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SoQ−I=E has rank 2, the null space of E has dimension 3, f (x) has three distinct
irreducible factors, and the vectors b satisfying bE= 0 have the form

b = (b0,b1,b2,b3,b4) = (b0,b3,0,b3,b4),

where b0,b3 and b4 are arbitrary. Thus f (x) divides h(x)3 − h(x) where we can
choose h(x) = x4, or h(x) = x+ x3, or h(x) = 1, or any F3-linear combination of
those three choices.

Exercises.

7. Find the three irreducible factors of f (x) in Example 11.

8. Factor x10+ x9+ x7+ x3+ x2+1 in F2[x].

9. Factor x8+ x7+ x6+ x4+1 in F2[x].

10. Show that x5+ x2+1 is irreducible in F2[x].

11. Show that x7+ x3+1 is irreducible in F2[x].

12. Show that 7x7+ 6x6+ 4x4+ 3x3+ 2x2+ 2x+ 1 is irreducible in Q[x] (use the
last exercise).

13. Use Berlekamp’s algorithm to factor x2−q in Fp[x], where q and p are coprime,
and prove Euler’s Lemma (Section 21B) that q is a quadratic residue mod p, that is,
x2−q≡ 0 (mod p) has a root, iff q(p−1)/2 ≡ 1 (mod p).

D. The Hensel Factorization Method

Given a bound B on the coefficients of factors of a polynomial f (x) in Z[x], we can
look for factorizations of f (x) modulo M for M ≥ 2B. Any factor of f modulo M
corresponds to at most one possible factor of f in Z[x], because there will be only
one polynomial in Z[x] that will satisfy the bound on coefficients and reduce to the
given factor of f moduloM.
Thus we wish to find factorizations of f moduloM, whereM may be large.
There are two choices on how to proceed.
One is to find primes p > 2B and use Berlekamp’s algorithm to factor f modulo

p. If we’re lucky, f will have few irreducible factors modulo p, so there will be few
choices for factorizations of f in Z[x].
An alternative is to find a small prime p so that f factors modulo p into few

distinct irreducible factors, and then lift the factorization modulo p to a unique fac-
torization modulo p2e for e so large so that p2e > 2B.
This method, called the Hensel factorization method [Zassenhaus (1978)], uses

an extension of coprimeness to polynomials with coefficients not in a field.



26 Factoring in Z[x] 553

Defini ion. Let R be a commutative ring, and f ,g be polynomials of degrees ≥1
with coefficients in R. Then f and g are coprime if there exist polynomials r,s with
coefficients in R so that

r f + sg= 1.

If R= Z/mZ and f , g are polynomials with integer coefficients, we’ll say that f
and g are coprime modulo m, if the images of f and g in Z/mZ[x] are coprime, that
is, if there exist polynomials r, s in Z[x] so that f r+gs≡ 1 (mod m).
In short, we extend the definition of coprime by using the Bezout Identity crite-

rion.
Before presenting the main result, we need an auxiliary result about coprime

polynomials.

Proposition 10. Let g,h be monic and coprime in R[x]. Then for all k in R[x] there
exist polynomials a,b in R[x] with ag+ bh = k. If degk < deg( f g), then we can
choose a, b with deg(a) < deg(h),deg(b) < deg(g).

Proof. Since g and h are coprime, there exist polynomials r,s so that gr+hs= 1. It
follows that grk+hsk= k.
Suppose deg(k) < deg( f g) and there exist a,b in R[x] so that ag+ bh = k with

deg(b)≥ deg(g). Then b= gq+ s with deg(s) < deg(g), and

ag+(gq+ s)h= k.

Hence (a+qh)g+ sh= k, or, letting r = a+qh, then

rg+ sh= k.

Since deg(s) < deg(g), we have deg(sh) < deg(gh), and also deg(k) < deg(gh). So
deg(rg) < deg(gh). Since g is monic, it follows that deg(r) < deg(h). ⊓%

Here is the main result.

Theorem 11. Let f be a monic polynomial in Z[x]. Suppose there are monic polyno-
mials g1, h1 in Z[x] so that g1 and h1 are coprime modulo m and f = g1h1 (mod m).
Then there exist unique monic polynomials g2 and f2 so that

g2 ≡ g1 (mod m)
h2 ≡ h1 (mod m),

g2 and h2 are coprime modulo m2, and

f ≡ g2h2 (mod m2).

Proof. The proof shows how to construct g2 and h2.
We write

g2 = g1+mb
h2 = h1+mc
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for polynomials b,c in Z[x] with deg(b) < deg(g1),deg(c) < deg(h1) that we need
to find. To find them, we note that since f ≡ g1h1 (mod m), we have

f = g1h1+mk

for some polynomial k in Z[x]. Since f ,g1 and h1 are monic, deg(k) < deg(g1h1).
Then

g2h2− f = (g1+mb)(h1+mc)− (g1h1+mk)

= g1h1+mg1c+mh1b+m2bc−g1h1−mk.

For the left side to be congruent to 0 modulo m2, we need

m(g1c+h1b− k)≡ 0 (mod m2),

or
g1c+h1b− k≡ 0 (mod m).

