
A fast algorithm for approximate polynomial
gcd based on structured matrix computations

Dario A. Bini and Paola Boito

In Memory of Georg Heinig

Abstract. An O(n2) complexity algorithm for computing an ε-greatest com-
mon divisor (gcd) of two polynomials of degree at most n is presented. The
algorithm is based on the formulation of polynomial gcd given in terms of re-
sultant (Bézout, Sylvester) matrices, on their displacement structure and on
the reduction of displacement structured matrices to Cauchy-like form orig-
inally pointed out by Georg Heinig. A Matlab implementation is provided.
Numerical experiments performed with a wide variety of test problems, show
the effectiveness of this algorithm in terms of speed, stability and robustness,
together with its better reliability with respect to the available software.

Mathematics Subject Classification (2000). 68W30, 65F05, 15A23.

Keywords. Cauchy matrices, polynomial gcd, displacement structure, Sylvester
matrix, Bézout matrix.

1. Introduction

A basic problem in algebraic computing is the evaluation of polynomial gcd: given
the coefficients of two univariate polynomials

u(x) =
n∑

i=0

uix
i, v(x) =

m∑

i=0

vix
i,

compute the coefficients of their greatest common divisor g(x).
In many applications, input data are represented as floating point numbers

or derive from the results of physical experiments or previous computations, so
that they are generally affected by errors. If u(x) and v(x) have a nontrivial gcd,
it turns out that arbitrarily small perturbations in the coefficients of u(x) and v(x)

Supported by MIUR grant 2006017542.

2 D.A. Bini and P. Boito

may transform u(x) and v(x) into relatively prime polynomials. Therefore, it is
clear that the concept of gcd is not well suited to deal with applications where
data are approximatively known. This is why the notion of approximate gcd, or
ε-gcd, has been introduced. For more details on this topic we refer the reader to
[19] [7],[18], [23] and to the references therein.

We use the following definition where ‖ · ‖ denotes the Euclidean norm.

Definition 1.1. A polynomial g(x) is said to be an ε-divisor of u(x) and v(x) if
there exist polynomials û(x) and v̂(x) of degree n and m, respectively, such that
‖u(x)− û(x)‖ ≤ ε‖u(x)‖, ‖v(x)− v̂(x)‖ ≤ ε‖v(x)‖ and g(x) divides û(x) and v̂(x).
If g(x) is an ε-divisor of maximum degree of u(x) and v(x), then it is called ε-gcd
of u(x) and v(x). The polynomials p(x) = û(x)/g(x) and q(x) = v̂(x)/g(x) are
called ε-cofactors.

Several algorithms for the computation of an approximate polynomial gcd can
be found in the literature; they rely on different techniques, such as the Euclidean
algorithm [1], [2], [12], [17], optimization methods [15], SVD and factorization of
resultant matrices [5], [4], [23], Padé approximation [3], [18], root grouping [18].
Some of them have been implemented inside numerical/symbolic packages like the
algorithm of Zeng [23] in MatlabTM and the algorithms of Kaltofen [14], of Corless
et al [4], of Labahn and Beckermann [13] in MapleTM. These algorithms have a
computational cost of O(n3) which makes them expensive for moderately large
values of n.

Algorithms based on the Euclidean scheme have a typical cost of O(n2) but
they are prone to numerical instabilities; look-ahead strategies can improve the
numerical stability with an increase of the complexity to O(n3). More recently,
O(n2) algorithms have been proposed in [24] and [16]. They are based on the QR
factorization of a displacement structured matrix obtained by means of the normal
equations. The use of the normal equations generally squares the condition number
of the original problem with a consequent deterioration of the stability.

In this paper we present an algorithm for (approximate) gcd computation
which has a cost of O(n2) arithmetic operations and, from the several numerical
experiments performed so far, results robust and numerically stable. The algo-
rithm relies on the formulation of the gcd problem given in terms of the Bézout
matrix B(u, v) or of the Sylvester matrix S(u, v) associated with the pair of poly-
nomials (u, v), and on their reduction to Cauchy-like matrices by means of unitary
transforms. This kind of reduction, which is fundamental for our algorithm, was
discovered and analyzed by Georg Heinig in [10] in the case of general Toeplitz-like
matrices.

For exact gcd, where ε = 0, the degree kε of the ε-gcd coincides with the
nullity (i.e., the dimension of the kernel) of B(u, v) and of S(u, v), or equivalently,
with the nullity of the Cauchy matrices obtained through the reduction.

Our algorithm can be divided into two stages. In the first stage, from the
coefficients of the input polynomials a resultant matrix (Sylvester or Bézout) is
computed and reduced to Cauchy-like form. The GKO algorithm of Gohberg,

A fast algorithm for approximate polynomial gcd 3

Kailath and Olshevsky [8] for the PLU factorization is applied to the Cauchy-like
matrix obtained in this way. The algorithm relies on the pivoting strategy and on
a suitable technique used to control the growth of the generators. This algorithm
is rank-revealing since in exact arithmetic it provides a matrix U with the last
k rows equal to zero, where k is the nullity of the matrix. In our case, where
the computation is performed in floating point arithmetic with precision µ and
where ε > µ, the algorithm is halted if the last computed pivot a is such that
|a| ≤ ε

√
m + n. This provides an estimate of the value kε and a candidate gε(x)

to an ε-divisor of u(x) and v(x).
In the second stage, the tentative ε-divisor gε(x) is refined by means of New-

ton’s iteration and a test is applied to check that gε(x) is an ε-common divisor. In
this part, the value of kε can be adaptively modified in the case where gε(x) has
not the maximum degree, or if gε(x) is not an ε-divisor of u(x) and v(x).

