Elementi di Teoria degli Insiemi — Prova scritta del 27 Giugno 2025

Tutte le risposte devono essere giustificate

Buon lavoro!

Esercizio 1. Dimostrare le seguenti proprietà:

- 1. Se κ è un cardinale infinito, allora l'esponenziale tra ordinali $\alpha^{\beta} < \kappa$ per tutti gli ordinali non nulli $\alpha, \beta < \kappa$.
- 2. Se κ è un cardinale più che numerabile, allora l'esponenziale tra ordinali $\omega^{\kappa} = \kappa$.
- 3. Se κ è un cardinale infinito, allora l'esponenziale tra ordinali $\alpha^{\kappa} = \kappa$ per ogni $1 < \alpha < \kappa$.

Soluzione. Richiamiamo la seguente proprietà vista a lezione (poteva essere assunta nella risoluzione dell'esercizio).

• Se almeno uno tra gli ordinali $\alpha, \beta \neq 0$ è infinito, allora $|\alpha^{\beta}| = \max\{|\alpha|, |\beta|\}.$

Ricordiamo che se $\alpha, \beta \neq 0$ sono ordinali, allora α^{β} è isomorfo all'insieme delle funzioni a supporto finito

$$\operatorname{Fun}_0(\beta,\alpha) = \{f: \beta \to \alpha \mid \operatorname{Supp}(f) := \{i \in \beta \mid f(i) \neq 0\} \text{ finito}\}\$$

con l'ordine < della massima differenza:

$$f < g \iff f(\widetilde{b}) < g(\widetilde{b}) \text{ dove } \widetilde{b} = \max\{b \in B \mid f(b) \neq g(b)\}.$$

Osserviamo che $\operatorname{Fun}_0(\beta,\alpha)=\bigcup_{A\in\operatorname{Fin}(\beta)}\operatorname{Fun}(A,\alpha)$ dove $\operatorname{Fin}(\beta)$ è l'insieme delle parti finite di β . Abbiamo che:

$$|\alpha^{\beta}| = |\operatorname{Fun}_{0}(\beta, \alpha)| \leq \sum_{A \in \operatorname{Fin}(\beta)} |\operatorname{Fun}(A, \alpha)| = \max \left\{ \sup_{A \in \operatorname{Fin}(\beta)} |\alpha|^{|A|}; |\operatorname{Fin}(\beta)| \right\}.$$

Se β è infinito si ha $\sup_{A \in \operatorname{Fin}(\beta)} |\alpha|^{|A|} = \sup_{n \in \omega} |\alpha|^n$, e possiamo concludere che $|\alpha^{\beta}| \leq \max\{|\alpha|, |\beta|\}$. Infatti, se $\alpha = 1$ banalmente $\sup_{n \in \omega} |\alpha|^n = 1 < |\beta|$; se $1 < \alpha < \omega$, allora $\sup_{n \in \omega} |\alpha|^n = \aleph_0 \leq |\beta|$; e se α è infinito, $\sup_{n \in \omega} |\alpha|^n = |\alpha|$. Inoltre quando β è infinito si ha che $|\operatorname{Fin}(\beta)| = |\beta|$.

Se β è finito e α è infinito, allora $\sup_{A \in \operatorname{Fin}(\beta)} |\alpha|^{|A|} = |\alpha|^m = |\alpha|$ dove $m = |\beta| \in \omega$, e inoltre $|\operatorname{Fin}(\beta)| < \aleph_0 \le |\alpha|$; dunque anche in questo caso $|\alpha^{\beta}| \le \max\{|\alpha|, |\beta|\}$.

L'altra disuguaglianza $|\alpha^{\beta}| \geq \max\{|\alpha|, |\beta|\}$ è immediata.

