101) + (110) = (011). We
can make V3(F5) into a field as follows. Assume f(z) is of degree 3 over Fy and has no
roots in Fy . For example f(z) = 23 4+ 2 + 1. (No roots in Fy would mean f(1) and
£(0) are both non-zero modulo 2.) In such a case, f(z) is said to be irreducible over Fs.
Associate with each tuple a = (a2, a1, a0) in V3(F2) the polynomial asz? + a1z + ag, and
define the product of tuples a and b to be the tuple c defined uniquely by the equation
a(z)b(z) = c(x) mod(f(x)). (e(z) is the remainder when the product a(x)b(z) is divided
by f(z).) For example (010)(101) = (001) as (z)(z? 4+ 1) = 1 mod(f(z)). The field
constructed above, has 23 elements. Of course, since there may be several irreducible
polynomials of degree 3, there will be different ways to define the multiplication above.
But all these fields are isomorphic and we can talk of the field with 2 elements called
GF(2%). (We will refer to this field as Fg.) Every field has what is called a primitive
element, powers of which generate all the non-zero elements of the field. For example,
the element o corresponding to the residue class {z} or the tuple (010), is a primi-
tive element of this field, consecutive powers of « generating the sequence of elements
(010), (100), (011), (110),(111), (101), (001). We denote the multiplicative inverse of a
field element a by o~ !.

RESONANCE | April 2007 W

41




GENERAL | ARTICLE

A (255,223)

Reed—Solomon code

has a redundancy of
32 symbols per
codeword, a
minimum distance
33, and can correct
any combination of
16 symbol errors,
each symbol being
made up of 8 bits.

Reed—Solomon codes work with elements in a field Fym.
We consider the case with ¢ = 2 here. Reed-Solomon
codes have parameters (n, k) where n is at most 2™ — 1,
m is the number of bits per symbol, and &k = n — 2t
where ¢ is the symbol error correction capability of the
code. Thus, only 2t redundant symbols are required, to
be able to correct t errors. For example, a (255,223)
Reed—Solomon code has a redundancy of 32 symbols
per codeword, a minimum distance 33, and can correct
any combination of 16 symbol errors, each symbol being
made up of 8 bits. We define a Reed-Solomon code as
follows. Let a codeword ¢ = (cg,c1,...c, 1) be repre-
sented by a polynomial which we henceforth refer to as
a code polynomial ¢(x) given by

o) =co+erx+ ... cp 2"t (1)

The polynomial ¢(x) represents a codeword of the RS
code if and only if a, a?, ......a%" are its roots where « is
primitive in the multiplicative group of Fam.

Thus every code polynomial has the above 2f consec-
utive powers of a as roots. It is not difficult to show
(see the article on Reed—Solomon codes in [3]) that the
minimum distance of such a code is at least 2t + 1. We
illustrate with an example borrowed from an article by
the author on Reed—Solomon codes [3].

Suppose one wished to transmit messages in English up-
percase. Then we would need at least 5 bits (which give
a total of 2° = 32 combinations) to encode all 26 letters,
with 6 combinations left over to use for blanks and other
special symbols like punctuation marks, etc. We could
use a (2° — 1,15) Reed-Solomon code for our purpose.
This code has symbols in 35 each requiring 5 bits for
encoding. The code has a length of 31 symbols, with
15 message symbols and 16 check symbols, a minimum
distance of 17, and hence an error correction capability
of 8 symbols. Suppose we wanted to transmit the fifteen
characters, (including the blank).

42

N\/\/\/\/\/ RESONANCE | April 2007



GENERAL | ARTICLE

READ RESONANCE!

The encoder would add 16 more parity check symbols
of its own to form a codeword. Assume for the sake of
argument that the resultant codeword is

READ RESONANCE!QTBPJ!TL.,ZBFALK
Now even if the message is changed to
ROAD REPAIRSCE!STOPJ!TL.,ZBFALK

where errors occur in both the message, as well as the
check symbols, the decoder would be able to correct all
of these (as there are not more than 8 of them) and
recover the original message!

2.2 Decoding an Error-Correcting Code

Recall the assumption that the channel input and out-
put alphabets are the same. Thus if the transmitted
codeword is an n-tuple of symbols from the field Iy, the
received n-tuple is also made up of elements from the
same field. If transmission errors have occurred, some
of the received symbols may differ from those that were
transmitted. If x is transmitted and y received, the dif-
ference z = y — « is called the error pattern. If the
it" component z; of the vector z is not equal to 0, an
error is said to have occurred in the i*" position. The
decoding problem is to identify the error pattern given
the received vector.