It is important to point out that the Jacobian system, which has to be solved
at each Newton’s iteration step, is still a Toeplitz-like linear system which can be
reduced once again to Cauchy-like form and solved by means of the pivoted GKO
algorithm.

The algorithm has been implemented in Matlab, tested with a wide set of
polynomials and compared with the currently available software, in particular the
Matlab and Maple packages UVGCD by Zeng [23], STLN by Kaltofen et al. [14]
and QRGCD by Corless et al. [4]. We did not compare our algorithm to the ones
of [16], [24] since the software of the latter algorithms is not available.

We have considered the test polynomials of [23] and some new additional
tests which are representative of difficult situations. In all the problems tested
so far our algorithm has shown a high reliability and effectiveness, moreover, its
O(n2) complexity makes it much faster than the currently available algorithms
already for moderately large values of the degree. Our Matlab code is available
upon request.

The paper is organized as follows. In Section 2 we recall the main tools used
in the paper, among which, the properties of Sylvester and Bézout matrices, their
interplay with gcd, the reduction to Cauchy-like matrices and a modified version
of the GKO algorithm. In Section 3 we present the algorithms for estimating the
degree and the coefficients of the ε-gcd together with the refinement stage based
on Newton’s iteraton. Section 4 reports the results of the numerical experiments
together with the comparison of our Matlab implementation with the currently
available software.

2. Resultant matrices and ε-gcd

We recall the definitions of Bézout and Sylvester matrices and their interplay with
gcd.

4 D.A. Bini and P. Boito

2.1. Sylvester and Bézout matrices

The Sylvester matrix of u(x) and v(x) is the (m + n)× (m + n) matrix

S(u, v) =




un un−1 . . . u0 0
.

0 un un−1 . . . u0

vm vm−1 . . . v0 0
.

0 vm vm−1 . . . v0




. (1)

where the coefficients of u(x) appear in the first m rows.
Assume that n ≥ m and observe that the rational function

b(x, y) =
u(x)v(y)− u(y)v(x)

x− y

is actually a polynomial
∑n

i,j=1 xi−1yj−1bi,j in the variables x, y. The coefficient
matrix B(u, v) = (bi,j) is called the Bézout matrix of u(x) and v(x).

The following property is well known:

Lemma 2.1. The nullities of S(u, v) and of B(u, v) coincide with deg(g).

The next two results show how the gcd of u(x) and v(x) and the corresponding
cofactors are related to Sylvester and Bézout submatrices. Recall that, for an
integer ν ≥ 2 and a polynomial a(x) =

∑µ
j=0 ajx

j , the ν-th convolution matrix
associated with a(x) is the Toeplitz matrix having [a0, . . . , aµ, 0 . . . 0︸ ︷︷ ︸

ν−1

]T as its first

column and [a0, 0, . . . 0︸ ︷︷ ︸
ν−1

] as its first row.

Lemma 2.2. Let u(x) = g(x)p(x), v(x) = g(x)q(x), then the vector
[q0, . . . , qm−k, −p0, . . . ,−pn−k]T belongs to the null space of the matrix Sk =
[Cu Cv], where Cu is the (m − k + 1)-st convolution matrix associated with u(x)
and Cv is the (n− k + 1)-st convolution matrix associated with v(x).

Theorem 2.3. [6] Assume that B(u, v) has rank n − k and denote by c1, . . . , cn

its columns. Then ck+1, . . . , cn are linearly independent. Moreover writing each ci

(1 ≤ i ≤ k) as a linear combination of ck+1, . . . , cn

ck−i = hk+1
k−i ck+1 +

n∑

j=k+2

hj
k−icj , i = 0, . . . , k − 1,

one finds that D(x) = d0x
k +d1x

k−1 + · · ·+dk−1x+dk is a gcd for u(x) and v(x),
where d1, . . . , dk are given by dj = d0h

k+1
k−j+1, with d0 ∈ R or C.

Moreover, we have:

A fast algorithm for approximate polynomial gcd 5

Remark 2.4. Let g(x) =
∑k

i=0 gix
i be the gcd of u(x) and v(x), and let û(x) and

v̂(x) be such that u(x) = û(x)g(x), v(x) = v̂(x)g(x). Then we have B(u, v) =
GB(û, v̂)GT , where G is the (n− k)-th convolution matrix associated with g(x).

2.2. Cauchy-like matrices

An n× n matrix C is called Cauchy-like of rank r if it has the form

C =
[uivH

j

fi − āj

]n−1

i,j=0
, (2)

with ui and vj row vectors of length r ≤ n, and fi and aj complex scalars such
that fi − āj 6= 0 for all i, j. The matrix G whose rows are given by the ui’s and
the matrix B whose columns are given by the vi’s are called the generators of C.

Equivalently, C is Cauchy-like of rank r if the matrix

∇CC = FC − CAH , (3)

where F = diag(f0, . . . , fn−1) and A = diag(a0, . . . , an−1), has rank r. The opera-
tor ∇C defined in (3) is a displacement operator associated with the Cauchy-like
structure, and C is said to have displacement rank equal to r.

The algorithm that we now present is due to Gohberg, Kailath and Olshevsky
[8], and is therefore known as GKO algorithm; it computes the Gaussian elimina-
tion with partial pivoting (GEPP) of a Cauchy-like matrix and can be extended
to other classes of displacement structured matrices. The algorithm relies on the
following

Fact 2.5. Performing Gaussian elimination on an arbitrary matrix is equivalent to
applying recursive Schur complementation; Schur complementation preserves the
displacement structure; permutations of rows and columns preserve the Cauchy-like
structure.

It is therefore possible to directly apply Gaussian elimination with partial
pivoting to the generators rather than to the whole matrix C, resulting in increased
computational speed and less storage requirements.