- (1). Procediamo per induzione transfinita sul cardinale infinito κ . Alla base induttiva, se $\alpha, \beta < \kappa = \aleph_0$ sono ordinali finiti, allora anche α^{β} è finito e quindi $\alpha^{\beta} < \aleph_0 = \kappa$. Al passo successore, se $\alpha, \beta < \kappa = \aleph_{\gamma+1}$, abbiamo che $|\alpha|, |\beta| \leq \aleph_{\gamma}$, quindi $|\alpha^{\beta}| \leq \aleph_{\gamma}$, e perciò $\alpha^{\beta} < \aleph_{\gamma+1} = \kappa$. Infine se $\alpha, \beta < \kappa = \aleph_{\lambda}$ dove λ è limite, allora esiste $\gamma < \lambda$ con $\alpha, \beta < \aleph_{\gamma}$, e usando l'ipotesi induttiva abbiamo che $\alpha^{\beta} < \aleph_{\gamma} < \kappa$.
- (2). Visto che κ è un ordinale limite, per definizione $\omega^{\kappa} = \bigcup_{\gamma < \kappa} \omega^{\gamma}$. Notiamo anzitutto che $\kappa \leq \omega^{\kappa}$. Infatti per ogni $\gamma < \kappa$ si ha che $\gamma \leq \omega^{\gamma} \leq \omega^{\kappa}$, e quindi passando al sup si ha $\kappa = \bigcup_{\gamma < \kappa} \gamma \leq \omega^{\kappa}$ (la disuguaglianza $\gamma \leq \omega^{\gamma}$ può essere facilmente dimostrata per induzione transfinita su γ). Alternativamente, si può osservare che $|\omega^{\gamma}| = \max\{|\omega|, |\gamma|\} < \kappa$ e quindi $\omega^{\gamma} < \kappa$ per ogni $\gamma < \kappa$. Per l'altra disuguaglianza, sappiamo che $|\omega^{\kappa}| = \max\{\aleph_0, |\kappa|\} = |\kappa|$; ma κ è un ordinale iniziale, e perciò si ha necessariamente che $\kappa \leq \omega^{\kappa}$.
- (3). Se $\kappa = \omega$, allora basta notare che per ogni ordinale finito $1 < n < \omega$ si ha che $n^{\omega} = \bigcup_{m \in \omega} n^m = \omega$. Se κ è più che numerabile si può ragionare in modo analogo al punto precedente. Per ogni $\omega \leq \gamma < \kappa$ si ha $|\alpha^{\gamma}| = \max\{|\alpha|, |\gamma|\} < \kappa$ e quindi $\alpha^{\gamma} < \kappa$ per ogni $\gamma < \kappa$. Passando al sup si ottiene che $\alpha^{\kappa} = \bigcup_{\gamma < \kappa} \alpha^{\gamma} \leq \kappa$. Per l'altra disuguaglianza, sappiamo che $|\alpha^{\kappa}| = \max\{|\alpha|, |\kappa|\} = |\kappa|;$ ma κ è un ordinale iniziale, e perciò si ha necessariamente che $\kappa \leq \alpha^{\kappa}$.

Esercizio 2. Siano $\alpha, \beta \neq 0$ ordinali. Dimostrare che le seguenti proprietà sono equivalenti.

- 1. $\alpha + \beta = \beta + \alpha$.
- 2. Esiste γ , esiste $\rho < \omega^{\gamma}$, ed esistono naturali positivi n, m tali che

$$\alpha = \omega^{\gamma} \cdot n + \rho$$
 e $\beta = \omega^{\gamma} \cdot m + \rho$.

Soluzione. (2) \Rightarrow (1). Abbiamo visto a lezione che gli ordinali che assorbono additivamente a sinistra sono tutte e sole le potenze di ω . Dunque $\rho + \omega^{\gamma} = \omega^{\gamma}$, e quindi si ha:

$$\alpha + \beta = (\omega^{\gamma} \cdot n + \rho) + (\omega^{\gamma} \cdot m + \rho) = \omega^{\gamma} \cdot n + (\rho + \omega^{\gamma}) + \omega^{\gamma} \cdot (m - 1) + \rho = \omega^{\gamma} \cdot (n + m) + \rho.$$

$$\omega^{\gamma} \cdot n + \omega^{\gamma} + \omega^{\gamma} \cdot (m - 1) + \rho = \omega^{\gamma} \cdot (n + m) + \rho.$$

Allo stesso modo si dimostra che $\beta + \alpha = \omega^{\gamma} \cdot (m+n) + \rho$, e quindi concludiamo che $\alpha + \beta = \beta + \alpha$.

