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Grid Topology
R

B Four sites, scalable grid architecture

B 10 to 20 Gb/sec connection

B 61F Processors

Computation 6 x 10%
Communication 0.3 x 10°

= 20, 000!

Communication Bottleneck:
computation done locally.
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Principal Component Analysis
R

Let X be an nn X p data matrix, where n > p.

Data covariace matrix S is given by

nS=X"(I—1ese,)X,

n

where el = (1,1,...,1).

n —

PCA <+— Karhunen-Loéve transform
<= Hotelling transform
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PCA means
O

B get spectral decomposition of n - S:
nS = Vv’

B choose few largest eigenvalues and
eigenvectors V.

~~

B form principal component vectors X - V.

B Jow-dimension representation of original dat:



PCA involves only V and X%
R

T

. ) is symmetric and idempotent,

Since (I — Le,e
nS = X'(I—1e.e,)X
= X'(I—Ztee;)(I— teye,)X

n

>. and V can be obtained from SVD of:
(I—Lteye,)X =UxV".

Low-dim’l representation X - V can still be done.

-p-8/5



Distributed PCA
O

Big data matrix X: n ~ 10'2.

E.g. visualization, data mining.

Problem:

Data are distributed amongst s processors.

Can we find X and V without moving X across
processors?
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Data among s processors
—

Denote

[ Xo \

X1 g

\X;_lj )

where X; is n; X p, resides on processor 1.

p—

I
-

Typical: n; =~ 10'* and p ~ 10°.
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Aim
G

B Compute PCA of X without moving the data
matrix X;.

B Move O(p*) data across processors instead of
O(ni).
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Distributed PCA by Qu et al.

.
1. At processor i, calculate local PCA using SVL

(I—Leye, )X = UV

Say matrix has numerical rank k;.

Send X; (column sum of Xj), and k; largest

principal components ¥; and V; to central
Processor.

Communication costs = O(pk;).
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2. At central processor: Assemble p X p
covariance matrix and find its PCA

s—1 s—1
nS — Z‘/ZZZZ‘/ZT_|_ Zni()_(i —)_()()_(i —)_()T
i=0 1=0

7535748

Broadcast V, the first k columns of V.

Communication costs = O(pk).
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3. Calculate principal component vectors at
PTOCessor i:

~

X;V.
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Analysis of Qu’s Approach
]
Advantage: Reduce communication costs:

O(pn) — O(p( L ki)).

Disadvantages:

B [ocal SVD’s introduce approximation errors.

B Central processor becomes bottleneck for
communications and computation.
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Luk’s Algorithms

Replace SVD by QR



1a. At processor :
G
Calculate QR decomposition of (I — nlienieT ) Xi:

(I—Le,el )X = QYR
where Rfo) is p X p.
Send n; and X; to central processor.

Iti >s/2,send Rl@ to processor i — s/ 2.

No need to send QfO).
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1b. At processor: < s/2
Co

Calculate QR decomposition

RO ) (1) (1)
] =QWRY,
R(O) i 1

i+s/2

(1)

1

_ 1 T'\Y. 1 T |
(I n; enieni))(Z and (I Nits/2 eni—I—S/zeni—l—S/Z)XZ_'_S‘

where R:"’ is p x p. Equals to QRD of

Iti >s/4, send Rfl) to processor i — s/4.

No need to send Qfl). b8/



1c. At processori: < s/4
c—— ]

Calculate QR decomposition

R(l) ) (2) R(Z)
Z — Q o
R(l) i i

i+s/4

(2)

where R;™ is p X p.

Ifi > s/8, send sz) to processor i — s/8.

No need to send sz).
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1d. Eventually, at processor 0
o

Calculate QR decomposition of

RU-D) .
( R(()l—l) )Qé)Ré),

1

where | = |log, 5.
Send R(()l) to central processor.

No need to send Q(()l).
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Main Results
O

m Total communication costs = O([log, s|p?).

