So $\mathbf{Q} - \mathbf{I} = \mathbf{E}$ has rank 2, the null space of \mathbf{E} has dimension 3, f(x) has three distinct irreducible factors, and the vectors \mathbf{b} satisfying $\mathbf{b}\mathbf{E} = 0$ have the form

$$\mathbf{b} = (b_0, b_1, b_2, b_3, b_4) = (b_0, b_3, 0, b_3, b_4),$$

where b_0, b_3 and b_4 are arbitrary. Thus f(x) divides $h(x)^3 - h(x)$ where we can choose $h(x) = x^4$, or $h(x) = x + x^3$, or h(x) = 1, or any \mathbb{F}_3 -linear combination of those three choices.

Exercises.

- 7. Find the three irreducible factors of f(x) in Example 11.
- 8. Factor $x^{10} + x^9 + x^7 + x^3 + x^2 + 1$ in $\mathbb{F}_2[x]$.
- **9.** Factor $x^8 + x^7 + x^6 + x^4 + 1$ in $\mathbb{F}_2[x]$.
- 10. Show that $x^5 + x^2 + 1$ is irreducible in $\mathbb{F}_2[x]$.
- 11. Show that $x^7 + x^3 + 1$ is irreducible in $\mathbb{F}_2[x]$.

12. Show that $7x^7 + 6x^6 + 4x^4 + 3x^3 + 2x^2 + 2x + 1$ is irreducible in $\mathbb{Q}[x]$ (use the last exercise).

13. Use Berlekamp's algorithm to factor $x^2 - q$ in $\mathbb{F}_p[x]$, where q and p are coprime, and prove Euler's Lemma (Section 21B) that q is a quadratic residue mod p, that is, $x^2 - q \equiv 0 \pmod{p}$ has a root, iff $q^{(p-1)/2} \equiv 1 \pmod{p}$.

D. The Hensel Factorization Method

Given a bound *B* on the coefficients of factors of a polynomial f(x) in $\mathbb{Z}[x]$, we can look for factorizations of f(x) modulo *M* for $M \ge 2B$. Any factor of *f* modulo *M* corresponds to at most one possible factor of *f* in $\mathbb{Z}[x]$, because there will be only one polynomial in $\mathbb{Z}[x]$ that will satisfy the bound on coefficients and reduce to the given factor of *f* modulo *M*.

Thus we wish to find factorizations of f modulo M, where M may be large.

There are two choices on how to proceed.

One is to find primes p > 2B and use Berlekamp's algorithm to factor f modulo p. If we're lucky, f will have few irreducible factors modulo p, so there will be few choices for factorizations of f in $\mathbb{Z}[x]$.

An alternative is to find a small prime p so that f factors modulo p into few distinct irreducible factors, and then lift the factorization modulo p to a unique factorization modulo p^{2^e} for e so large so that $p^{2^e} > 2B$.

This method, called the Hensel factorization method [Zassenhaus (1978)], uses an extension of coprimeness to polynomials with coefficients not in a field. **Defini ion.** Let *R* be a commutative ring, and *f*,*g* be polynomials of degrees ≥ 1 with coefficients in *R*. Then *f* and *g* are *coprime* if there exist polynomials *r*,*s* with coefficients in *R* so that

$$rf + sg = 1.$$

If $R = \mathbb{Z}/m\mathbb{Z}$ and f, g are polynomials with integer coefficients, we'll say that f and g are *coprime modulo* m, if the images of f and g in $\mathbb{Z}/m\mathbb{Z}[x]$ are coprime, that is, if there exist polynomials r, s in $\mathbb{Z}[x]$ so that $fr + gs \equiv 1 \pmod{m}$.

In short, we extend the definition of coprime by using the Bezout Identity criterion.

Before presenting the main result, we need an auxiliary result about coprime polynomials.

Proposition 10. Let g,h be monic and coprime in R[x]. Then for all k in R[x] there exist polynomials a,b in R[x] with ag + bh = k. If $\deg k < \deg(fg)$, then we can choose a, b with $\deg(a) < \deg(h), \deg(b) < \deg(g)$.

Proof. Since g and h are coprime, there exist polynomials r, s so that gr + hs = 1. It follows that grk + hsk = k.

