
Structured Matrix Based Methods for Polynomial ε-gcd:
Analysis and Comparisons

Dario A. Bini
bini@dm.unipi.it

Paola Boito
boito@mail.dm.unipi.it

Dipartimento di Matematica
Università di Pisa

Pisa, Italy

ABSTRACT
The relationship between univariate polynomial ε-gcd and
factorization of resultant matrices is investigated and sev-
eral stable and effective algorithms for the computation of an
ε-gcd are proposed. The main result is the design of a prac-
tically stable algorithm whose arithmetic cost is quadratic in
the degrees of the input polynomials. The algorithm relies
on the displacement structure properties of Sylvester and
Bézout matrices. Its effectiveness is confirmed by numerical
experiments.

Categories and Subject Descriptors
G.1.3 [Numerical Linear Algebra]: Sparse, structured,
and very large systems (direct and iterative methods); I.1.2
[Symbolic and Algebraic Manipulation]: Algorithms

General Terms
Algorithms, experimentation

Keywords
Cauchy matrices, polynomial gcd, displacement structure,
Sylvester matrix, Bézout matrix.

1. INTRODUCTION
The classical algebraic notion of polynomial gcd is known

to be ill-suited to work in a numerical/applicative setting,
where input data are represented as floating point numbers
or derive from the results of physical experiments or pre-
vious computations, so that they are generally affected by
errors. Indeed, if u(x) and v(x) have a nontrivial gcd, it
turns out that arbitrarily small perturbations in the coeffi-
cients of u(x) and v(x) may transform u(x) and v(x) into
relatively prime polynomials.

It is therefore necessary to introduce the notion of poly-
nomial ε-gcd (or approximate gcd); for more details we refer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’07,July 29–August 1, 2007, Waterloo, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-743-8/07/0007 ...$5.00.

the reader to [19] [7],[17], [22] and to the references therein.
Throughout this paper we use the following definition,

where ‖ · ‖ denotes the Euclidean norm.

Definition 1.1. A polynomial g(x) is said to be an ε-
divisor of u(x) and v(x) if there exist polynomials û(x) and
v̂(x) of degree n and m, respectively, such that ‖u(x) −
û(x)‖ ≤ ε‖u(x)‖, ‖v(x)− v̂(x)‖ ≤ ε‖v(x)‖ and g(x) divides
û(x) and v̂(x). If g(x) is an ε-divisor of maximum degree
of u(x) and v(x), then it is called ε-gcd of u(x) and v(x).
The polynomials p(x) = û(x)/g(x) and q(x) = v̂(x)/g(x) are
called ε-cofactors.

Notice that, while the degree of an ε-gcd is uniquely defined,
its coefficients are not.

The problem of ε-gcd computation can be stated as fol-
lows: given the coefficients of two univariate polynomials
u(x) =

∑n
i=0 uix

i and v(x) =
∑m

i=0 vix
i, compute the coef-

ficients of an ε-gcd g(x) of u(x) and v(x).
Several algorithms for the solution of this problem or its

variants can be found in the literature; they rely on different
techniques, such as the Euclidean algorithm [2],[1],[11],[16],
optimization methods [14], SVD and factorization of resul-
tant matrices [4], [5], [22], Padé approximation [3], [17], root
grouping [17]. Some of them have been implemented inside
numerical/symbolic packages like the algorithm of Zeng [22]

in MatlabTM and the algorithms of Kaltofen [13], of Cor-

less et al [5], of Labahn and Beckermann [12] in MapleTM.
These algorithms have a computational cost of O(n3) which
makes them expensive for moderately large values of n. Al-
gorithms based on the Euclidean scheme have a typical cost
of O(n2) but they are prone to numerical instabilities; look-
ahead strategies can improve the numerical stability with an
increase of the complexity to O(n3). More recently, O(n2)
algorithms have been proposed in [15] and [23]. They are
based on the QR factorization of a displacement structured
matrix obtained by means of the normal equations. The
use of the normal equations generally squares the condition
number of the original problem, with consequent deteriora-
tion of the stability.

In this paper we propose new algorithms for the compu-
tation of polynomial ε-gcd, based on structured matrices.
The first approach relies on the formulation of gcd given in
terms of the Bézout matrix B(u, v) or of the Sylvester matrix
S(u, v) associated with the pair (u, v), and on their reduc-
tion to Cauchy-like matrices. It has a computational cost
of O(n2) ops and, from the several numerical experiments
performed so far, results robust and numerically stable. For

exact gcd where ε = 0, kε coincides with the nullity (i.e., the
dimension of the kernel) of B(u, v) and of S(u, v), or equiv-
alently, with the nullity of the Cauchy matrices obtained
through the reduction.

The nullity of a Cauchy-like matrix can be computed by
means of the GKO fast LU factorization algorithm [8] suit-
ably modified in order to improve the numerical stability
with a pivoting strategy. The same technique allows to com-
pute an estimate on the approximate rank (and nullity) of
B(u, v) or S(u, v) and therefore yields a tentative guess for
kε. The cofactors (or the gcd) are then computed by solving
a suitable Sylvester (Bézout) linear system. Once again, this
system is solved by means of the modified GKO algorithm
after reduction to Cauchy-like.

A refinement stage performed by means of Newton’s iter-
ation, followed by a check of the solution computed in this
way, completes the algorithm.

The second approach to approximate gcd computation is
presented in Section 4 and relies on the tridiagonalization
of the Bézout matrix. We prove that tridiagonalization pro-
vides effective means of estimating the approximate rank of
B(u, v) and computing a set of coefficients for an approxi-
mate common divisor of given degree. In Section 4 we also
outline a third algorithm, based on the QR factorization
with pivoting of S(u, v) or B(u, v). Though the presenta-
tion does not go into much detail, it should be pointed out
that these methods have proven to be quite effective and
have the merit of highlighting less known aspects of the in-
terplay between polynomial gcd and resultant matrices.