B The covariance matrix

nS = X' (I — %eneT)X,

n

is given by:

T 1
nS =R\ RY + Y mi(x —x)(x —x)7.
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2. At central processor
]

Assemble (s + p) x p data matrix:

Notice that: nS = Z1 7.



2. At central processor
]

Compute SVD: Z = ULV (after triangulation).

Say Z has numerical rank k.

Broadcast x and V, first k columns of V.

Communication costs = O(pk).
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3. At processor

Calculate principal component vectors:

X V.

—p. 24/



Analysis of Luk’s Algorithm
.
Advantage over Qu’s Approach:

B Communication costs on PCA:

O(p( | ki)) — O(p*[log,s]),

B No local PCA approximation errors.

B [ess congestion in central processor for
communications and computation.

B Work directly with data matrices.
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Data Updating
G

Assume global synchronization at tg, t1, ..., t,
(k)

i.e. at |tx_1, t], new data are added to X,

Processor 1.

on

Aim:

Find the PCA for the new extended matrix,
(k)

without moving X"’ across processors.
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x(0) (1) x (1)
Processor_
s—1 4 * ng)m * X51—)1 : Xs(iq
1+ | ex\exV o X\
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At time ¢,

Let
(%9
xo— | XL e o e
: i=0
\ %%/
where Xi(k) is ngk) X p.

Assume PCA of original matrix X¥) = X is
available by Luk’s algorithm.

-p.28/7



Global Data Matrix at ¢,
G

Denote

[ X
1
x (M) — X: g(m) =Y n®),

1=0
X

Aim: Find PCA for its covariance matrix:




Our Theorem

Let
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Explanation
—

PCA of update data matrix X'*) can be obtained &
Luk’s algorithm, i.e. n9)S; = RITR;. Then

g(m)Semy = Y _ Ri R«
k=0

Assemble them to construct global PCA for X",
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Analysis of Our Algorithm
G

B Global PCA can be computed without movin
XK,

m Communication costs still O(p?[log, s]),

B No local PCA approximation errors.

B Work directly with data matrices and update
matrices.

B [ oad balancing for communications and
computation.
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Load Balancing
G

Let s = 2¢. We can allocate all processors to do the
OR factorizations such that:

m PCA of X — PCA of Xk-1)
+ R factor of X0,

m PCA of XV obtained in f;. .
B The procedure is periodic with period /.

B Well-balanced among the processors.
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Processor

—> Computation —> — > > Communication

&

X—PR
1 R—I>R/
X—PR f X—PR, / X—P>R f / X—PR
5 R—pR/ \ *R—bR\ . NR—R. —bR
\ \ P
X—>R f \OX—PR O\ X—>PR X—PR
—x/ Y R—R,
3 \
X—bR X—PR X—PR \
4 / ,”‘R A
X—DR X—PR I X—PR-
/" R—PR .
5 A
X—bR x—>R 1 X—PR
// / ‘
6 / /’
X—PR X—>R/ X—bR
/
/
7 /
[ X—PR X—bR/  X—PR .
Time ¢, t t t t, 15 t,

—p.34/:



	PCA for Distributed Data Sets
	Grid
	New York State TeraGrid Initiative 
	Grid Topology
	Principal Component Analysis
	PCA means
	PCA involves only $V$ and $Sigma $
	Distributed PCA
	Data among $s$ processors
	Aim
	Distributed PCA by Qu et al.
	Analysis of Qu's Approach
	Luk's Algorithms
	1a. At processor $i$
	1b. At processor $i<s/2$
	1c. At processor $i< s/4$
	1d. Eventually, at processor 0
	Main Results
	2. At central processor
	2. At central processor
	3. At processor $i$
	Analysis of Luk's Algorithm
	Data Updating
	At time $t_k$
	Global Data Matrix at $t_m$
	Our Theorem
	Explanation
	Analysis of Our Algorithm
	Load Balancing