So, a step of the fast GEPP algorithm for a Cauchy-like matrix C = C1 can
be summarized as follows (we assume that generators (G1, B1) of the matrix are
given):

(i) Use (2) to recover the first column
[

d1

l1

]
of C1 from the generators.

(ii) Determine the position (say, (k, 1)) of the entry of maximum magnitude in the
first column.

(iii) Let P1 be the permutation matrix that interchanges the first and k-th rows.
Interchange the first and k-th diagonal entries of F1; interchange the first and k-th
rows of G1.

(iv) Recover from the generators the first row
[

d̃1 u1

]
of P1C1. Now one has

6 D.A. Bini and P. Boito

the first column

[
1

1
d̃1

l̃1

]
of L and the first row

[
d̃1 u1

]
of U in the LU

factorization of P1C1.

(v) Compute generators (G2, B2) of the Schur complement C2 of P1 ·C1 as follows:
[

0
G2

]
= G1 −

[
1

1
d̃1

l̃1

]
g1,

[
0 B2

]
= B1 − b1

[
1 1

d̃1
u1

]
, (4)

where g1 is the first row of G1 and b1 is the first column of B1.

Proceeding recursively, one obtains the factorization C1 = P ·L ·U , where P
is the product of the permutation matrices used in the process.

Now, let

Zφ =




0 0 φ
1 0 0

0 1
. . .

...
...

.
...

0 . . . 0 1 0




(5)

and define the matrix operator

∇T T = Z1T − TZ−1. (6)

An n×n matrix T having low displacement rank with respect to the operator ∇T

(i.e., such that ∇T = GB, with G ∈ Cn×r and B ∈ Cr×n) is called Toeplitz-like.
Sylvester and Bézout matrices are Toeplitz-like, with displacement rank 2.

Toeplitz-like matrices can be transformed into Cauchy-like as follows [10].
Here and hereafter ı̂ denotes the imaginary unit such that ı̂2 = −1.

Theorem 2.6. Let T be an n× n Toeplitz-like matrix. Then C = FTD−1
0 FH is a

Cauchy-like matrix, i.e.,

∇D1,D−1(C) = D1C − CD−1 = ĜB̂, (7)

where

F =
1√
n

[e
2πı̂
n (k−1)(j−1)]k,j

is the normalized n× n Discrete Fourier Transform matrix

D1 = diag(1, e
2πı̂
n , . . . , e

2πı̂
n (n−1)), D−1 = diag(e

πı̂
n , e

3πı̂
n , . . . , e

(2n−1)πı̂
n),

D0 = diag(1, e
πı̂
n , . . . , e

(n−1)πı̂
n),

and
Ĝ = FG, B̂H = FD0B

H . (8)

A fast algorithm for approximate polynomial gcd 7

Therefore the GKO algorithm can be also applied to Toeplitz-like matrices,
provided that reduction to Cauchy-like form is applied beforehand.

In particular, the generators (G,B) of the matrix S(u, v) with respect to the
Toeplitz-like structure can be chosen as follows. Let N = n + m; then G is the
N × 2 matrix having all zero entries except the entries (1, 1) and (m + 1, 2) which
are equal to 1; the matrix B is 2×N , its first and second rows are

[−un−1, . . . ,−u1, vm − u0, vm−1, . . . , v1, v0 + un],

[−vm−1, . . . ,−v1, un − v0, un−1, . . . , u1, u0 + vm],

respectively. Generators for B(u, v) can be similarly recovered from the repre-
sentation of the Bézout matrix as sum of products of Toeplitz/Hankel triangular
matrices. Generators for the associated Cauchy-like matrix are computed from
(G,B) by using (8).

2.3. Modified GKO algorithm

Gaussian elimination with partial pivoting (GEPP) is usually regarded as a fairly
reliable method for solving linear systems. Its fast version, though, raises more
stability issues.

Sweet and Brent [22] have done an error analysis of the GKO algorithm
applied to a Cauchy-like matrix C. They point out that the error propagation de-
pends not only on the magnitude of the triangular factors in the LU factorization
of C (as is expected for ordinary Gaussian elimination), but also on the magnitude
of the generators. In some cases, the generators can suffer large internal growth,
even if the triangular factors do not grow too large, and therefore cause a corre-
sponding growth in the backward and forward error. Experimental evidence shows
that this is the case for Cauchy-like matrices derived from Sylvester and Bézout
matrices.

However, it is possible to modify the GKO algorithm so as to prevent gen-
erator growth, as suggested for example in [21] and [9]. In particular, the latter
paper proposes to orthogonalize the first generator before each elimination step;
this guarantees that the first generator is well conditioned and allows a good choice
of a pivot. In order to orthogonalize G, we need to:

– QR-factorize G, obtaining G = GR, where G is an n × r column orthogonal
matrix and R is upper triangular;

– define new generators G̃ = G and B̃ = RB.

This method performs partial pivoting on the column of C corresponding to
the column of B with maximum norm. This technique is not equivalent to complete
pivoting, but nevertheless allows a good choice of pivots and effectively reduces
element growth in the generators, as well as in the triangular factors.

8 D.A. Bini and P. Boito

3. Fast ε-gcd computation

3.1. Estimating degree and coefficients of the ε-gcd

We first examine the following problem: find a fast method to determine whether
two given polynomials u(x) and v(x) have an ε-divisor of given degree k. Through-
out we assume that the input polynomials have unitary Euclidean norm.

The coefficients of the cofactors p(x) and q(x) can be obtained by applying
Lemma 2.2. Once the cofactors are known, a tentative gcd can be computed as
g(x) = u(x)/p(x) or g(x) = v(x)/q(x). Exact or nearly exact polynomial division
(i.e., with a remainder of small norm) can be performed in a fast and stable way
via evaluation/interpolation techniques (see [3]), which exploit the properties of
the discrete Fourier transform.