Suppose $\deg(k) < \deg(fg)$ and there exist a, b in R[x] so that ag + bh = k with $\deg(b) \ge \deg(g)$. Then b = gq + s with $\deg(s) < \deg(g)$, and

$$ag + (gq + s)h = k$$

Hence (a+qh)g+sh=k, or, letting r=a+qh, then

$$rg + sh = k$$

Since $\deg(s) < \deg(g)$, we have $\deg(sh) < \deg(gh)$, and also $\deg(k) < \deg(gh)$. So $\deg(rg) < \deg(gh)$. Since g is monic, it follows that $\deg(r) < \deg(h)$.

Here is the main result.

Theorem 11. Let f be a monic polynomial in $\mathbb{Z}[x]$. Suppose there are monic polynomials g_1 , h_1 in $\mathbb{Z}[x]$ so that g_1 and h_1 are coprime modulo m and $f = g_1h_1 \pmod{m}$. Then there exist unique monic polynomials g_2 and f_2 so that

$$g_2 \equiv g_1 \pmod{m}$$

 $h_2 \equiv h_1 \pmod{m},$

 g_2 and h_2 are coprime modulo m^2 , and

$$f \equiv g_2 h_2 \pmod{m^2}$$
.

Proof. The proof shows how to construct g_2 and h_2 . We write

$$g_2 = g_1 + mb$$
$$h_2 = h_1 + mc$$

for polynomials b, c in $\mathbb{Z}[x]$ with $\deg(b) < \deg(g_1), \deg(c) < \deg(h_1)$ that we need to find. To find them, we note that since $f \equiv g_1h_1 \pmod{m}$, we have

$$f = g_1 h_1 + mk$$

for some polynomial k in $\mathbb{Z}[x]$. Since f, g_1 and h_1 are monic, $\deg(k) < \deg(g_1h_1)$. Then

$$g_{2}h_{2} - f = (g_{1} + mb)(h_{1} + mc) - (g_{1}h_{1} + mk)$$

= $g_{1}h_{1} + mg_{1}c + mh_{1}b + m^{2}bc - g_{1}h_{1} - mk$

For the left side to be congruent to 0 modulo m^2 , we need

$$m(g_1c+h_1b-k)\equiv 0 \pmod{m^2},$$

or

$$g_1c + h_1b - k \equiv 0 \pmod{m}$$

But since g_1 and h_1 are coprime modulo *m*, there exist polynomials *c* and *b* so that

$$g_1c + h_1b \equiv k \pmod{m},$$

and since $\deg(k) < \deg(g_1h_1)$, we may choose the polynomials c and b so that $\deg c < \deg h_1$ and $\deg b < \deg g_1$. Then by the way we chose c and b, the polynomials $g_2 = g_1 + mb$ and $h_2 = h_1 + mc$ are monic and satisfy

$$f \equiv g_2 h_2 \pmod{m^2}$$
.

To finish the proof we need to show that g_2 and h_2 are coprime modulo m^2 . So we seek polynomials r_2 and s_2 so that

$$r_2g_2 + s_2h_2 \equiv 1 \pmod{m^2}.$$

Since g_1 and h_1 are coprime, there exist polynomials r_1 and s_1 so that $r_1g_1 + s_1h_1 = 1 + mz$ for some polynomial z. We write

$$r_2 = r_1 + mw, \quad s_2 = s_1 + my$$

for unknown polynomials w, y in $\mathbb{Z}[x]$, and substitute for r_2, g_2, s_2 and h_2 in the desired congruence

$$r_2g_2 + s_2h_2 \equiv 1 \pmod{m^2}$$

to obtain

$$(r_1 + mw)(g_1 + mb) + (s_1 + my)(h_1 + mc)$$

$$\equiv r_1g_1 + mwg_1 + mr_1b + s_1h_1 + ms_1c + myh_1 \pmod{m^2}$$

$$\equiv 1 + mz + m(wg_1 + r_1b + s_1c + yh_1) \pmod{m^2}.$$

26 Factoring in $\mathbb{Z}[x]$

For this last expression to be congruent to 1 modulo m^2 , we need to find polynomials w, y so that

$$wg_1 + yh_1 \equiv -z - r_1b - s_1c \pmod{m}$$
.

But since g_1 and h_1 are coprime modulo m, it follows that we can find w, y satisfying this last congruence. That means there exist $r_2 = r_1 + mw, s_2 = s_1 + my$ so that

$$r_2g_2 + s_2h_2 \equiv 1 \pmod{m^2}.$$

Thus g_2 and h_2 are coprime modulo m^2 , and that completes the proof.