But since g1 and h1 are coprime modulo m, there exist polynomials c and b so that

g1c+h1b≡ k (mod m),

and since deg(k) < deg(g1h1), we may choose the polynomials c and b so that
degc < degh1 and degb < degg1. Then by the way we chose c and b, the poly-
nomials g2 = g1+mb and h2 = h1+mc are monic and satisfy

f ≡ g2h2 (mod m2).

To finish the proof we need to show that g2 and h2 are coprime modulo m2. So
we seek polynomials r2 and s2 so that

r2g2+ s2h2 ≡ 1 (mod m2).

Since g1 and h1 are coprime, there exist polynomials r1 and s1 so that r1g1+ s1h1 =
1+mz for some polynomial z. We write

r2 = r1+mw, s2 = s1+my

for unknown polynomials w,y in Z[x], and substitute for r2,g2,s2 and h2 in the de-
sired congruence

r2g2+ s2h2 ≡ 1 (mod m2).

to obtain

(r1+mw)(g1+mb)+ (s1+my)(h1+mc)
≡ r1g1+mwg1+mr1b+ s1h1+ms1c+myh1 (mod m2)
≡ 1+mz+m(wg1+ r1b+ s1c+ yh1) (mod m2).
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For this last expression to be congruent to 1 modulom2, we need to find polynomials
w,y so that

wg1+ yh1 ≡−z− r1b− s1c (mod m).

But since g1 and h1 are coprime modulom, it follows that we can find w,y satisfying
this last congruence. That means there exist r2 = r1+mw,s2 = s1+my so that

r2g2+ s2h2 ≡ 1 (mod m2).

Thus g2 and h2 are coprime modulo m2, and that completes the proof. ⊓%

Example 12. Let f (x) = x4+23x3−15x2+17x−7.We find that

f (x)≡ x4+2x3+3x2+2x+2= (x2+1)(x2+2x+2) (mod 3),

so f (x) factors modulo 3 into the product of two distinct polynomials that are irre-
ducible modulo 3, and hence coprime modulo 3.
Now we want to factor f (x)modulo 9. So let g1 = x2+1, h1 = x2+2x+2, and let

g2 = g1+3b= (x2+1)+3b
h2 = h1+3c= (x2+2x+2)+3c

for some polynomials b,c with degc< degh1,degb< degg1. Then

g2h2 ≡ (x2+1)(x2+2x+2)+3c(x2+1)+3b(x2+2x+2) (mod 9).

To find b,c we set up the congruence

f ≡ g2h2 (mod 9)

and substitute:

x4+23x3−15x2+17x−7≡ (x4+2x3+3x2+2x+2)
+3c(x2+1)+3b(x2+2x+2) (mod 9);

or
21x3−18x2+15x−9≡ 3c(x2+1)+3b(x2+2x+2) (mod 9).

Factoring 3 out of everything yields

7x3−6x2+5x−3≡ c(x2+1)+b(x2+2x+2) (mod 3),

which we know we can solve for polynomials b,c of degree ≤2 since x2 + 1 and
x2+2x+2 are coprime modulo 3.
To solve the congruence for b and c, we set up some linear equations: write

b= rx+ s, c= tx+ v, then

7x3−6x2+5x−3≡ (tx+ v)(x2+1)+ (rx+ s)(x2+2x+2) (mod 3).
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Equating the coefficients of 1,x,x2,x3 on both sides yields

−3≡ v+2s
5≡ t+2r+2s
−6≡ v+2r+ s
7≡ t+ r (mod 3).

One sees easily that r = t = 2,s= v= 1 is the unique solution, so

b= 2x+1,c= 2x+1.

Thus
g2 = g1+3b≡ (x2+1)+3(2x+1)≡ x2+6x+4,

h2 = h1+3c= (x2+2x+2)+3(2x+1)≡ x2+8x+5,

and it is easily checked that

(x2+6x+4)(x2+8x+5) = x4+14x3+57x2+62x+20
≡ x4+23x3−15x2+17x−7= f (x) (mod 9).

In a similar way we can lift the factorization modulo 9 to one modulo 92 = 81, then
to 812 = 6561 and beyond, until we get past the bound on the coefficients of any
degree 2 factor of f (x), at which point we either find a factorization of f in Z[x] or
show that none exists that reduces to f = g1h1 modulo 3. In the latter case, f must
be irreducible in Q[x].
Note that ∥ f∥ = (12+232+152+172+72)1/2 =

√
1093= 33.06, so using the

Mignotte bound we would need only to look at a factorization of f modulo 81 to
either find a factorization of f or show that f is irreducible.

It turns out that f (x) is irreducible modulo 5, so must be irreducible in Q[x].

Exercises.

14. Factor x4− x3−84x2+125x−13 modulo 5, then modulo 25, then in Z.

15. Factor x4+2x3−38x2−69x−28 modulo 3, then modulo 9, then in Z.

16. Factor x4+ x2+2 modulo 2, then modulo 4, then modulo 16, then in Z.