Numerical tests and the results of numerical experiments
are reported in Section 5 where we compare our approach
with the existing software implemented in Matlab and in
Maple.

2. RESULTANT MATRICES AND ε-GCD
We recall the definitions of Bézout and Sylvester matrices,

along with their interplay with gcd.

2.1 Sylvester and B́ezout matrices
The Sylvester matrix of u(x) and v(x) is the (m + n) ×

(m + n) matrix

S(u, v) =

un un−1 . . . u0 0
. . .

. . .

0 un un−1 . . . u0

vm vm−1 . . . v0 0
. . .

. . .

0 vm vm−1 . . . v0

. (1)

where the coefficients of u(x) appear in the first m rows.
Assume that n ≥ m and observe that the rational func-

tion (u(x)v(y)− u(y)v(x))/(x− y) is actually a polynomial∑n
i,j=1 xi−1yj−1bi,j in the variables x, y. The coefficient

matrix B(u, v) = (bi,j) is called the Bézout matrix of u(x)
and v(x).

The following property is well known:

Lemma 2.1. The nullities of S(u, v) and of B(u, v) coin-
cide with deg(g).

The next two results show how the gcd of u(x) and v(x)
and the corresponding cofactors are related to Sylvester and
Bézout submatrices. Recall that, for an integer ν ≥ 2 and a

polynomial a(x) =
∑µ

j=0 ajx
j , the ν-th convolution matrix

associated with a(x) is the (µ+ν)×ν Toeplitz matrix having
[a0, . . . , aµ, 0 . . . 0]T as its first column and [a0, 0, . . . 0] as its
first row.

Lemma 2.2. Let u(x) = g(x)p(x), v(x) = g(x)q(x), then
the vector [q0, . . . , qm−k, −p0, . . . ,−pn−k]T belongs to the null
space of the matrix Sk = [Cu Cv], where Cu is the (m− k +
1)-st convolution matrix associated with u(x) and Cv is the
(n− k + 1)-st convolution matrix associated with v(x).

Theorem 2.3. ([6]) Assume that B(u, v) has rank n− k
and denote by c1, . . . , cn its columns. Then ck+1, . . . , cn are
linearly independent. Moreover writing each ci (1 ≤ i ≤ k)
as a linear combination of ck+1, . . . , cn

ck−i = hk+1
k−i ck+1 +

n∑
j=k+2

hj
k−icj , i = 0, . . . , k − 1,

one finds that D(x) = d0x
k + d1x

k−1 + · · · + dk−1x + dk

is a gcd for u(x) and v(x), where d1, . . . , dk are given by
dj = d0h

k+1
k−j+1, with d0 ∈ R or C.

Moreover, we have:

Remark 2.4. Let g(x) =
∑k

i=0 gix
i = gcd(u, v), and

let û(x) and v̂(x) be such that u(x) = û(x)g(x), v(x) =
v̂(x)g(x). Then we have B(u, v) = GB(û, v̂)GT , where G is
the (n− k) convolution matrix associated with g(x).

2.2 Cauchy-like matrices
An n×n matrix C is called Cauchy-like of rank r if it has

the form

C =
[uiv

H
j

fi − āj

]n−1

i,j=0
, (2)

with ui and vj row vectors of length r ≤ n, and fi and aj

complex scalars such that fi− āj 6= 0 for all i, j. The matrix
G whose columns are given by the ui’s and the matrix B
whose rows are given by the vi’s are called the generators
of C.

Equivalently, C is Cauchy-like of rank r if the matrix

∇CC = FC − CAH , (3)

where F = diag(f0, . . . , fn−1) and A = diag(a0, . . . , an−1),
has rank r. The operator∇C defined in (3) is a displacement
operator associated with the Cauchy-like structure, and C
is said to have displacement rank equal to r.

The algorithm that we now present is due to Gohberg,
Kailath and Olshevsky [8], and is therefore known as GKO
algorithm; it computes the Gaussian elimination with par-
tial pivoting (GEPP) of a Cauchy-like matrix and can be
extended to other classes of displacement structured matri-
ces. The algorithm relies on the following facts: performing
Gaussian elimination on an arbitrary matrix is equivalent
to applying recursive Schur complementation; Schur com-
plementation preserves the displacement structure; permu-
tations of rows and columns preserve the Cauchy-like struc-
ture.

It is therefore possible to directly apply Gaussian elimi-
nation with partial pivoting to the generators rather than
to the whole matrix C, resulting in increased computational
speed and less storage requirements.

So, a step of the fast GEPP algorithm for a Cauchy-like
matrix C = C1 can be summarized as follows (we assume

that generators (G1, B1) of the matrix are given):

(i) Use (2) to recover the first column

[
d1

`1

]
of C1 from the

generators.

(ii) Determine the position (say, (k, 1)) of the entry of max-
imum magnitude in the first column.

(iii) Let P1 be the permutation matrix that interchanges the
first and k-th rows. Interchange the first and k-th diagonal
entries of F1; interchange the first and k-th rows of G1.

(iv) Recover from the generators the first row
[

d̃1 u1

]
of

P1C1. Now one has the first column

[
1

1

d̃1
˜̀
1

]
of L and the

first row
[

d̃1 u1

]
of U in the LU factorization of P1C1.

(v) Compute generators (G2, B2) of the Schur complement
C2 of P1C1 as follows:[

0
G2

]
= G1 −

[
1

1

d̃1
˜̀
1

]
g1,

[
0 B2

]
= B1 − b1

[
1 1

d̃1
u1

]
,

where g1 is the first row of G1 and b1 is the first column of
B1.