Alternatively, Theorem 2.3 can be employed to determine the coefficients of
a gcd; the cofactors, if required, are computed as p(x) = u(x)/g(x) and q(x) =
v(x)/g(x).

The matrix in Lemma 2.2 is formed by two Toeplitz blocks and has displace-
ment rank 2 with respect to the straightforward generalization of the operator ∇T

defined in (6) to the case of rectangular matrices. We seek to employ the modified
GKO algorithm to solve the system that arises when applying Lemma 2.2, or the
linear system that yields the coefficients of a gcd as suggested by Theorem 2.3.

In order to ensure that the matrices F and A defining the displacement
operator ∇C associated with the reduced matrix have well-separated spectra, a
modified version of Theorem 2.6 is needed. Observe that a Toeplitz-like matrix T
also has low displacement rank with respect to the operator ∇Z1,Zθ

(T) = Z1T −
T · Zθ, for any θ ∈ C, |θ| = 1. Then we have:

Theorem 3.1. Let T ∈ Cn×m be a Toeplitz-like matrix, satisfying

∇Z1,Zθ
(T) = Z1T − TZθ = GB,

where G ∈ Cn×α, B ∈ Cα×m and Z1, Zθ are as in (5). Let N = lcm (n,m). Then
C = FnTDθFm is a Cauchy-like matrix, i.e.

∇D1,Dθ
(C) = D1C − CDθ = ĜB̂, (9)

where Fn and Fm are the normalized Discrete Fourier Transform matrices of order
n and m respectively,

Dθ = θ ·D1,

D = diag(1, e
πı̂

Nm , e
2πı̂
Nm , . . .)

D1 = diag(1, e
2πı̂
n , . . . , e

2πı̂
n (n−1))

and Ĝ = FnG, B̂H = FmDBH .

The optimal choice for θ is then θ = e
πı̂
N .

The gcd and cofactors obtained from Lemma 2.2 or Theorem 2.3 can be
subsequently refined as described in the next section. After the refining step, it is
easy to check whether an ε-divisor has actually been computed.

A fast algorithm for approximate polynomial gcd 9

We are left with the problem of choosing a tentative gcd degree kε. A pos-
sibility is to employ a bisection technique, which requires to test the existence of
an approximate divisor log2 n times and therefore preserves the overall quadratic
cost of the method.

Alternatively, a heuristic method of choosing a tentative value for kε can
be designed by observing that, as a consequence of the properties of resultant
matrices presented in Section 2.1, the choice of a suitable kε is mainly a matter of
approximate rank determination, and the fast LU factorization of the Sylvester or
Bézout matrix might provide reasonably useful values for kε.

Observe that the incomplete fast LU factorization computes a Cauchy-like
perturbation matrix ∆C such that C −∆C has rank n − k. If a is the last pivot
computed in the incomplete factorization, then as a consequence of Lemma 2.2 in
[9], |a| ≤ ‖∆C‖2.

Now, let uε(x) and vε(x) be polynomials of minimum norm and same degrees
as u(x) and v(x), such that u+uε and v+vε have an exact gcd of degree k. Assume
‖uε‖2 ≤ ε and ‖vε‖2 ≤ ε. Let Cε be the Cauchy-like matrix obtained via Theorem
2.6 from the Sylvester matrix Sε = S(uε, vε). Then C + Cε has rank n− k, too.

If we assume that ‖∆C‖2 is very close to the minimum norm of a Cauchy-like
perturbation that decreases the rank of C to n− k, then we have

|a| ≤ ‖∆C‖2 ≤ ‖Cε‖2 = ‖Sε‖2 ≤ ε
√

n + m, (10)

where the last inequality follows from the structure of the Sylvester matrix. There-
fore, if |a| > ε/

√
n + m, then u(x) and v(x) cannot have an ε-divisor of degree k.

This gives an upper bound on the ε-gcd degree based on the absolute values of the
pivots found while applying the fast Gaussian elimination to C. The same idea
can be applied to the Bézout matrix.

This is clearly a heuristic criterion since it assumes that some uncheckable
condition on ||∆C||2 is satisfied. However, this criterion seems to work quite well
in practice. When it is applied, the gcd algorithm should check whether it ac-
tually provides an upper bound on the gcd degree. We use this criterion for the
determination of a tentative gcd degree in our implementation of the algorithm.
In fact, experimental evidence shows that this criterion is usually more efficient
in practice than the bisection strategy, though in principle it does not guarantee
that the quadratic cost of the overall algorithm is preserved.

3.2. Refinement

Since the computed value of kε is the result of a tentative guess, it might happen
in principle that the output provided by the algorithm of Section 3.1 is not an
ε-divisor, is an ε-divisor of lower degree, or is a poor approximation of the sought
divisor. In order to get rid of this uncertainty, it is suitable to refine this output
by means of an ad hoc iterative technique followed by a test on the correctness
of the ε-degree. For this purpose we apply Newton’s iteration to the least squares

10 D.A. Bini and P. Boito

problem defined by

F (z) =
[Cpg − u
Cqg − v

]
, z =




g
p
q


 , (11)

where the Euclidean norm of the function F (z) is to be minimized. Here, in bold-
face we denote the coefficient vectors of the associated polynomials. The matrices
Cp and Cq are convolution matrices of suitable size associated with the polynomials
p(x) and q(x) respectively.

The Jacobian matrix J associated with the problem (11) has the form

J =
(Cp Cg 0
Cq 0 Cg

)
, (12)

where each block is a convolution matrix associated with a polynomial; Cp is of size
(n+1)×(k+1), Cq is (m+1)×(k+1), Cg in the first block row is (n+1)×(n−k+1)
and Cg in the second block row is (m + 1) × (m − k + 1). This Jacobian matrix,
however, is always rank deficient, because of the lack of a normalization for the
gcd.