Let @ be the estimate of the transmitted codeword a
output by the decoder. Thus, a decoding error occurs if
and only if & # x.

It is reasonable to assume that given a received vector,
an error pattern with the smallest Hamming weight is

Thus if the
transmitted codeword
is an n-tuple of
symbols from the field
IF,, the received n-
tuple is also made up
of elements from the
same field. If
transmission errors
have occurred, some
of the received
symbols may differ
from those that were
transmitted.

-

RESONANCE | April 2007

43



GENERAL | ARTICLE

The problem to be
addressed is: Given
the received vector,

which may be seen as
the corruption of any
one of the codewords

with the appropriate

error pattern, find the
most likely transmitted

codeword.

the most likely error pattern. The problem to be ad-
dressed is: Given the received vector, which may be
seen as the corruption of any one of the codewords with
the appropriate error pattern, find the most likely trans-
mitted codeword. (Once we have this estimate we can
easily recover the message). If the Hammming weight
of the error pattern is at most ¢, and the minimum dis-
tance of the code is at least 2t 4+ 1 it is easy to see that
there is exactly one codeword that is closest in terms of
the Hamming distance to the received vector and this
is the one the decoder should output. This kind of de-
coding is known as bounded distance decoding. A brute
force approach would involve checking the Hamming dis-
tances of all codewords from the received vector, which
is clearly infeasible. We therefore search for more effi-
cient solutions to this problem.

3. The Key Equation

As we shall presently see, the bounded distance decoding
problem can be formulated so that it reduces to the so-
lution of an equation that is popularly known as the Key
Equation. We first derive this equation and then show
how Euclid’s algorithm for finding the greatest common
divisor (gcd), can be used to get the solution. Let a
codeword ¢ = ¢g, ¢y, ...c,_1 be represented by the code-
word polynomial ¢(z) defined earlier.

Assume we receive the polynomial r(z) when ¢(z) is
transmitted. We define the error polynomial e(z) as

e(z) =r(z) — c(z)

This polynomial will have non-zero coefficients in posi-
tions where transmission errors have occurred.

For example if e(z) = 1 + z* then errors have occurred
in the Oth and 4th positions.

The problem is to find the most likely error polyno-
mial e(z) given r(z). Recall that the ‘most likely’ error

44

N\/\/\/\/\/ RESONANCE | April 2007



GENERAL | ARTICLE

pattern means the error pattern of minimum Hamming
weight. Define

Si=e(a"),i=1,2,...n— 1. (2)

As every codeword has a',i = 1,2,...2t as roots, and
as r = ¢ + e for some codeword ¢ we have

S; =r(a’),i=1,2,...2t, (3)
where 9 is called the i** syndrome.

Now if there were no errors then all the 2¢ syndromes de-
fined above would be zero. Thus if one or more of these
syndromes is non-zero it is an indication that errors have
occurred in transmission.

The decoding problem can be restated as follows:

Given Si,S53,...S9 find e(x). When restated in this
manner, the decoding problem looks like a problem in
interpolation. We will obtain a formulation that allows
the application of Euclid’s polynomial gcd algorithm.

Let the Hamming weight of the error pattern e be at
most ¢, that is, there are at most ¢ non-zero components
of the error pattern. Recall that we are then guaranteed
that there is exactly one ‘closest’ codeword.

If the j' non-zero component (counting from the left)
of the error pattern is the digit e; (where the subscripts
of e begin with 0) then define X; = o*.

For example, say n = 7. Then e(z) can be written as
e(r) = eg+e1x +eax? + ...+ egx®. If the first and third
coefficients are non-zero, i.e. e; and e are non-zero,
then the first non-zero coefficient is e; and the second
is e5. Thus X; = a! and Xy = a®, where o generates
the cyclic group of order n in the multiplicative group
of GF(2™). The X,’s are called the error locations as if
o’ is known then j can be found. Note that this does
not solve the decoding problem completely, as the error

Now if there were no

errors then all the 2¢
syndromes defined

above would be zero.

Thus if one or more
of these syndromes
is non-zero itis an

indication that errors

have occurred in
transmission.

RESONANCE | April 2007 W

45



GENERAL | ARTICLE

We define the error
magnitude Y, at
location X to be e,
where as mentioned
earlier, ¢, is the j th
non-zero component
of the error vector.

magnitudes also need to be determined. We define the
error magnitude Y; at location X; to be e, where as
mentioned earlier, e is the j* non-zero component of
the error vector.