Proceeding recursively, one obtains the factorization C1 =
PLU , where P is the product of the permutation matrices
used in the process.

Now, let

Zφ =

(
0T φ

In−1 0

)
, (4)

where In−1 is the identity matrix of order n− 1, and define
the matrix operator

∇T T = Z1T − TZ−1. (5)

An n × n matrix T having low displacement rank with re-
spect to the operator ∇T (i.e., such that ∇T = GB, with
G ∈ Cn×r and B ∈ Cr×n) is called Toeplitz-like. Sylvester
and Bézout matrices are Toeplitz-like.

Toeplitz-like matrices can be transformed into Cauchy-like
as follows [10]. Here and hereafter ı̂ denotes the imaginary
unit such that ı̂2 = −1.

Theorem 2.5. Let T be an n × n Toeplitz-like matrix.
Then C = FTD−1

0 FH is a Cauchy-like matrix, i.e.,

∇D1,D−1(C) = D1C − CD−1 = ĜB̂, (6)

where

F =
1√
n

[e
2πı̂
n

(k−1)(j−1)]k,j

is the normalized n× n Discrete Fourier Transform matrix

D1 = diag(1, e
2πı̂
n , . . . , e

2πı̂
n

(n−1)),

D−1 = diag(e
πı̂
n , e

3πı̂
n , . . . , e

(2n−1)πı̂
n),

D0 = diag(1, e
πı̂
n , . . . , e

(n−1)πı̂
n),

and

Ĝ = FG, B̂H = FD0B
H . (7)

Therefore the GKO algorithm can be also applied to Toeplitz-
like matrices, provided that reduction to Cauchy-like form is

applied beforehand. In particular, the generators (G, B) of
the matrix S(u, v) can be chosen as follows. Let N = n+m;
then G is the N × 2 matrix having all zero entries except
the entries (1, 1) and (m + 1, 2) which are equal to 1; the
matrix B is 2 × N , its first row is [−un−1, . . . ,−u1, vm −
u0, vm−1, . . . , v1, v0 +un] and its second row is [−vm−1, . . . ,
− v1, un − v0, un−1, . . . , u1, u0 + vm]. Generators for B(u, v)
can be similarly recovered from the representation of the
Bézout matrix as sum of products of Toeplitz/Hankel trian-
gular matrices. Generators for the associated Cauchy-like
matrix are computed from (G, B) by using (7).

2.3 Modified GKO algorithm
Gaussian elimination with partial pivoting (GEPP) is usu-

ally regarded as a reliable method for solving linear systems.
Its fast version, though, raises more stability issues.

Sweet and Brent [21] have done an error analysis of the
GKO algorithm applied to a Cauchy-like matrix C. They
point out that the error propagation depends not only on
the magnitude of the triangular factors in the LU factor-
ization of C (as is expected for ordinary Gaussian elimina-
tion), but also on the magnitude of the generators. In some
cases, the generators can suffer large internal growth, even
if the triangular factors do not grow too large, and therefore
cause a corresponding growth in the backward and forward
error. Experimental evidence shows that this is the case
for Cauchy-like matrices derived from Sylvester and Bézout
matrices.

However, it is possible to modify the GKO algorithm so
as to prevent generator growth, as suggested for example in
[20] and [9]. In particular, the latter paper proposes to or-
thogonalize the first generator before each elimination step;
this guarantees that the first generator is well conditioned
and allows a good choice of a pivot. In order to orthogonal-
ize G, we need to:

– QR-factorize G, obtaining G = GR, where G is an n × r
column orthogonal matrix and R is upper triangular;

– define new generators G̃ = G and B̃ = RB.
This method performs partial pivoting on the column of

C corresponding to the column of B with maximum norm.
This technique is not equivalent to complete pivoting, but
allows a good choice of pivots and effectively reduces element
growth in the generators, as well as in the triangular factors.

3. FAST ε-GCD COMPUTATION

3.1 Estimating degree and coefficients of the
ε-gcd

We first examine the following problem: find a fast method
to determine whether two given polynomials u(x) and v(x)
have an ε-divisor of given degree k. Throughout we assume
that the input polynomials have unitary Euclidean norm.

The coefficients of the cofactors p(x) and q(x) can be ob-
tained by applying Lemma 2.2. A tentative gcd can then
be computed as g(x) = u(x)/p(x) or g(x) = v(x)/q(x). Ex-
act or nearly exact polynomial division (i.e., with a remain-
der of small norm) can be performed in a fast and stable
way via evaluation/interpolation techniques [3], which ex-
ploit the properties of the discrete Fourier transform.

Alternatively, Theorem 2.3 can be employed to determine
the coefficients of a gcd; the cofactors, if required, are com-
puted as p(x) = u(x)/g(x) and q(x) = v(x)/g(x).

The matrix in Lemma 2.2 is formed by two Toeplitz blocks
and has displacement rank 2 with respect to the straightfor-
ward generalization of the operator ∇T defined in (5) to the
case of rectangular matrices. We seek to employ the mod-
ified GKO algorithm to solve the system that arises when
applying Lemma 2.2, or the linear system that yields the
coefficients of a gcd as suggested by Theorem 2.3.

