up previous next

HilbertPoly

Syntax

Hilbert(R:RING or TAGGED("Quotient")):POLY in the ring Qt.
    

Summary

the Hilbert polynomial

Description

This function returns the Hilbert polynomial for R as a polynomial in the standard CoCoA ring Qt (= Q[t]).

The weights of the indeterminates of R must all be 1, and the coefficient ring must be a field.

If the input is not homogeneous, the Hilbert polynomial of the corresponding leading term (initial) ideal or module is calculated. For the Hilbert *function*, see "Hilbert".

example

    
Use R ::= Q[w,x,y,z];
I := Ideal(z^2-xy,xz^2+w^3);
Hilbert(R/I);
H(0) = 1
H(1) = 4
H(t) = 6t-3   for t >= 2
-------------------------------
F := HilbertPoly(R/I);
F;  -- a polynomial in the ring Qt
Qt :: 6t-3
-------------------------------
Subst(F,Qt::t,3);
Qt :: 15
-------------------------------
        
    

See Also