From equation (3), using the definitions of X, and Y;
and the assumption that at most ¢ errors have occurred
we have

t
Si=Y VX5 i=1,2,...n-1 (4)

j=1
Define the following series

2 2

Multiplying both sides of equation 5 by Y;X; and sum-
ming both sides from 1 to ¢ we have, using equation

(4)

Y. X
Z#:Sl—FSQl’—F....Sgtl’%_l—i—... (6)
= 1-— le’

Combining the terms on the left hand side of equation
(6) into a single fraction it can be written as

t t
Zj:l Y;X; Hk::l,k;;éj(l — Xj)
H§:1(1 - Xjz)

Replacing the numerator of equation (7) by w(z) and
the denominator by o(z) we can rewrite equation (6) as

(7)

w(z)
o(x)

Equation (8) has the following properties;

=81+ Sgx + Ssx? + .. Soux® P . (8)

1. The denominator o(x) on the left hand side is of
degree one greater than that of the numerator.

46

W RESONANCE | April 2007



GENERAL | ARTICLE

2. The roots of the polynomial in the denominator
are the inverses of the error locations. Therefore
this polynomial is called the error locator polyno-
maial.

3. The numerator and denominator on the left hand
side are relatively prime polynomials. This can be
verified by checking that none of the roots of the
denominator are roots of the numerator.

4. Consider the derivative wrt = of the denominator.
This is
t
@)=Y -Xx; [ (-Xw). (9

J=1 k=1k#j

If this is evaluated at a particular value X l_l and

we form
-1
Z(())?;l))’ we get
X! Y, X
ol l_l) =l y, (10)
Ul(Xz ) —X

The right hand side is the negative of the error
magnitude at the error location I. The polyno-
mial w(z) is therefore called the error evaluator
polynomaial.

Now suppose we compute both sides of equation modulo
the polynomial 2% and we set

S(z) = Sy + Sox 4 Sz + ... Spx™, (11)

we have the equation

()
(z)

Equation (12) is called the key equation because if we
can solve it and obtain the polynomials o(z) and w(z),

€

= S(z)(mod z*). (12)

Q

The numerator and
denominator on the
left hand side are
relatively prime
polynomials. This
can be verified by
checking that none
of the roots of the
denominator are
roots of the
numerator.

-

RESONANCE | April 2007

47



GENERAL | ARTICLE

Euclid’s algorithm is
an iterative algorithm
to find the gcd of a
pair of polynomials.
Our aim is to exploit
the properties of the
algorithm and those of
the polynomials in the
key equation so that
o (x) and o (x) fall out
at the i th stage of the
algorithm for some i.

then using properties 2 and 4 above, we can get the er-
ror locations as well as the error magnitudes of the error
pattern, and thus a solution to the decoding problem.
Note however, that only the polynomial S(x) of degree
at most 2t and with coefficients in Fym is known. We
may pose the problem as follows: Given an approxima-

tion S(z) to a rational function (which in this case is
w(z)
o(x)
unknown to the decoder), which agrees with the power

series expansion of the rational function to the order
of the first 2¢ terms, find a rational function where the
numerator and denominator are relatively prime, the de-
gree of the denominator is at most ¢, and the degree of
the numerator is one less than that of the denominator.

where both the numerator and the denominator are

In the next section we show how the Euclid algorithm
for polynomial ged’s solves this problem.

4. Decoding Using Euclid’s Algorithm
We state the ged problem for polynomials as follows:

Given polynomials a(x) and b(z) with coefficients in a
field, and where degree (a(x)) > degree (b(x)), find poly-
nomials s(z) and ¢(z) such that the following equation
is satisfied:

s(z)a(z) + t(x)b(x) = r(z), (13)
where r(x) is the ged of a(x) and b(x).

Euclid’s algorithm which we will presently describe, is
an iterative algorithm to find the ged of a pair of poly-
nomials. Our aim is to exploit the properties of the
algorithm and those of the polynomials in the key equa-
tion so that o(x) and w(x) fall out at the i** stage of the
algorithm for some 1.

We make use of the properties of the Euclid algorithm
(not proved here) displayed in Box 2.

48

N\/\/\/\/\/ RESONANCE | April 2007



GENERAL | ARTICLE

Box 2. Properties of the Euclid gcd Algorithm

At stage i of the iteration there will be four polynomials

ith quotient and the ith remainder. The equations that hold at each stage are:
ri—o(x) = qi(x)ri—1(x) + ri(z),

where
deg(ri(z)) < deg(ri—1(x)),

si(z) = si—2(x) — qi(z)si—1(x),
ti(z) = ti—a(x) — qi(2)ti 1 (2).