 $(1) \Rightarrow (2)$. Usando la forma normale di Cantor, è facile mostrare che possiamo scrivere $\alpha = \omega^{\gamma} \cdot n + \rho$ e $\beta = \omega^{\delta} \cdot m + \eta$ dove $\rho < \omega^{\gamma}$, $\eta < \omega^{\delta}$, e dove n, m sono naturali positivi.

Vediamo intanto che $\gamma = \delta$. Se per assurdo così non fosse, ad esempio se $\gamma < \delta$, allora avremmo che $\alpha < \omega^{\gamma} \cdot n + \omega^{\gamma} = \omega^{\gamma}(n+1) < \omega^{\gamma} \cdot \omega = \omega^{\gamma+1} \leq \omega^{\delta}$, e quindi $\alpha + \omega^{\delta} = \omega^{\delta}$, per la proprietà di assorbimento per somme a sinistra delle potenze di ω . Ma allora seguirebbe che

$$\alpha + \beta = \alpha + (\omega^{\delta} \cdot m + \eta) = (\alpha + \omega^{\delta}) + \omega^{\delta} \cdot (m - 1) + \eta = \omega^{\delta} + \omega^{\delta} \cdot (m - 1) + \eta = \omega^{\delta} \cdot m + \eta = \beta,$$

mentre $\beta < \beta + \alpha$. Dunque $\alpha = \omega^{\gamma} \cdot n + \rho$ e $\beta = \omega^{\gamma} \cdot m + \eta$ dove $\rho, \eta < \omega^{\gamma}$. Resta da vedere che $\rho = \eta$. Per mostrarlo, procedendo analogamente a come già fatto sopra, osserviamo che

$$\alpha + \beta = (\omega^{\gamma} \cdot n + \rho) + (\omega^{\gamma} \cdot m + \eta) = \omega^{\gamma} \cdot n + (\rho + \omega^{\gamma}) + \omega^{\gamma} \cdot (m - 1) + \eta = \omega^{\gamma} \cdot (n + \mu) + \omega^{\gamma} \cdot (m - 1) + \eta = \omega^{\gamma} \cdot (n + \mu) + \eta.$$

Allo stesso modo si ricava che $\beta + \alpha = \omega^{\gamma} \cdot (m+n) + \rho$. Infine, da $\omega^{\gamma} \cdot (n+m) + \eta = \omega^{\gamma} \cdot (m+n) + \rho$ segue che $\eta = \rho$, per l'unicità della differenza tra $\alpha + \beta = \beta + \alpha$ e $\omega^{\gamma} \cdot (n+m)$.

Esercizio 3.

- 1. Dimostrare che non esistono funzioni crescenti e illimitate $f: \omega_1 \to \aleph_{\omega}$.
- 2. Dimostrare che se ν è un cardinale e $(\gamma_i \mid i \in \nu)$ è una sequenza di ordinali strettamente crescente, allora $\gamma := \bigcup_{i < \nu} \gamma_i$ ha cofinalità $cof(\nu)$.
- 3. Determinare per quali cardinali infiniti κ il seguente insieme ha cardinalità κ :

$$\Lambda(\kappa) := \{ \nu \text{ cardinale } | \nu < \kappa \text{ e cof}(\nu) = \aleph_0 \}.$$

Soluzione. (1). Supponiamo per assurdo che esista $f: \omega_1 \to \aleph_\omega$ crescente e illimitata. Per ricorsione numerabile, definiamo la funzione $g: \omega \to \omega_1$ ponendo:

$$\begin{cases} g(0) = \min\{\alpha < \omega_1 \mid f(\alpha) > \aleph_0\} \\ g(n+1) = \min\{\alpha < \omega_1 \mid \alpha > g(n) \in f(\alpha) > \aleph_{n+1}\}. \end{cases}$$