Remark 3.2. Under the hypotheses stated above, the Jacobian matrix (12) computed
at any point z = [gT − pT − qT]T is singular. Moreover, the nullity of J
is 1 if and only if p(x), q(x) and g(x) have no common factors. In particular,
if z is a solution of F (z) = 0 and g(x) has maximum degree, i.e. it is a gcd,
then J has nullity one and any vector in the null space of J is a multiple of
w = [gT − pT − qT]T , where p(x) and q(x) are cofactors.

In order to achieve better stability and convergence properties, we force the
Jacobian to have full rank by adding a row, given by wT . Nevertheless, it can
be proved, by relying on the results of [20], that the quadratic convergence of
Newton’s method in the case of zero residual also holds, in this case, with a rank
deficient Jacobian. This property is useful when the initial guess for kε is too small,
since in this case the rank deficiency of the Jacobian is unavoidable.

The new Jacobian J̃ =
[(

J
wT

)]
is associated with the least squares problem

that minimizes F̃ (z) =
[(

F (z)
‖g‖2−‖p‖2−‖q‖2−K

)]
, where K is a constant. The choice

of wT as an additional row helps to ensure that the solution of each Newton’s step

zj+1 = zj − J̃(zj)†F̃ (zj) (13)

is nearly orthogonal to kerJ . Here J̃(zj)† is the Moore-Penrose pseudoinverse of
the matrix J̃(zj). For ease of notation, the new Jacobian will be denoted simply
as J in the following.

The matrix J has a Toeplitz-like structure, with displacement rank 5. We
propose to exploit this property by approximating the solution of each linear least
squares problem

Jηj = F̃ (zj), ηj = zj − zj+1

A fast algorithm for approximate polynomial gcd 11

via fast LU factorization still preserving the quadratic convergence of the modified
Newton’s iteration obtained in this way.

We proceed as follows:

– Compute the factorization J = LU , where J ∈ CN×M , L ∈ CN×N and U ∈
CN×M . For the sake of simplicity, we are overlooking here the presence of permu-
tation matrices due to the pivoting procedure; we can assume that either J or the
vectors ηj and xj = F̃ (zj) have already undergone appropriate permutations.
Consider the following block subdivision of the matrices L e U , where the left
upper block has size M ×M :

L =
[

L1 0
L2 I

]
, U =

[
U1

0

]
.

Analogously, let xj =

[
x(1)

j

x(2)
j

]
and observe that L−1 =

[
L−1

1 0
−L2L

−1
1 I

]
.

– Let yj = L−1
1 x(1)

j . If U1 is nonsingular, then compute wj as solution of U1wj =
yj . Else, consider the block subdivision

U1 =
[

U11 U12

0 0

]
, wj =

[
w(1)

j

w(2)
j

]
, yj =

[
y(1)

j

y(2)
j

]
,

such that U11 is nonsingular; set all the entries of w(2)
j equal to zero, and compute

w(1)
j as solution of U11w

(1)
j = y(1)

j

– If J is rank deficient, find a basis for K = ker J .

– Subtract from wj its projection on K, thus obtaining a vector χj . This is the
vector that will be used as approximation of a solution of the linear least squares
system in the iterative refinement process.

Let R be the subspace of CN spanned by the columns of J . We have

CN = R⊕R⊥. (14)

Let xj = αj + βj be the decomposition of xj with respect to (14), i.e., we have
αj ∈ R and βj ∈ R⊥.

The Moore-Penrose pseudoinverse of J acts on xj as follows: J†αj is the
preimage of αj with respect to J and it is orthogonal to K = kerJ , whereas J†βj

is equal to zero.
The LU-based procedure, on the other hand, acts exactly like J† on αj ,

whereas the component βj is not necessarily sent to 0. Therefore, χj is the sum of
ηj and of the preimage of βj with respect to the LU decomposition.

In a general linear least squares problem, there is no reason for ‖βj‖2 to be
significantly smaller than ‖xj‖2. In our case, though, the Taylor expansion of F (z)
yields:

0 = F (z∗) = F (zj)− J(zj)εj +O(‖εj‖22), (15)

12 D.A. Bini and P. Boito

where εj = zj − z∗ and z∗ is such that F (z∗) = 0. It follows from (15) that
xj = J(zj)εj +O(‖εj‖22). Since J(zj)εj ∈ R, we conclude that ‖βj‖2 = O(‖εj‖22).
Therefore, Newton’s method applied to the iterative refinement of the polynomial
gcd preserves its quadratic convergence rate, even though the linear least squares
problems (13) are treated using via the LU factorization of the Jacobian.

The iterative process ends when at least one of the following criteria is sat-
isfied:

1. the residual (that is, the Euclidean norm of the function F (z)) becomes
smaller that a fixed threshold,

2. the number of iteration reaches a fixed maximum,
3. the residual given by the last iteration is greater that the residual given by

the previous iteration.

The purpose of the third criterion is to avoid spending computational effort on
tentative gcds that are not in fact suitable candidates. However, its use with New-
ton’s method may pose some difficulties, because it is generally difficult to predict
the global behaviour of this method; in particular, it might happen that the resid-
ual does not decrease monotonically. The usual way to overcome this obstacle is to
use instead a relaxed version of Newton that includes a line search. More precisely,
instead of the iteration (13) one computes

zj+1 = zj − αj J̃(zj)†F̃ (zj), (16)

where αj is chosen – using a one-dimensional minimization method – so as to
approximately minimize the norm of F̃ (zj).

