Esercizi per il Corso di Istituzioni di Matematica

1) Calcolare la retta tangente al grafico di f nel punto P assegnato :

a)
$$f(x) = \sin(2x)\sqrt{x^2 + 1}$$
, $P = (0,0)$; b) $f(x) = x \log_2(x)$, $P = (1,0)$;

c)
$$f(x) = \frac{\sin(x) + \cos(x)}{x+2}$$
, $P = (0, \frac{1}{2})$; $d) f(x) = \frac{x^3 + 2x - 4}{x^2 + x + 4}$, $P = (0, -1)$.

2) Calcolare la derivata delle seguenti funzioni:

a)
$$f(x) = (x+1)^{x^2}$$
; b) $f(x) = \log(\log_2(x))$; c) $f(x) = 4^{\cos(3x)} + \sqrt[3]{(x+7)^2}$;

d)
$$f(x) = \sqrt{1 - \sqrt[3]{x}}$$
; e) $f(x) = \frac{\arcsin(x)}{2x + \arccos(-x)}$; f) $f(x) = \log_3(x^x)$.

3) Stabilire se le funzioni sotto sono derivabili nel punto x_0 assegnato e nel caso non lo siano dire se in x_0 presentino punti angolosi, di cuspide o a tangente verticale.

a)
$$f(x) = x|x|$$
, $x_0 = 0$; b) $f(x) = |x - 2|$, $x_0 = 1$;

c)
$$f(x) = \begin{cases} \sqrt{x^2 - 1} & x \ge 1\\ \sqrt{1 - x} & x < 1 \end{cases}$$
, $x_0 = 1$; d) $f(x) = \begin{cases} x + 1 & x \ge 0\\ \cos(x) & x < 0 \end{cases}$, $x_0 = 0$;

e)
$$f(x) = \sqrt[5]{x^3} + 2^x$$
, $x_0 = 0$;
f) $f(x) = \begin{cases} \cos(x) & x \ge \pi \\ 1 & x < \pi \end{cases}$, $x_0 = \pi$.

- 4) Disegnare il grafico delle funzioni sopra in un intorno del punto assegnato.
- 5) Determinare gli eventuali asintoti orizzontali, verticali od obliqui delle funzioni:

a)
$$f(x) = \frac{2-x^2}{x+3}$$
; b) $f(x) = \frac{4^{-x}}{e^x + x^2}$; c) $f(x) = \sqrt{x^2 + 3}$;

d)
$$f(x) = |2 - x| - \frac{1}{x}$$
; e) $f(x) = \frac{x^3 + 2x - 4}{x^2 + x + 4}$; f) $f(x) = \arctan(xe^{-x})$.

Per gli asintoti verticali $x = x_0$ determinare il limite di f a destra e sinistra del punto x_0 .

6) Determinare su quali intervalli le funzioni sotto sono crescenti/decrescenti:

a)
$$f(x) = \arcsin(x^2 - 2x - 4)$$
; b) $f(x) = xe^{-2x^2}$;

c)
$$f(x) = \log(\cos(x) + \sin(x));$$
 d) $f(x) = \frac{x^2 + 6x + 6}{x + 1}.$

- Determinare eventuali punti di massimo e minimo locale delle funzioni al punto sopra e stabilire se sono anche massimi o minimi assoluti.
- 8) Determinare su quali intervalli le funzioni sotto sono convesse:

a)
$$f(x) = x - \sin(x+4);$$
 b) $f(x) = \arctan(1-x);$

c)
$$f(x) = 6x^2 - x^3 - 6 + 2x$$
; d) $f(x) = xe^{-2x^2}$.

9) Con le informazioni sopra disegnare un grafico approssimativo di

a)
$$f(x) = x - \sin(x+4)$$
; b) $f(x) = \arctan(1-x)$; c) $f(x) = 6x^2 - x^3 - 6 + 2x$;

d)
$$f(x) = xe^{-2x^2}$$
; e) $f(x) = \frac{x^2 + 6x + 6}{x + 1}$; f) $f(x) = \arcsin(x^2 - 2x - 4)$.

Nota. Punti angolosi, di cuspide o a tangente verticale sono tutti quei punti x_0 per cui esistono (in $\mathbb{R} \cup \{+\infty, -\infty\}$) i limiti destri e sinistri del rapporto incrementale in x_0 (derivate destre e sinistre anche con pendenza anche infinita).

I punti a tangente verticale sono quelli tali che

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = +\infty \text{ oppure } = -\infty,$$

esempio: $f(x) = \sqrt[3]{x}, x_0 = 0.$

I punti di cuspide sono quelli tali che

$$\lim_{x \to x_0 + \frac{f(x) - f(x_0)}{x - x_0} = +\infty \text{ e } \lim_{x \to x_0 - \frac{f(x) - f(x_0)}{x - x_0} = -\infty,$$

oppure

$$\lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0} = -\infty \text{ e } \lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0} = +\infty.$$

esempio: $f(x) = \sqrt{|x|}, x_0 = 0.$

I punti angolosi sono quelli tali che almeno uno dei due limiti destri o sinistri è un valore reale e l'altro sta in $\mathbb{R} \cup \{+\infty, -\infty\}$, i.e.

$$\lim_{x \to x_0 +} \frac{f(x) - f(x_0)}{x - x_0} = L \in \mathbb{R} \text{ e/o } \lim_{x \to x_0 -} \frac{f(x) - f(x_0)}{x - x_0} = L' \in \mathbb{R},$$

esempio: $f(x) = |x|, x_0 = 0$, oppure $f(x) = \sqrt{x}$ per $x \ge 0$, $f(x) = \sin(x)$ per x < 0.