Example 12. Let $f(x) = x^4 + 23x^3 - 15x^2 + 17x - 7$. We find that

$$f(x) \equiv x^4 + 2x^3 + 3x^2 + 2x + 2 = (x^2 + 1)(x^2 + 2x + 2) \pmod{3},$$

so f(x) factors modulo 3 into the product of two distinct polynomials that are irreducible modulo 3, and hence coprime modulo 3.

Now we want to factor f(x) modulo 9. So let $g_1 = x^2 + 1$, $h_1 = x^2 + 2x + 2$, and let

$$g_2 = g_1 + 3b = (x^2 + 1) + 3b$$
$$h_2 = h_1 + 3c = (x^2 + 2x + 2) + 3c$$

for some polynomials b, c with deg $c < \text{deg } h_1, \text{deg } b < \text{deg } g_1$. Then

$$g_2h_2 \equiv (x^2+1)(x^2+2x+2) + 3c(x^2+1) + 3b(x^2+2x+2) \pmod{9}.$$

To find b, c we set up the congruence

$$f \equiv g_2 h_2 \pmod{9}$$

and substitute:

$$\begin{aligned} x^4 + 23x^3 - 15x^2 + 17x - 7 &\equiv (x^4 + 2x^3 + 3x^2 + 2x + 2) \\ &+ 3c(x^2 + 1) + 3b(x^2 + 2x + 2) \pmod{9}; \end{aligned}$$

or

$$21x^3 - 18x^2 + 15x - 9 \equiv 3c(x^2 + 1) + 3b(x^2 + 2x + 2) \pmod{9}.$$

Factoring 3 out of everything yields

$$7x^3 - 6x^2 + 5x - 3 \equiv c(x^2 + 1) + b(x^2 + 2x + 2) \pmod{3},$$

which we know we can solve for polynomials b, c of degree ≤ 2 since $x^2 + 1$ and $x^2 + 2x + 2$ are coprime modulo 3.

To solve the congruence for *b* and *c*, we set up some linear equations: write b = rx + s, c = tx + v, then

$$7x^3 - 6x^2 + 5x - 3 \equiv (tx + v)(x^2 + 1) + (rx + s)(x^2 + 2x + 2) \pmod{3}.$$

Equating the coefficients of $1, x, x^2, x^3$ on both sides yields

$$-3 \equiv v + 2s$$

$$5 \equiv t + 2r + 2s$$

$$-6 \equiv v + 2r + s$$

$$7 \equiv t + r \pmod{3}$$

One sees easily that r = t = 2, s = v = 1 is the unique solution, so

$$b = 2x + 1, c = 2x + 1.$$

Thus

$$g_2 = g_1 + 3b \equiv (x^2 + 1) + 3(2x + 1) \equiv x^2 + 6x + 4,$$

$$h_2 = h_1 + 3c = (x^2 + 2x + 2) + 3(2x + 1) \equiv x^2 + 8x + 5,$$

and it is easily checked that

$$(x^{2} + 6x + 4)(x^{2} + 8x + 5) = x^{4} + 14x^{3} + 57x^{2} + 62x + 20$$
$$\equiv x^{4} + 23x^{3} - 15x^{2} + 17x - 7 = f(x) \pmod{9}.$$

In a similar way we can lift the factorization modulo 9 to one modulo $9^2 = 81$, then to $81^2 = 6561$ and beyond, until we get past the bound on the coefficients of any degree 2 factor of f(x), at which point we either find a factorization of f in $\mathbb{Z}[x]$ or show that none exists that reduces to $f = g_1h_1$ modulo 3. In the latter case, f must be irreducible in $\mathbb{Q}[x]$.

Note that $||f|| = (1^2 + 23^2 + 15^2 + 17^2 + 7^2)^{1/2} = \sqrt{1093} = 33.06$, so using the Mignotte bound we would need only to look at a factorization of f modulo 81 to either find a factorization of f or show that f is irreducible.

It turns out that f(x) is irreducible modulo 5, so must be irreducible in $\mathbb{Q}[x]$.

Exercises.

- 14. Factor $x^4 x^3 84x^2 + 125x 13$ modulo 5, then modulo 25, then in \mathbb{Z} .
- **15.** Factor $x^4 + 2x^3 38x^2 69x 28$ modulo 3, then modulo 9, then in \mathbb{Z} .
- 16. Factor $x^4 + x^2 + 2$ modulo 2, then modulo 4, then modulo 16, then in \mathbb{Z} .

556