The drawback of this technique is that it slows down convergence: the qua-
dratic convergence that was one of the main interesting points of Newton’s method
is lost if one consistently performs iterations of the type (16). For this reason we
employ here a hybrid method: At each step, the algorithm evaluates the descent
direction J̃(zj)†F̃ (zj) and checks if a pure Newton step (that is, (16) with αj = 1)
decreases the residual. If this is the case, then the pure Newton step is actually
performed; otherwise, αj and subsequently zj+1 are computed by calling a line
search routine. In this way, most of the optimization work is still performed by
pure Newton iterations, so that the overall method remains computationally cheap;
the line search, called only when necessary, is helpful in some difficult cases and
ensures that the method has a sound theoretical basis.

3.3. The overall algorithm

Algorithm Fastgcd

Input: the coefficients of polynomials u(x) and v(x) and a tolerance ε.
Output: an ε-gcd g(x); a backward error (residual of the gcd system); possibly

perturbed polynomials û(x) and v̂(x) and cofactors p(x) and q(x).
Computation:

– Compute the Sylvester matrix S associated with u(x) and v(x);

A fast algorithm for approximate polynomial gcd 13

– Use Lemma 2.6 to turn S into a Cauchy-like matrix C;

– Perform fast Gaussian elimination with almost complete pivoting on C; stop
when a pivot a such that |a| < ε/

√
n + m is found; let k0 be the order of the

not-yet-factored submatrix Ũ that has a as upper left entry;

– Choose k = k0 as tentative gcd degree;

– Is there an ε-divisor of degree k? The answer is found as follows:
- find tentative cofactors by applying the modified GKO algorithm to the sys-

tem given by Lemma 2.2,
- compute a tentative gcd by performing polynomial division via evaluation/interpolation,
- perform iterative refinement and check whether the backward error is smaller

than ε;
– If yes, check for k + 1; if there is also an ε-divisor of degree k + 1, keep checking
for increasing values of the degree until a maximum is reached (i.e. a degree is
found for which there is no ε-divisor);

– If not, keep checking for decreasing values of the degree, until an ε-divisor (and
gcd) is found.

Observe that a slightly different version of the above algorithm is still valid
by replacing the Sylvester matrix with the Bézout matrix. With this replacement
the size of the problem is roughly reduced by a factor of 2 with clear computational
advantage.

It should also be pointed out that the algorithm generally outputs an approx-
imate gcd with complex coefficients, even if u(x) and v(x) are real polynomials.
This usually allows for a higher gcd degree or a smaller backward error.

4. Numerical experiments

The algorithm Fastgcd has been implemented in Matlab and tested on many poly-
nomials, with satisfactory results. Some of these results are shown in this section
and compared to the performance of other implemented methods that are found
in the literature, namely UVGCD by Zeng [23], STLN by Kaltofen et al. [14] and
QRGCD by Corless et al. [4]. Matlab experiments with Fastgcd and UVGCD are
performed using version 7.5.0 running under Windows; we use here the P-code for
UVGCD contained in the Apalab toolbox.

It must be pointed out that comparison with the STLN method is not
straightforward, since this methods follows an optimization approach, i.e., it takes
two (or more) polynomials and the desired gcd degree k as input, and seeks a per-
turbation of minimum norm such that the perturbed polynomials have an exact
gcd of degree k. Moreover, the algorithms UVGCD and STLN do not normalize the
input polynomials, whereas QRGCD and Fastgcd do; therefore all test polynomials
are normalized (with unitary Euclidean norm) beforehand.

14 D.A. Bini and P. Boito

In the following tests, we generally display the residual (denoted as “res”)
associated with the gcd system (recall that the residual is defined here as the
Euclidean norm of the function F (z) and it may slightly differ from the residual as
defined by other authors). In some examples, where a nearly exact gcd is sought,
we report the coefficient-wise error on the computed gcd (denoted as “cwe”), since
the “correct” gcd is known.

4.1. Badly conditioned polynomials

The test polynomials in this section are taken from [23]. The polynomials in the
first example are specifically chosen so that the gcd problem is badly conditioned.

Example 4.1. Let n be an even positive integer and k = n/2; define pn = unvn

and qn = unwn, where

un =
k∏

j=1

[(x− r1αj)2 + r2
1β

2
j], vn =

k∏

j=1

[(x− r2αj)2 + r2
2β

2
j],

wn =
n∏

j=k+1

[(x− r1αj)2 + r2
1β

2
j], αj = cos

jπ

n
, βj = sin

jπ

n
,

for r1 = 0.5 and r2 = 1.5. The roots of pn and qn lie on the circles of radius r1

and r2.

The following table shows the coefficient-wise errors given by the examined
gcd methods as n increases.

n Fastgcd UVGCD QRGCD
10 6.44× 10−13 3.24× 10−13 1.57× 10−12

12 5.23× 10−12 1.40× 10−12 3.28× 10−4

14 1.79× 10−11 2.27× 10−11 (*)
16 5.27× 10−10 4.41× 10−11 (*)
18 6.11× 10−9 3.63× 10−10 (*)

(*) Here QRGCD fails to find a gcd of correct degree.

In this case, there are no substantial differences between the (good) results
provided by Fastgcd and by UVGCD, while QRGCD outputs failure for very ill-
conditioned cases. It should be pointed out, however, that the results given by
UVGCD vary between trials, which makes comparisons more difficult.

In the following test, the gcd degree is very sensitive to the choice of the
tolerance ε.

Example 4.2. Let

p(x) =
10∏
1

(x− xj), q(x) =
10∏
1

(x− xj + 10−j),

with xj = (−1)j(j/2). The roots of p and q have decreasing distances 0.1, 0.01,
0.001, etc.

A fast algorithm for approximate polynomial gcd 15

The table shows, for several values of the tolerance, the corresponding gcd
degree and residual found by Fastgcd and UVGCD. Fastgcd gives better results,
since it generally finds gcds of higher degree. The algorithm QRGCD, on the
contrary, outputs failure for all values of ε smaller than 10−2.