In order to ensure that the matrices F and A defining
the displacement operator ∇C associated with the reduced
matrix have well-separated spectra, a modified version of
Theorem 2.5 is needed. Observe that a Toeplitz-like matrix
T also has low displacement rank with respect to the oper-
ator ∇Z1,Zθ (T) = Z1T − TZθ, for any θ ∈ C, |θ| = 1. Then
we have:

Theorem 3.1. Let T ∈ Cn×m be a Toeplitz-like matrix,
satisfying ∇Z1,Zθ (T) = Z1T − TZθ = GB, where G ∈
Cn×α, B ∈ Cα×m and Z1, Zθ are as in (4). Let N =
lcm (n, m). Then C = FnTDθFm is a Cauchy-like matrix,

i.e. ∇D1,Dθ (C) = D1C−CDθ = ĜB̂, where Fn and Fm are
the normalized Discrete Fourier Transform matrices of order

n and m respectively, Dθ = θD1, D = diag(1, e
πı̂

Nm , e
2πı̂
Nm , . . .),

D1 = diag(1, e
2πı̂
n , . . . , e

2πı̂
n

(n−1)) and Ĝ = FnG, B̂H =
FmDBH .

The optimal choice for θ is then θ = e
πı̂
N .

The gcd and cofactors obtained from Lemma 2.2 or Theo-
rem 2.3 can be subsequently refined as described in the next
section. After the refining step, it is easy to check whether
an ε-divisor has actually been computed.

We are left with the problem of choosing a tentative gcd
degree kε. A possibility is to employ a bisection technique,
which requires to test the existence of an approximate divi-
sor log2 n times and therefore preserves the overall quadratic
cost of the method.

Alternatively, we propose a heuristic method: the choice
of a tentative value for kε is mainly a matter of approximate
rank determination, and it can be performed by relying on
the fast LU factorization of S(u, v) or B(u, v). Indeed, ob-
serve that the incomplete fast LU factorization computes a
Cauchy-like perturbation matrix ∆C such that C−∆C has
rank n−k. If a is the last pivot computed in the incomplete
factorization, then as a consequence of Lemma 2.2 in [9],
|a| ≤ ‖∆C‖2.

Now, let uε(x) and vε(x) be polynomials of minimum
norm and same degrees as u(x) and v(x), such that u + uε

and v + vε have an exact gcd of degree k. Assume ‖uε‖2 ≤ ε
and ‖vε‖2 ≤ ε. Let Cε be the Cauchy-like matrix obtained
via Theorem 2.5 from the Sylvester matrix Sε = S(uε, vε).
Then C + Cε has rank n− k, too.

If we assume that ‖∆C‖2 is very close to the minimum
norm of a Cauchy-like perturbation that decreases the rank
of C to n− k, then we have

|a| ≤ ‖∆C‖2 ≤ ‖Cε‖2 = ‖Sε‖2 ≤ ε
√

n + m, (8)

where the last inequality follows from the structure of the
Sylvester matrix. Therefore, if |a| > ε/

√
n + m, then u(x)

and v(x) cannot have an ε-divisor of degree k. This gives
an upper bound on the ε-gcd degree based on the absolute
values of the pivots found while applying the fast Gaus-
sian elimination to C. The same idea can be applied to the
Bézout matrix.

This is clearly a heuristic criterion since it assumes that
some uncheckable condition on ||∆C||2 is satisfied. However,

this criterion seems to work quite well in practice and exper-
imental evidence shows that it is more efficient in practice
than the bisection strategy, though in principle it does not
guarantee that the quadratic cost of the overall algorithm is
preserved. When this criterion is applied, the gcd algorithm
should check whether it actually provides an upper bound
on the gcd degree.

3.2 Refinement
Since the computed value of kε is the result of a tentative

guess, it might happen in principle that the output provided
by the algorithm of Section 3.1 is not an ε-divisor, is an ε-
divisor of lower degree, or is a poor approximation of the
sought divisor. In order to get rid of this uncertainty, it is
suitable to refine this output by means of an ad hoc iterative
technique followed by a test on the correctness of the ε-
degree. For this purpose we apply Newton’s iteration to the
least squares problem

F (z) =

[
Cpg − u
Cqg − v

]
, z =

 g
p
q

 , (9)

where the Euclidean norm of the function F (z) is to be
minimized. Here, in boldface we denote the coefficient vec-
tors of the associated polynomials. The matrices Cp and Cq

are convolution matrices of suitable size associated with the
polynomials p(x) and q(x) respectively.

The Jacobian matrix J associated with the problem (9)
has the form

J =

(
Cp Cg 0
Cq 0 Cg

)
, (10)

where each block is a convolution matrix associated with a
polynomial; Cp is of size (n+1)×(k+1), Cq is (m+1)×(k+1),
Cg in the first block row is (n+1)× (n−k+1) and Cg in the
second block row is (m + 1) × (m − k + 1). This Jacobian
matrix, however, is always rank deficient in the exact case,
because of the lack of a normalization for the gcd.

Remark 3.2. Under the hypotheses stated above, the Ja-
cobian matrix (10) computed at any point z = [gT pT qT]T

is singular. Moreover, the nullity of J is 1 if and only if p(x),
q(x) and g(x) have no common factors. In particular, if z
is a solution of F (z) = 0 and g(x) has maximum degree, i.e.
it is a gcd, then J has nullity one and any vector in the null
space of J is a multiple of w = [gT pT qT]T , where p(x)
and q(x) are cofactors.

In order to achieve better stability and convergence prop-
erties, we force the Jacobian to have full rank by adding a
row, given by wT . Nevertheless, it can be proved, by rely-
ing on the results of [18], that the quadratic convergence of
Newton’s method in the case of zero residual also holds, in
this case, with a rank deficient Jacobian. This property is
useful when the initial guess for kε is too small, since in this
case the rank deficiency of the Jacobian is unavoidable.