Notiamo che la definizione al passo induttivo è ben posta perché f è illimitata in \aleph_{ω} . Per definizione g è crescente; inoltre $f(g(n)) > \aleph_n$ per ogni $n \in \omega$, e quindi la composizione $f \circ g : \omega \to \aleph_{\omega}$ è crescente e illimitata in \aleph_{ω} . Segue che $g : \omega \to \omega_1$ è illimitata in ω_1 ; infatti se esistesse $\gamma < \omega_1$ tale che $g(n) \leq \gamma$ per ogni $n \in \omega$ allora si avrebbe che $f(g(n)) \leq f(\gamma)$ per ogni n. Si ottiene così l'assurdo cercato perché non possono esistere funzioni $g : \omega \to \omega_1$ illimitate.

(2). La dimostrazione usa ragionamenti simili al punto (1). Sia $\mu := \operatorname{cof}(\nu)$, e sia $\vartheta : \mu \to \nu$ crescente e illimitata. Chiaramente la funzione $f : \mu \to \gamma$ dove $f(i) = \gamma_{\vartheta(i)}$ è strettamente crescente e illimitata in γ , quindi $\operatorname{cof}(\gamma) \le \mu$. Se per assurdo fosse $\operatorname{cof}(\gamma) < \mu$, prendiamo $\tau : \operatorname{cof}(\gamma) \to \gamma$ crescente e illimitata, e definiamo la funzione $g : \operatorname{cof}(\gamma) \to \mu$ ponendo:

$$\begin{cases} g(0) = \min\{\alpha < \operatorname{cof}(\gamma) \mid \tau(\alpha) > \gamma_{\vartheta(0)}\} \\ g(\xi) = \min\{\alpha < \operatorname{cof}(\gamma) \mid \alpha > g(\eta) \text{ per ogni } \eta < \xi \text{ e } \tau(\alpha) > \gamma_{\vartheta(\xi)}\}. \end{cases}$$

Notiamo che la definizione al passo induttivo è ben posta perché $\{g(\eta) \mid \eta < \xi\}$ ha cardinalità al più $|\xi| < \operatorname{cof}(\gamma)$ e quindi è limitato in $\operatorname{cof}(\mu)$; ed inoltre τ è illimitata in γ . Per definizione g è crescente; inoltre $\tau(g(\xi)) > \gamma_{\vartheta(\xi)}$ per ogni $\xi \in \operatorname{cof}(\gamma)$, e quindi la composizione $\tau \circ g : \operatorname{cof}(\gamma) \to \gamma$ è crescente e illimitata in γ . Segue che $g : \operatorname{cof}(\gamma) \to \mu$ è illimitata in μ ; infatti se esistesse $\zeta < \mu$ tale che $g(\xi) \le \zeta$ per ogni $\xi \in \operatorname{cof}(\gamma)$ allora si avrebbe che $\tau(g(\xi)) \le f(\zeta)$ per ogni $\xi \in \operatorname{cof}(\gamma)$, e $\tau \circ g$ sarebbe limitata. Si ottiene così l'assurdo cercato; infatti avevamo supposto $\operatorname{cof}(\gamma) < \mu$ e quindi non possono esistere funzioni $g : \operatorname{cof}(\gamma) \to \mu$ illimitate.

(3). Sono tutti e soli i punti fissi della funzione-classe aleph, cioè i cardinali $\kappa = \aleph_{\kappa}$.