ε Fastgcd UVGCD
deg res deg res

10−2 9 0.0045 9 0.0040
10−3 8 2.63× 10−4 8 1.72× 10−4

10−4 7 9.73× 10−6 (*)
10−6 6 2.78× 10−7 1 3.34× 10−16

10−7 5 8.59× 10−9 1 3.34× 10−16

(*)Here UVGCD outputs the same result as above due to a different definition of

residual.

It is interesting to observe that for ε ≤ 10−5, UVGCD computes a common
ε-divisor which does not have the maximum degree, while Fastgcd always provides
an ε-divisor of higher degree.

We have also studied this example using the STLN method, though the em-
ployed approach is entirely different. The following table shows the residuals com-
puted by STLN for several values of the degree.

deg gcd res deg gcd res
9 5.65× 10−3 6 2.58× 10−7

8 2.44× 10−4 5 6.34× 10−9

7 1.00× 10−5 4 1.20× 10−10

4.2. High gcd degree

In this example, also taken from [23], the gcd has a large degree.

Example 4.3. Let pn = unv and qn = unw, where v(x) =
∑3

j=0 xj and w(x) =∑4
j=0(−x)j are fixed polynomials and un is a polynomial of degree n whose coef-

ficients are random integer numbers in the range [−5, 5].

The following table shows the residuals and the coefficient-wise errors on the
computed gcd for large values of n. Here, Fastgcd and UVGCD perform similarly
while QRGCD provides a worse coefficient-wise error.

n Fastgcd UVGCD QRGCD
res cwe res cwe cwe

50 2.97× 10−16 5.04× 10−16 2.43× 10−16 8.32× 10−16 1.72× 10−12

100 2.91× 10−16 1.41× 10−15 1.83× 10−16 7.77× 10−16 4.80× 10−8

200 5.08× 10−16 7.29× 10−15 1.72× 10−16 9.99× 10−16 2.39× 10−11

500 4.04× 10−16 3.12× 10−15 2.10× 10−15 1.35× 10−14

1000 3.98× 10−16 3.28× 10−15 2.26× 10−16 1.67× 10−15

16 D.A. Bini and P. Boito

4.3. Unbalanced coefficients

This is another example taken from [23].

Example 4.4. Let p = uv and q = uw, where v(x) and w(x) are as in Example 4.3
and

u(x) =
15∑

j=0

cj10ej xj ,

where cj and ej are random integers in [−5, 5] and [0, 6] respectively.

In this example u(x) is the gcd of p(x) and q(x) and the magnitude of its
coefficients varies between 0 and 5×106. If an approximate gcd algorithm is applied
and the coefficient-wise relative error θ is calculated, then N = log10 θ is roughly
the minimum number of correct digits for the coefficients of u(x) given by the
chosen method. 100 repetitions of this test are performed. The average number of
correct digits found in an experiment of this type is 10.63 for Fastgcd and 10.83
for UVGCD. Therefore the two algorithms give comparable results. Residuals are
always about 10−16. QRGCD, on the contrary, achieves an average of 7.46 correct
digits.

4.4. Multiple roots

Example 4.5. Let u(x) = (x3 + 3x − 1)(x − 1)k for a positive integer k, and let
v(x) = u′(x). The gcd of u(x) and v(x) is g(x) = (x− 1)k−1.

The coefficient-wise errors computed by Fastgcd, UVGCD and QRGCD for
several values of k and for ε = 10−6 are shown in the following table. Unless
otherwise specified, the computed gcd degrees are understood to be correct.

k Fastgcd UVGCD QRGCD
15 5.18× 10−13 4.27× 10−13 7.04× 10−7

25 9.31× 10−11 1.99× 10−11 (*)
35 1.53× 10−8 4.44× 10−9 (*)
45 6.61× 10−6 4.04× 10−8 (*)

(*) Here QRGCD does not detect a gcd of correct degree.

The algorithm UVGCD has been specifically designed for polynomials with
multiple roots and is therefore very efficient. Fastgcd also provides good results,
with backward errors (residuals) always of the order of the machine epsilon, whereas
QRGCD fails to find a gcd of correct degree as soon as the root multiplicity is
larger than 15.

4.5. Small leading coefficient

A gcd with a small leading coefficient may represent in many cases a source of
instability.

A fast algorithm for approximate polynomial gcd 17

3.5 4 4.5 5 5.5 6 6.5 7
−3

−2

−1

0

1

2

3

4

5

6

log (N)

lo
g

(t
im

e)

y = 2.06*x − 9.27

Figure 1. Running time of the algorithm Fastgcd

Example 4.6. For a given (small) parameter α ∈ R, let g(x) = αx3 + 2x2 − x + 5,
p(x) = x4 + 7x2 − x + 1 and q(x) = x3 − x2 + 4x − 2 and set u(x) = g(x)p(x),
v(x) = g(x)q(x).

We applied Fastgcd and QRGCD to this example, with α ranging between
10−5 and 10−15. It turns out that, for α < 10−5, QRGCD fails to recognize the
correct gcd degree and outputs a gcd of degree 2. Fastgcd, on the contrary, always
recognizes the correct gcd degree, with a residual of the order of the machine
epsilon.

4.6. Running time

We have checked the growth rate of the running time of the algorithm Fastgcd on
pairs of polynomials whose GCD and cofactors are defined like the polynomials
un(x) introduced in Section 4.2. Polynomials of degree N = 2n ranging between
50 and 1000 have been used. Figure 1 shows the running time (in seconds) versus
the degree in log-log scale, with a linear fit and its equation. Roughly speaking,
the running time grows as O(Nα), where α is the coefficient of the linear term in
the equation, i.e., 2.06 in our case.