The new Jacobian J̃ =
[(

J
wT

)]
is associated with the least

squares problem of minimizing ˜F (z) =
[(F (z)

‖g‖2−‖p‖2−‖q‖2−K

)]
,

where K is a constant. The choice of wT as an additional
row helps to ensure that the solution of each Newton’s step

zj+1 = zj − J̃(zj)
†F̃ (zj) (11)

is nearly orthogonal to ker J . Here J̃(zj)
† is the Moore-

Penrose pseudoinverse of the matrix J̃(zj). For ease of no-
tation, the new Jacobian will be denoted simply as J in the
following.

The matrix J has a Toeplitz-like structure, with displace-
ment rank 5. We propose to exploit this property by approx-
imating the solution of each linear least squares problem (11)
via fast LU factorization still preserving the quadratic con-
vergence of the modified Newton’s iteration obtained in this
way. We proceed as follows:

– Compute the factorization J = LU , where J ∈ CN×M ,
L ∈ CN×N and U ∈ CN×M . For the sake of simplicity, we
are overlooking here the presence of permutation matrices
due to the pivoting procedure; we can assume that either J
or the vectors ηj and xj = F̃ (zj) have already undergone
appropriate permutations.
Consider the following block subdivision of the matrices L
e U , where the left upper block has size M ×M :

L =

[
L1 0
L2 I

]
, U =

[
U1

0

]
.

Analogously, let xj =

[
x

(1)
j

x
(2)
j

]
and observe that L−1 =[

L−1
1 0

−L2L
−1
1 I

]
.

– Let yj = L−1
1 x

(1)
j . If U1 is nonsingular, then compute wj

as solution of U1wj = yj . Else, consider the block subdivi-
sion

U1 =

[
U11 U12

0 0

]
, wj =

[
w

(1)
j

w
(2)
j

]
, yj =

[
y

(1)
j

y
(2)
j

]
,

such that U11 is nonsingular; set all the entries of w
(2)
j equal

to zero, and compute w
(1)
j as solution of U11w

(1)
j = y

(1)
j .

– If J is rank deficient, find a basis for K = ker J .

– Subtract from wj its projection on K, thus obtaining a
vector χj . This is the vector that will be used as approxi-
mation of a solution of the linear least squares system in the
iterative refinement process.

Let R be the subspace of CN spanned by the columns of
J . We have

CN = R⊕R⊥. (12)

Let xj = αj + βj be the decomposition of xj with respect
to (12), i.e., we have αj ∈ R and βj ∈ R⊥.

The Moore-Penrose pseudoinverse of J acts on xj as fol-
lows: J†αj is the preimage of αj with respect to J and it is
orthogonal to K = ker J , whereas J†βj is equal to zero.

The LU-based procedure, on the other hand, acts exactly
like J† on αj , whereas the component βj is not necessarily
sent to 0. Therefore, χj is the sum of ηj and of the preimage
of βj with respect to the LU decomposition.

In a general linear least squares problem, there is no rea-
son for ‖βj‖2 to be significantly smaller than ‖xj‖2. In our
case, though, the Taylor expansion of F (z) yields:

0 = F (z∗) = F (zj)− J(zj)εj +O(‖εj‖22), (13)

where εj = zj − z∗ and z∗ is such that F (z∗) = 0. It follows
from (13) that xj = J(zj)εj +O(‖εj‖22). Since J(zj)εj ∈ R,
we conclude that ‖βj‖2 = O(‖εj‖22). Therefore, Newton’s

method applied to the iterative refinement of the polynomial
gcd preserves its quadratic convergence rate, even though
the linear least squares problems (11) are solved via the LU
factorization of the Jacobian.

3.3 The overall algorithm
Algorithm Fastgcd

Input: the coefficients of polynomials u(x) and v(x) and
a tolerance ε.

Output: an ε-gcd g(x); a backward error (residual of the
gcd system); possibly perturbed polynomials û(x) and v̂(x)
and cofactors p(x) and q(x).

Computation:

– Compute the Sylvester matrix S = S(u, v);

– Use Lemma 2.5 to turn S into a Cauchy-like matrix C;

– Perform fast Gaussian elimination with almost complete
pivoting on C; stop when a pivot a such that |a| < ε/

√
n + m

is found; let k0 be the order of the not-yet-factored subma-
trix Ũ that has a as upper left entry;

– Choose k = k0 as tentative gcd degree;

– Is there an ε-divisor of degree k? The answer is found as
follows:

- find tentative cofactors by applying the modified GKO
algorithm to the system given by Lemma 2.2,

- compute a tentative gcd by performing polynomial di-
vision via evaluation/interpolation,

- perform iterative refinement and check whether the
backward error is smaller than ε;

– If yes, check for k+1; if there is also an ε-divisor of degree
k +1, keep checking for increasing values of the degree until
a maximum is reached (i.e. a degree is found for which there
is no ε-divisor);

– If not, keep checking for decreasing values of the degree,
until an ε-divisor (and gcd) is found.

Observe that a slightly different version of the above al-
gorithm is still valid by replacing the Sylvester matrix with
the Bézout matrix. The size of the problem is then roughly
reduced by a factor of 2 with clear computational advantage.

It should also be pointed out that the algorithm generally
outputs an approximate gcd with complex coefficients, even
if u(x) and v(x) are real polynomials. This usually allows
for a higher gcd degree or a smaller backward error.

4. QR AND TRIDIAGONALIZATION
The QR factorization and tridiagonalization techniques,

borrowed from numerical linear algebra, provide other effec-
tive tools for computing an ε-gcd.

4.1 QR factorization with pivoting
The algorithm for approximate gcd proposed in [5] ex-

ploits the fact that, if the QR factorization of S(u, v) is
performed, then the last nonzero row of the triangular fac-
tor gives a gcd of u(x) and v(x). We point out here that a
similar property holds for the Bézout matrix.

