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Image restoration with BCs

Using boundary conditions (BC), the restored image f is obtained solving:
Af=g+n

e g = blurred image

e n = noise (random vector)

e A = two-level matrix depending on PSF and BC

BC A
Dirichlet Toeplitz
periodic circulant

Neumann (reflective) DCT 1l
anti-reflective DST | + low-rank




Generating function of PSF

e 1D problem with gaussian PSF:
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e The ill-conditioned subspace is mainly constituted by the high frequencies.



Smoothing

e terative regularizing methods (e.g. Landweber, CG, ...) firstly reduce the error
in the low frequencies (well-conditioned subspace).

e Example: f =sin(z), = € [0, 7] and g = Af. Solving the linear system Af = g
by Richardson

Initial error After 1 iteration After 5 iterations

e The error is highly oscillating after ten iterations as well.



Multigrid structure

e |dea: project the system in a subspace of lower dimension, solve the resulting
system in this space and interpolate the solution in order to improve the previous
approximation in the greater space.

e The j-th iteration of the Two-Grid Method(TGM) for the system Ax = b:

e Multigrid (MGM): the step (4) becomes a recursive application of the algorithm.



Algebraic Multigrid (AMG)

e The AMG uses information on the coefficient matrix and no geometric information
on the problem.

e Different classic smoothers have a similar behavior: in the initial iterations they
are not able to reduce effectively the error in the subspace generated by the
eigenvectors associated to small eigenvalues (ill-conditioned subspace)
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the projector is chosen in order to project the error equation in such subspace.
e A good choice for the projector leads to MGM with a rapid convergence.

e For instance, for Toeplitz and algebra of matrices, see [Arico, Donatelli, Serra
Capizzano, SIMAX, Vol. 26-1 pp. 186-214.].



Geometric Multigrid

e The MGM is an optimal solver for elliptic PDE

For elliptic PDE the ill-conditioned
subspace is made by low frequencies
(complementary with respect to the

gaussian blur).

e For the projector a simple and powerful choice is:
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Poisson’s problem

(full weighting)

(linear interpolation)



Image restoration and Multigrid

e In the images deblurring the ill-conditioned subspace is related to high frequencies,
while the well-conditioned subspace is generated to low frequencies.

e In order to obtain a rapid convergence the algebraic multigrid projects in the
high frequencies where the noise “lives” = noise explosion already at the first
iteration (it requires Tikhonov regularization [NLAA in press]|).

e In this case the geometric multigrid projects in the well-conditioned subspace (low
frequencies) = it is slowly convergent but it can be a good iterative regularizer.

If we have an iterative regularizing method we can improve its regu-
larizing property using it as smoother in a Multigrid algorithm.



Projector structure

e In order to apply recursively the MGM it is necessary to maintain the same struc-
ture at each level (Toeplitz, circulant, ... ).

e Projector: P, = Ky,Tn. (24 2cos(z)) s.t. i is the recursion level and
2 1
Tn,(24 2cos(z)) = ! _2 _:' |
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Two-Level (TL) regularization

e Two-Level (TL) regularization (specialization of the TGM):
1. No smoothing at step (1): X = xU)
2. Step (4): e; = Al_lrl — Smooth(Ay, e, 11, V)
As smoother a generic regularizing method can be used.

e Since in the finer grid we do not apply the smoother we can project the system
Ax = b instead of the error equation Ae =r.

e The P = full weighting applied to the observed image b leads to a reblurring
effect followed by a down-sampling (noise damping like a low-pass filter).

e The P’ = linear interpolation reconstruct exactly the piecewise linear function
damping the high oscillation deriving by the noise.



Multigrid regularization

e Applying recursively the Two-Level algorithm, we obtain a Multigrid method.
e /-cycle

@ ho smoothing \
® @ 1step of smoothing
projection
O
D direct solution
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e Using a greater number of recursive calls (e.g. W-cycle), the algorithm “works”
more in the well-conditioned subspace but it is more difficult to define an early
stopping criterium.



Computational cost

e Let ng X ng = n X n be the problem size at the finer level, where ny = n = 2°,
a € N, thus at the level j the problem size is n; X n; where n; = 247/,

e Projection j — 7 + 1: %n? flops. Interpolation j +1 — j: %n? flops.

e Let I1/(n) be the computational cost of one smoother iteration for a problem of
size n x n with W(n) = cn®+ O(n), ¢ > 1.
The computational cost at the j-th level is about

21
Cj = W(?%) + gﬂ? ﬂOpS.

e [ he total cost of one MGM iteration is:

21 logg(n)—l

4 n 1
gnQ + c; < 4n? + §W(§) ~ §W(n)
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Example 1 (airplane)

e Periodic BCs
e Gaussian PSF (A spd)
e SNR = 100

Original
Image

Inner part 128 x 128 Blurred + SNR = 100 Restored with MGM




Restoration error (example 1)

Graph of the relative restoration error ¢; = ||f — £/)||,/||f||, increasing the number
of iterations when solving Af = g+n (RichN = Landweber, CGN = CG for normal equations).
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Example 2 (SNR = 10)

e Same image and PSF but much more noise: SNR = 10.

e For CG and Richardson, it is necessary to resort to normal equations.

o Method ]Iillln(63> arg]gi,r,l,,(ej)

ozl o %Egﬁm) ] CGN 0.1625 30
MOMRIN.2 RichN 0.1630 59
TL(CGN) 0.1611 48
TL(RichN) 0.1613 97
MGM(RichN,1) | 0.1618 69
MGM(RichN,2) | 0.1621 26

MGM(Rich,1) | 0.1648
MGM(Rich,2) | 0.1630 1
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Example 3 (Saturn)

e Periodic BCs (exacts)
e Gaussian PSF (\(A) ~ —107%)
e SNR =50

Original
Image

Inner part 128 x 128 PSF Blurred + SNR = 50



Restoration error (example 3)

Graph of the relative restoration error ¢; = ||f — £\)||, /||f||, increasing the number
of iterations when solving the linear system Af = g + n.
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Relative error vs. number of iterations
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Method jrillin (e;) argjllllin (e;)

CG 0.2033 6
Richardson 0.2035 12
TL(CG) 0.1539 18
TL(Rich) 0.1547 30
MGM(Rich,1) | 0.1421 22
MGM(Rich,2) | 0.1374 g

CGN 0.1302 2500
MGM(CGN,1) | 0.1297 250

MGM(RichN,2) | 0.1305 | 1700

Minimum relative error




Restored images

o\ %

MGM(Rich,2) CGN

CG | MGM(Rich,2) | CGN (normal equation)

Minimum error 0.2033 0.1374 0.1302
Number of iterations §) 38 2500




Direct multigrid regularization

e Trend of the error after only one iteration of MGM(Rich,v) varying ~.

e It is a direct regularization method with regularization parameter .
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Relative error vs. number of iterations

e The computational cost increase with  but not so much (e.g. v =8 = O(N!®)).
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Conclusions

e The Multigrid (with a regularizing method as smoother) is a good regularizer =
we can improve the power of an iterative regularizing method using it as smoother

inside a MGM scheme.
e The MGM regularization is robust for small negative eigenvalues as well.
e Usually it is not necessary to resort to normal equations.

e It can lead to several generalizations.