We next show a comparison between the running times of Fastgcd and
UVGCD. In order to avoid randomly chosen coefficients, we define a family of test
polynomials as follows. Let k be a positive integer and let n1 = 25k, n2 = 15k and
n3 = 10k. For each value of k define the cofactors pk(x) = (xn1−1)(xn2−2)(xn3−3)
and qk(x) = (xn1 +1)(xn2 +5)(xn3 +ı̂). The test polynomials are uk(x) = g(x)pk(x)
and vk(x) = g(x)qk(x), where the gcd g(x) = x4+10x3+x−1 is a fixed polynomial.

Figure 2 shows the computing times required by Fastgcd and UVGCD on
uk(x) and vk(x) for k = 1, . . . 8. The plot clearly shows that the time growth for
Fastgcd is much slower than for UVGCD.

18 D.A. Bini and P. Boito

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

k

tim
e

Fastgcd
UVGCD

Figure 2. Comparison between the running times of Fastgcd and UVGCD.

References

[1] B. Beckermann, G. Labahn, When are two numerical polynomials relatively prime?,
J. Symbolic Comput. 26, 677-689 (1998).

[2] B. Beckermann, G. Labahn, A fast and numerically stable Euclidean-like algorithm
for detecting relatively prime numerical polynomials, J. Symb. Comp. 26, 691-714
(1998).

[3] D. A. Bini, V. Y. Pan, Polynomial and Matrix Computations, vol. I, Birkhäuser,
1994.

[4] R. M. Corless, S. M. Watt, L. Zhi, QR Factoring to Compute the GCD of Univariate
Approximate Polynomials, IEEE Trans. Signal Processing 52, 3394-3402 (2004).

[5] R. M. Corless, P. M. Gianni, B. M. Trager, S. M. Watt, The Singular Value Decom-
position for Approximate Polynomial Systems, Proc. International Symposium on
Symbolic and Algebraic Computation, July 10-12 1995, Montreal, Canada, ACM
Press 1995, pp. 195-207.

[6] G. M. Diaz-Toca, L. Gonzalez-Vega, Computing greatest common divisors and
squarefree decompositions through matrix methods: The parametric and approxi-
mate cases, Linear Algebra Appl. 412, 222-246 (2006).

[7] I. Z. Emiris, A. Galligo, H. Lombardi, Certified approximate univariate GCDs, J.
Pure Appl. Algebra 117/118, 229-251 (1997).

[8] I. Gohberg, T. Kailath, V. Olshevsky, Fast Gaussian elimination with partial piv-
oting for matrices with displacement structure, Math. Comp. 64, 1557-1576 (1995).

[9] M. Gu, Stable and Efficient Algorithms for Structured Systems of Linear Equations,
SIAM J. Matrix Anal. Appl. 19, 279-306 (1998).

[10] G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured
matrices, Linear Algebra in Signal Processing, IMA volumes in Mathematics and
its Applications 69, 95-114 (1994).

[11] G. Heinig, P. Jankowsky, K. Rost, Fast inversion of Toeplitz-plus-Hankel matrices,
Numer. Math. 52, 665-682 (1988).

A fast algorithm for approximate polynomial gcd 19

[12] V. Hribernig, H. J. Stetter, Detection and validation of clusters of polynomial zeros,
J. Symb. Comp. 24, 667-681 (1997).

[13] C.-P. Jeannerod, G. Labahn, SNAP User’s Guide, UW Technical Report no. CS-
2002-22 (2002).

[14] E. Kaltofen, Z. Yang, L. Zhi, Approximate Greatest Common Divisors of Sev-
eral Polynomials with Linearly Constrained Coefficients and Simgular Polynomials,
Proc. International Symposium on Symbolic and Algebraic Computations, 2006.

[15] N. K. Karmarkar, Y. N. Lakshman, On Approximate GCDs of Univariate Polyno-
mials, J. Symbolic Comp. 26, 653-666 (1998).

[16] B. Li, Z. Yang, L. Zhi, Fast Low Rank Approximation of a Sylvester Matrix by
Structure Total Least Norm, Journal of Japan Society for Symbolic and Algebraic
Computation 11, 165-174 (2005).

[17] M.-T. Noda, T. Sasaki, Approximate GCD and its application to ill-conditioned
algebraic equations, J. Comput. Appl. Math. 38, 335-351 (1991).

[18] V. Y. Pan, Numerical computation of a polynomial GCD and extensions, Informa-
tion and Computation 167, 71-85 (2001).

[19] A. Schönhage, Quasi-GCD Computations, J. Complexity, 1, 118-137 (1985).

[20] L. B. Rall, Convergence of the Newton Process to Multiple Solutions, Num. Math.
9, 23-37 (1966).

[21] M. Stewart, Stable Pivoting for the Fast Factorization of Cauchy-Like Matrices,
preprint (1997).

[22] D. R. Sweet, R. P. Brent, Error analysis of a fast partial pivoting method for struc-
tured matrices, in Adv. Signal Proc. Algorithms, Proc. of SPIE, T. Luk, ed., 266-280
(1995).

[23] Z. Zeng, The approximate GCD of inexact polynomials Part I: a univariate algo-
rithm, to appear

[24] L. Zhi, Displacement Structure in computing the Approximate GCD of Univariate
Polynomials, Mathematics, W. Sit and Z. Li eds., World Scientific (Lecture Notes
Series on Computing), 288-298 (2003).

Dario A. Bini
Dipartimento di Matematica, Università di Pisa
e-mail: bini@dm.unipi.it

Paola Boito
Dipartimento di Matematica, Università di Pisa
e-mail: boito@mail.dm.unipi.it