The straightforward application of this result to the ap-
proximate case (that is, to the problem of finding an approx-
imate gcd rather than an exact one) involves computing the

QR factorization of the Sylvester or Bézout matrix and tak-
ing as coefficients of an ε-gcd the entries of the last row of
magnitude larger than a fixed tolerance. This method might
not lead to a correct approximate gcd because the QR fac-
torization process may suffer from instability.

We propose to overcome this difficulty by using the QR
factorization with column pivoting and compute S(u, v) =
QRΠ or B(u, v) = QRΠ, where Π is a permutation matrix
and the triangular factor R has diagonal entries of decreasing
absolute value. Denote by N the order of the factorized
matrix. An upper bound on the ε-gcd degree is given by the
maximum value of the integer k such that

‖R(1:N−k,1:n−k)‖ ≤ ε
√

N(1 +
‖R(1:N−k,N−k+1:N)‖

R(N−k+1,N−k+1)

),

where a Matlab-like notation has been used.
The coefficients of an ε-gcd are no longer readily available

from R because pivoting has been applied. However, as
explained in Section 3.1, cofactors can be computed through
Lemma 2.2 and an ε-gcd is obtained through polynomial
division; or we can apply Theorem 2.3 to compute an ε-gcd
from a Bézout submatrix. A subsequent refinement stage
certifies the ε-gcd.

4.2 Tridiagonalization of the B«ezout matrix
If the input polynomials have real coefficients (and there-

fore the associated Bézout matrix is real symmetric), then
a gcd may be found through Householder tridiagonalization
of the Bézout matrix. Assume that u(x) and v(x) are not
coprime; then we have:

Theorem 4.1. Let T = HB(u, v)HT be the Householder
tridiagonalization of B(u, v), where u(x) and v(x) are real
polynomials with u0v0 6= 0. Then for almost any choice
of u(x) and v(x), the tridiagonal matrix T can be split as
the direct sum of a singular irreducible (n − k) × (n − k)
tridiagonal matrix and a null k × k matrix, where k + 1 is
the degree of gcd (u, v).

Besides being useful for rank determination, tridiagonal-
izing B(u, v) allows to calculate the coefficients of gcd(u, v).
Indeed, observe that in the hypotheses of Theorem 4.1 the
last k rows and columns of T are zero. Apply Remark 2.4.
Since G, B(û, v̂) and H have maximum rank, it follows that
the last l rows of HG must be zero. Let h = [h1 . . . hn] be
a row vector such that hG = [0 . . . 0]. Such a condition can
be expressed through the following Hankel linear system: h1g0 + h2g1 + . . . + hk+1gk = 0

. . .
hn−kg0 + hn−k+1g1 + . . . + hngk = 0

If we assume the gcd to be monic, i.e., gk = 1, the above
linear system becomes Aĝ = b, where ĝ = [g0 . . . gk−1]

T ,
b = −[hk+1 . . . hn]T and A = (hi+j−1)i=1,n−k,j=1,k+1

Each of the last l rows of H, which we will call hi, with
i = n− l + 1, . . . , n, gives a linear system Aiĝ = bi built like
(4.2). Besides, an additional vector in the null space of T is
easily computed if necessary, and it yields a system of the
type (4.2) as well. So we obtain a system Kĝ = p, where

K =

An−l+1

An−l+2

...
An

 and p =

bn−l+1

bn−l+2

...
bn

 ,

which is basically derived from a well-conditioned (in fact,
orthogonal) set of generators for the null space of B(u, v).
Solving Kĝ = p yields the coefficients of g(x). This proce-
dure can be adapted to the approximate case and used, with
the addition of iterative refinement, to compute an ε-gcd.

5. NUMERICAL EXPERIMENTS
The algorithm Fastgcd has been implemented in Matlab

and tested on many polynomials, with satisfactory results.
Some of these results are shown in this section and com-
pared to the performance of other implemented methods
that are found in the literature, namely UVGCD by Zeng
[22], STLN by Kaltofen et al. [13] and QRGCD by Corless
et al. [5]. It must be pointed out that comparison with
the STLN method is not straightforward, since this meth-
ods follows an optimization approach, i.e., it takes two (or
more) polynomials and the desired gcd degree k as input,
and seeks a perturbation of minimum norm such that the
perturbed polynomials have an exact gcd of degree k. More-
over, the algorithms UVGCD and STLN do not normalize
the input polynomials, whereas QRGCD and Fastgcd do;
therefore all test polynomials are normalized (with unitary
Euclidean norm) beforehand.

In the following tests, the residual (denoted as “res”) as-
sociated with the gcd system is usually shown. In some
examples a nearly exact gcd is sought; in these cases it can
also be interesting to show the coefficient-wise error on the
computed gcd (denoted as “cwe”), since the “correct” gcd
is known.

5.1 Badly conditioned polynomials
The test polynomials in this section are taken from [22].

The polynomials in the first example are specifically chosen
so that the gcd problem is badly conditioned.

Example 5.1. Let n be an even positive integer and k =
n/2. Define polynomials pn = unvn and qn = unwn, where

un =
∏k

j=1[(x − r1αj)
2 + r2

1β2
j], vn =

∏k
j=1[(x − r2αj)

2 +

r2
2β2

j], wn =
∏n

j=k+1[(x− r1αj)
2 + r2

1β2
j], αj = cos jπ

n
, βj =

sin jπ
n

, for r1 = 0.5 and r2 = 1.5. The roots of pn and qn lie
on the circles of radius r1 and r2.