Supponiamo prima $\kappa = \aleph_{\kappa}$. Visto che κ è più che numerabile, la funzione $f : \kappa \to \kappa$ dove $f(\alpha) = \omega \alpha + \omega$ è ben definita perché $\alpha < \kappa \Rightarrow \omega \alpha + \omega < \kappa$; inoltre f è iniettiva perchè per la cancellabilità a sinistra rispetto alla somma e poi rispetto al prodotto si ha $\omega \alpha + \omega = \omega \beta + \omega \Rightarrow \omega \alpha = \omega \beta \Rightarrow \alpha = \beta$. Per concludere, osserviamo che $\{\aleph_{f(\alpha)} \mid \alpha < \kappa\}$ è un sottoinsieme di $\Lambda(\kappa)$ di cardinalità κ . Infatti $|\{\aleph_{f(\alpha)} \mid \alpha < \kappa\}| = \kappa$ per l'iniettività di f, ed inoltre $\operatorname{cof}(\aleph_{f(\alpha)}) = \operatorname{cof}(\aleph_{\omega \alpha + \omega}) = \operatorname{cof}(\omega \alpha + \omega) = \aleph_0$.

Se invece $\kappa < \aleph_{\kappa}$, allora $\kappa = \aleph_{\alpha}$ per qualche $\alpha < \kappa$. Notiamo che in questo caso

$$\Lambda(\kappa) \subseteq \{ \nu \text{ cardinale } | \nu < \kappa \} = \{ \aleph_{\beta} | \beta < \alpha \}$$

e quindi $|\Lambda(\kappa)| \leq |\alpha| < \kappa$.

Esercizio 4. Siano κ un cardinale infinito e α un ordinale infinito. Consideriamo l'insieme

$$\Gamma = \{ f : A \to \kappa \mid A \in V_{\alpha} \}$$

dove V_{α} è l' α -esimo livello nella gerarchia di von Neumann.

- 1. Determinare la cardinalità di Γ quando $\alpha = \omega$.
- 2. Dimostrare che se $\alpha = \beta + 1$ è successore e $\kappa \leq |V_{\alpha}|$ allora $|\Gamma| = |V_{\alpha}|$.
- 3. Nel caso in cui $\lambda > \omega$ è un ordinale limite e $\kappa < |V_{\lambda}|$, determinare la cardinalità di Γ scrivendola in termini della funzione-classe beth. [Suggerimento: Distinguere i due casi $\omega < \lambda < \omega^2$ e $\lambda \ge \omega^2$.]

Soluzione. Anzitutto notiamo che $\Gamma = \bigcup_{A \in V_{\alpha}} \operatorname{Fun}(A, \kappa)$ dove l'unione è disgiunta.

(1). In questo caso si ha $|\Gamma| = \kappa$. Infatti

$$|\Gamma| = \sum_{A \in V_{\omega}} |\operatorname{Fun}(A, \kappa)| = \sum_{A \in V_{\omega}} \kappa^{|A|} = \max \left\{ \sup_{A \in V_{\omega}} \kappa^{|A|}; |V_{\omega}| \right\} = \max \left\{ \kappa; \aleph_0 \right\} = \kappa.$$

Si osservi infatti che ogni $A \in V_{\omega}$ è finito e dunque $\kappa^{|A|} = \kappa$; inoltre $|V_{\omega}| = \aleph_0$.

(2). In questo caso si ha $|\Gamma| = |V_{\alpha}|$. Infatti abbiamo:

$$|\Gamma| = \sum_{A \in V_{\alpha}} \kappa^{|A|} = \sum_{A \subseteq V_{\beta}} \kappa^{|A|} = \max \left\{ \sup_{A \subseteq V_{\beta}} \kappa^{|A|}; |\mathcal{P}(V_{\beta})| \right\} = \max \left\{ \kappa^{|V_{\beta}|}; 2^{|V_{\beta}|} \right\} = 2^{|V_{\beta}|} = |V_{\alpha}|.$$

Osserviamo che per ipotesi $\kappa \leq |V_{\alpha}| = |\mathcal{P}(V_{\beta})| = 2^{|V_{\beta}|}$, e quindi $\kappa^{|V_{\beta}|} = 2^{|V_{\beta}|}$.

(3). Ricordiamo che a lezione avevamo dimostrato che $|V_{\omega+\gamma}| = \beth_{\gamma}$; in particolare, $|V_{\gamma}| = \beth_{\gamma}$ per ogni $\gamma \ge \omega^2$.