The initial conditions are:

s_1(z)=1 t_1(z)=0 r_i(z) = a(z)
so(z) =0 to(z) =1 ro(z) = b(x)

Three properties that hold during iteration are:

A: si(z)a(z) +ti(z)b(x) = ri(x)
B: degree(s;(z))+ degree(r;—1(x))= degree(b(z))

C: degree(t;(z))+ degree(r;_1(x)) = degree(a(z))

si(x),ti(z),qi(z) and r;(z). The first two are the ith multipliers, the next two are the

Property A (Box 2) can be rewritten as:
ti(z)b(z) = ri(z)mod(a(x)). (14)

Equation (14) looks like the key equation with a(z) play-
ing the role of 2%, and t;(x),b(z) and r;(x) the roles of
o(x),S(z) and w(x) respectively. As can be seen, the de-
gree of the t;(x)’s increases with the iteration ¢ whereas
the degree of the r;’s decreases with i. Using this fact,
we get from property C

degree(ti(x)) + degree(ri(x)) < degree(a(z)). (15)

The next lemma and theorem help identify the step at
which we should halt when using Fuclid’s algorithm for

RESONANCE | April 2007 W

49



GENERAL | ARTICLE

Lemma 4.1 indicates
that if there is any pair
of integers whose
sum is one less than
the degree of a(x),
and where one of
them is greater than
the degree of the gcd,
then there is a unique
stage i in the Euclid
algorithm where the
degree of 7(x) is
bounded above by
one of the integers
and the degree of r(x)
bounded above by the
other.

decoding. We present these results without proofs. Read-
ers interested in the proofs can look them up in the ex-
cellent book by McEliece [4].

Lemma 4.1 Given two non-negative integers u and v
with v > degree(ged(a(x),b(x))), satisfying u+ v = de-
gree a(x) — 1, there exists a unique index j, 0 < j <n
such that

degree(t;(z)) < u, (16)
and
degree(r;(z)) < v. (17)

The lemma indicates that if there is any pair of inte-
gers whose sum is one less than the degree of a(z), and
where one of them is greater than the degree of the ged,
then there is a unique stage i in the Euclid algorithm
where the degree of ¢;(x) is bounded above by one of
the integers and the degree of r;(z) bounded above by
the other. In other words, at least one of the bounds is
violated before or after this unique index is reached in
the iterative process. This is true for all pairs of integers
satisfying the assumptions. Now r;(z) plays the role of
w(x) and we know that its degree of the latter is at most
t — 1. This gives us a clue as to when to stop the iter-
ation. However we need the next theorem to indicate
how the polynomials obtained from Euclid’s algorithm
are related to the ones of interest to us.

Theorem 4.2. Let r(x) and t(x) be polynomials satis-
fying

t(z)b(z) = r(z)mod(a(x)), (18)
where degree (t(x))+ degree (r(z)) < degree (a(x)).

Then there ezists a unique index j and a polynomial \(x)
such that

Ha) = M)t (@), (19)

50

RESONANCE | April 2007



GENERAL | ARTICLE

r(z) = Aa)rj(z). (20)

We now have all the results we need to apply Euclid’s
algorithm to the solution of the key equation. We state
this as a theorem.

Theorem 4.3. If o(z) and w(x) are the error locator
and the error evaluator polynomials for an (n,n — 2t)
Reed—Solomon code, and the error pattern has weight at
most t, then

o(x) = Mj(x), (21)

w(z) = Arj(x), (22)

wherer; and t; are the polynomials obtained from the ap-
plication of Fuclid’s algorithm to the polynomials a(x) =
2% and b(z) = S(x), where j is the first index at which
the degree of rj(x) drops to below t. The constant \ is
chosen so that Atj(xz) has constant term 1.

Thus the error locator polynomial o(x) and the error
evaluator polynomial w(z) can be found by simply ap-
plying Euclid’s algorithm to %" and S(x) and stopping
when the degree of the remainder drops to below ¢!

Suggested Reading

[1] Elwyn Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York,
1968.

[2] Y Sugiyama, M Kasahara, S Hirasawa and T Namekawa, A method for
solving key equation for decoding Goppa codes, Information and Control,
Vol.27, pp. 87-99, 1975.

[3] Priti Shankar, Error Correcting Codes: The Reed—Solomon Codes,
Resonance, Vol.2, No.3, pp.33-47, 1997.

[4] R J McEliece, The Theory of Information and Coding, Encyclopedia of
Mathematics and its Applications, Addison Wesley, 1977.

Address for Correspondence
Priti Shankar
Department of Computer
Science and Automation
Indian Institute of Science
Bangalore 560 012, India.
Email:
priti@csa.iisc.ernet.in

RESONANCE | April 2007 W

51