The following table shows the errors given by the examined
gcd methods as n increases.

n Fastgcd UVGCD QRGCD
10 6.50× 10−14 3.91× 10−13 1.57× 10−12

12 9.53× 10−12 3.87× 10−12 3.28× 10−4

14 1.32× 10−11 2.08× 10−11 (*)
16 3.22× 10−10 4.28× 10−10 (*)
18 4.77× 10−9 6.98× 10−9 (*)

(*) Here QRGCD fails to find a gcd of correct degree.

In this case, there are no substantial differences between
the (good) results provided by Fastgcd and by UVGCD,
while QRGCD outputs failure for very ill-conditioned cases.

In the following test, the gcd degree is very sensitive to
the choice of the tolerance ε.

Example 5.2. Let

p(x) =

10∏
1

(x− xj), q(x) =

10∏
1

(x− xj + 10−j),

with xj = (−1)j(j/2). The roots of p and q have decreasing
distances 0.1, 0.01, 0.001, etc.

The table shows, for several values of the tolerance, the
corresponding gcd degree and residual found by Fastgcd and
UVGCD. Fastgcd gives better results, since it generally finds
gcds of higher degree. The algorithm QRGCD, on the con-
trary, outputs failure for all values of ε smaller than 10−2.

ε Fastgcd UVGCD
deg res deg res

10−2 9 0.0045 9 0.0040
10−3 8 2.63× 10−4 8 1.73× 10−4

10−5 7 9.73× 10−6 4 1.77× 10−5

10−7 5 8.59× 10−9 2 2.25× 10−14

10−9 1 3.98× 10−11

We have also studied this example using the STLN method;
though the employed approach is entirely different. The
following table shows the residuals computed by STLN for
several values of the degree.

deg gcd res deg gcd res
9 5.65× 10−3 6 2.58× 10−7

8 2.44× 10−4 5 6.34× 10−9

7 1.00× 10−5 4 1.20× 10−10

5.2 High gcd degree
This example, also taken from [22], uses polynomials such

that their gcd has a large degree.

Example 5.3. Let pn = unv and qn = unw, where v(x) =∑3
j=0 xj and w(x) =

∑4
j=0(−x)j are fixed polynomials and

un is a polynomial of degree n whose coefficients are random
integer numbers in the range [−5, 5].

The following table shows the coefficient-wise errors on the
computed gcd for large values of n. Fastgcd and UVGCD
perform similarly, with errors of the same order of magni-
tude, while QRGCD provides a worse coefficient-wise error.

n Fastgcd UVGCD QRGCD
50 9.82× 10−15 8.88× 10−16 1.72× 10−12

100 1.04× 10−15 6.66× 10−16 4.80× 10−8

200 1.30× 10−15 9.71× 10−16 2.39× 10−11

500 2.87× 10−15 1.22× 10−15

5.3 Unbalanced coefficients
This is another example taken from [22].

Example 5.4. Let p = uv and q = uw, where v(x) and
w(x) are as in Example 5.3 and u(x) =

∑15
j=0 cj10ej xj,

where cj and ej are random integers in [−5, 5] and [0, 6]
respectively.

In this example u(x) is the gcd of p(x) and q(x) and the
magnitude of its coefficients varies between 0 and 5×106. If
an approximate gcd algorithm is applied and the coefficient-
wise relative error θ is calculated, then N = log10 θ is roughly
the minimum number of correct digits for the coefficients of
u(x) given by the chosen method. 100 repetitions of this
test are performed. The average number of correct digits is
10.70 for Fastgcd and 10.98 for UVGCD.

5.4 Multiple roots

Example 5.5. Let u(x) = (x3 + 3x − 1)(x − 1)k for a
positive integer k, and let v(x) = u′(x). The gcd of u(x)
and v(x) is g(x) = (x− 1)k−1.

The residuals computed for several values of k and for ε =
10−6 are shown here. The computed gcd degrees are under-
stood to be correct.

Figure 1: Running time of the algorithm Fastgcd

k Fastgcd UVGCD QRGCD

15 1.40× 10−13 3.84× 10−13 7.04× 10−7

25 1.14× 10−10 3.61× 10−12 (*)
35 1.36× 10−8 1.03× 10−9 (*)
45 1.85× 10−5 1.72× 10−9 (*)

(*) Here QRGCD does not detect a gcd of correct degree.

5.5 Small leading coefficient
A gcd with a small leading coefficient may represent in

many cases a source of instability.

Example 5.6. For a given (small) parameter α ∈ R, let
g(x) = αx3 +2x2−x+5, p(x) = x4 +7x2−x+1 and q(x) =
x3 − x2 + 4x− 2 and set u(x) = g(x)p(x), v(x) = g(x)q(x).

We applied Fastgcd and QRGCD to this example, with α
ranging between 10−5 and 10−10. It turns out that, for
α < 10−5, QRGCD fails to recognize the correct gcd degree
and outputs a gcd of degree 2. Fastgcd, on the contrary,
always outputs a correct gcd, with a residual of 2.40×10−16.

5.6 Running time
We have checked the growth rate of the running time of

the algorithm Fastgcd on pairs of polynomials whose GCD
and cofactors are defined as the polynomials un(x) intro-
duced in Section 5.2. Polynomials of degree N = 2n ranging
between 100 and 1300 have been used. Figure 1 shows the
running time (in seconds) versus the degree in log-log scale,
with a linear fit and its equation. Roughly speaking, the
running time grows as O(Nα), where α is the coefficient of
the linear term in the equation, i.e. 1.8 in our case. This
computation has been done using Matlab 7.1.