Se λ è un ordinale limite con $\omega < \lambda < \omega^2$ allora $\lambda = \omega \cdot n$ dove $1 < n < \omega$. In questo caso si ha che $|\Gamma| = \beth_{n-1}$, come segue dalle seguenti uguaglianze:

$$|\Gamma| = \sum_{A \in V_{\omega \cdot n}} \kappa^{|A|} = \max \left\{ \sup_{A \in V_{\omega \cdot n}} \kappa^{|A|}; |V_{\omega \cdot n}| \right\} = \beth_{\omega(n-1)}.$$

Infatti, per ipotesi $\kappa < |V_{\lambda}| = |V_{\omega \cdot n}| = \beth_{\omega(n-1)}$; inoltre $A \in V_{\omega \cdot n} \Leftrightarrow A \subseteq V_{\beta}$ per qualche $\beta < \omega \cdot n$, e quindi $|A| < |V_{\omega \cdot n}| = \beth_{\omega(n-1)}$. Visto che $\beth_{\omega(n-1)}$ è un limite forte, abbiamo allora $\sup_{A \in V_{\omega \cdot n}} \kappa^{|A|} = \sup_{\mu < \beth_{\omega(n-1)}} \kappa^{\mu} = \beth_{\omega(n-1)}$.

Nel caso in cui $\lambda \ge \omega^2$ la dimostrazione è del tutto simile, e si ottiene che $|\Gamma| = \beth_{\lambda}$ dalle seguenti uguaglianze:

$$|\Gamma| = \sum_{A \in V_{\lambda}} \kappa^{|A|} = \max \left\{ \sup_{A \in V_{\lambda}} \kappa^{|A|}; |V_{\lambda}| \right\} = \beth_{\lambda}.$$

Infatti, per ipotesi $\kappa < |V_{\lambda}| = \beth_{\lambda}$; inoltre $A \in V_{\lambda} \Leftrightarrow A \subseteq V_{\beta}$ per qualche $\beta < \lambda$, e quindi $|A| < |V_{\beta}|$. Osserviamo che $\lambda \ge \omega^2$ e $\beta < \lambda$ implicano che anche $\omega + \beta < \lambda$. Visto che $\beth_{\omega(n-1)}$ è un limite forte, abbiamo allora $\sup_{A \in V_{\lambda}} \kappa^{|A|} = \sup_{\beta < \lambda} \kappa^{|V_{\beta}|} = \sup_{\beta < \lambda} \kappa^{|V_{\omega+\beta}|} = \sup_{\beta < \lambda} \kappa^{\beth_{\beta}} = \beth_{\lambda}$.

Un modo alternativo per rispondere a questa domanda (3) è quello di mostrare che dalle ipotesi segue $|\Gamma| = |V_{\lambda}|$, e poi usare la formula vista a lezione per la cardinalità di V_{λ} . Precisamente, si ha:

$$|\Gamma| = \sum_{A \in V_{\lambda}} \kappa^{|A|} = \max \left\{ \sup_{A \in V_{\lambda}} \kappa^{|A|}; |V_{\lambda}| \right\} = |V_{\lambda}|.$$

Infatti, osserviamo che $\kappa^{|A|} < |V_{\lambda}|$ per ogni $A \in V_{\lambda}$. Per verificarlo notiamo che $|V_{\lambda}| = \sup_{\beta < \lambda} |V_{\beta}|$, visto che λ è limite; e allora dall'ipotesi $\kappa < |V_{\lambda}|$ segue che $\kappa \le |V_{\beta}|$ per qualche $\beta < \lambda$. Inoltre $A \in V_{\lambda} \Leftrightarrow A \subseteq V_{\beta'}$ per qualche $\beta' < \lambda$. Se $\gamma = \max\{\beta, \beta'\}$, si ha $\kappa^{|A|} \le |V_{\gamma}|^{|V_{\gamma}|} = 2^{|V_{\gamma}|} = |V_{\gamma+1}| < |V_{\lambda}|$.