We next show a comparison between the running times
of Fastgcd and UVGCD. In order to avoid randomly chosen
coefficients, we define a family of test polynomials as follows.
Let k be a positive integer and let n1 = 25k, n2 = 15k and
n3 = 10k. For each value of k define the cofactors pk(x) =
(xn1 − 1)(xn2 − 2)(xn3 − 3) and qk(x) = (xn1 + 1)(xn2 +
5)(xn3 +ı̂). The test polynomials are uk(x) = g(x)pk(x) and
vk(x) = g(x)qk(x), where the gcd g(x) = x4 + 10x3 + x− 1
is a fixed polynomial.

Figure 2 shows the computing times required by Fastgcd
and UVGCD on uk(x) and vk(x) for k = 1, . . . 7. This exper-
iment has been done using Matlab 6.1, in order to be able
to run the program UVGCD. In this Matlab version, our

Figure 2: Comparison between the running times of

Fastgcd and UVGCD.

implementation of Fastgcd that uses the built-in command
qr to compute the reduced QR factorization of displace-
ment generators is computationally expensive, therefore we
show the results given by an implementation that uses mod-
ified Gram-Schmidt orthogonalization instead. The figure
also shows computing times for the QR-based implementa-
tion that are extrapolated from a comparison between the
two implementations of Fastgcd run in Matlab 7.1. The
plot clearly shows that the time growth for Fastgcd is much
slower than for UVGCD. For N = 350 our method is faster
than UVGCD by a factor of about 15.

The Matlab software for Fastgcd is available upon request.

Acknowledgements
The authors wish to thank anonymous referees for their valu-
able remarks which allowed to substantially improve the pre-
sentation of this paper.

6. REFERENCES
[1] B. Beckermann and G. Labahn. A fast and

numerically stable Euclidean-like algorithm for
detecting relatively prime numerical polynomials. J.
Symbolic Comput., 26(6):691–714, 1998.

[2] B. Beckermann and G. Labahn. When are two
numerical polynomials relatively prime? J. Symbolic
Comput., 26(6):677–689, 1998.

[3] D. A. Bini and V. Y. Pan. Polynomial and Matrix
Computations, vol. I: Fundamental Algorithms.
Birkhäuser, Boston, 1994.

[4] R. M. Corless, P. M. Gianni, B. M. Trager, and S. M.
Watt. The singular value decomposition for
approximate polynomial systems. In Proc.
International Symposium on Symbolic and Algebraic
Computation, pages 195–207, 1995.

[5] R. M. Corless, S. M. Watt, and L. Zhi. QR factoring
to compute the GCD of univariate approximate
polynomials. IEEE Trans. Signal Processing,
52(12):3394–3402, 2004.

[6] G. M. Diaz-Toca and L. Gonzalez-Vega. Computing
greatest common divisors and squarefree
decompositions through matrix methods: The
parametric and approximate cases. Linear Algebra
Appl., 412(2-3):222–246, 2006.

[7] I. Z. Emiris, A. Galligo, and H. Lombardi. Certified
approximate univariate GCDs. J. Pure Appl. Algebra,
117/118:229–251, 1997.

[8] I. Gohberg, T. Kailath, and V. Olshevsky. Fast
Gaussian elimination with partial pivoting for
matrices with displacement structure. Math. Comp.,
64(212):1557–1576, 1995.

[9] M. Gu. Stable and efficient algorithms for structured
systems of linear equations. SIAM J. Matrix Anal.
Appl., 19(2):279–306, 1998.

[10] G. Heinig. Inversion of generalized Cauchy matrices
and other classes of structured matrices. In IMA
volumes in Mathematics and its Applications.
Springer, New York, 1995.

[11] V. Hribernig and H. J. Stetter. Detection and
validation of clusters of polynomial zeros. J. Symb.
Comp., 24(6):667–681, 1997.

[12] C.-P. Jeannerod and G. Labahn. SNAP user’s guide.
Technical Report CS-2002-22, University of Waterloo,
2002.

[13] E. Kaltofen, Z. Yang, and L. Zhi. Approximate
greatest common divisors of several polynomials with
linearly constrained coefficients and singular
polynomials. In Proc. International Symposium on
Symbolic and Algebraic Computations, 2006.

[14] N. K. Karmarkar and Y. N. Lakshman. On
approximate GCDs of univariate polynomials. J.
Symbolic Comp., 26(6):653–666, 1998.

[15] B. Li, Z. Yang, and L. Zhi. Fast low rank
approximation of a Sylvester matrix by structure total
least norm. Journal of Japan Society for Symbolic and
Algebraic Computation, 11:165–174, 2005.

[16] M.-T. Noda and T. Sasaki. Approximate GCD and its
application to ill-conditioned algebraic equations. J.
Comput. Appl. Math., 38(1-3):335–351, 1991.

[17] V. Y. Pan. Computation of approximate polynomial
gcds and an extension. Information and Computation,
167(2):71–85, 2001.

[18] L. B. Rall. Convergence of the Newton process to
multiple solutions. Num. Math, 9:23–27, 1966.

[19] A. Schönhage. Quasi-GCD computations. J.
Complexity, 1:118–137, 1985.

[20] M. Stewart. Stable pivoting for the fast factorization
of Cauchy-like matrices. preprint, 1997.

[21] D. R. Sweet and R. P. Brent. Error analysis of a fast
partial pivoting method for structured matrices. In
T. Luk, editor, Adv. Signal Proc. Algorithms, Proc. of
SPIE, pages 266–280, 1995.

[22] Z. Zeng. The approximate GCD of inexact
polynomials. Part I: a univariate algorithm. To
appear.

[23] L. Zhi. Displacement structure in computing the
approximate GCD of univariate polynomials. In
W. Sit and Z. Li, editors, Lecture Notes Series on
Computing, pages 228–298. World Scientific, 2003.

