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1. Introduction. Random walks in the quarter plane describe a wide variety
of two-queue models with various service policies such as nonpreemptive priority, K-
limited service, server vacation and server setup [26]. Models of this kind concern,
for instance, bi-lingual call centers [30], generalized two-node Jackson networks [27],
two-demand models [10], two-stage inventory queues [11], and more.

A theoretical analysis of stability, of tail decay rates and of other asymptotic
properties has been carried out by several authors, in particular in [14], [22], [23],
[26], and in the book [9], in which the invariant measure and the transient behavior
are investigated by means of analytic and functional tools.

A different approach is based on representing a random walk in the quarter plane
as a 2-dimensional Quasi–Birth-Death (QBD) stochastic process. This latter frame-
work, based on the matrix analytic approach of [25], allows expressing the invariant
probability measure, and other quantities of interest for the stochastic model, in terms
of a solution of suitable quadratic matrix equations. This provides a further tool for
the theoretical analysis [17], [19] and paves the way for the design of effective algo-
rithms based on the numerical solution of quadratic matrix equations.

In fact, relying on the matrix analytic theory of [25], the problem of computing the
invariant probability measure of a QBD process is reduced to computing the minimal
nonnegative solutions G and R of the two matrix equations

A1X
2 +A0X +A−1 = X,(1.1)

A1 +XA0 +X2A−1 = X,(1.2)

respectively, where the coefficients A−1, A0, A1 are nonnegative matrices such that
A−1 + A0 + A1 is row-stochastic and X is the unknown. We say that a matrix X
is nonnegative, and we write X ≥ 0, if its entries are nonnegative. Moreover we say
that a solution X of a matrix equation is minimal nonnegative if X ≥ 0 and for any
other nonnegative solution Y it holds Y −X ≥ 0. For more details in this regard, we
refer the reader to the books [2], [19], and [25].
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In the case where the coefficients are finite dimensional, several algorithms have
been introduced to compute G and R. They include fixed point iterations and dou-
bling algorithms like Logarithmic Reduction and Cyclic Reduction (CR) [7], [2], [19].

In the case of 2-dimensional QBDs the coefficients A−1, A0, A1 are semi-infinite
and have a special structure, more precisely,

(1.3) Ai =


bi,0 bi,1
ai,−1 ai,0 ai,1

ai,−1 ai,0 ai,1
. . .

. . .
. . .

 , i = −1, 0, 1,

where ai,j ≥ 0, bi,j ≥ 0 and
∑1
i,j=−1 ai,j = 1,

∑1
i=−1

∑1
j=0 bi,j = 1. These blocks

belong to the class of matrices representable in the form A = T (s)+E where T (s) is the
Toeplitz matrix associated with the symbol s(z) =

∑
i∈Z siz

i, that is, (T (s))i,j = sj−i,
and E = (ei,j) is such that vi =

∑
j |ei,j | is finite and limi vi = 0. The matrix T (s) is

called Toeplitz part while E is called correction. Here s(z) is a function belonging to the
Wiener classW = {f(z) =

∑
i∈Z fiz

i, ‖f‖w :=
∑
i∈Z |fi| <∞}. In particular, for the

matrix in (1.3) it is easy to check that Ai = T (ai)+Ei where ai(z) =
∑1
j=−1 ai,jz

j and
Ei has zero entries except for the first row which is equal to [bi,0−ai,0, bi,1−ai,1, 0, . . .].
Matrices of this kind are called Quasi-Toeplitz (QT) in [3].

The case of QBD with infinite blocks has been initially investigated in [17], [18],
and [20], by reducing the problem to finite size relying on truncation and augmenta-
tion of the blocks. However, this approach does not lead to reliable computational
techniques since the result of the numerical computation is strongly dependent on
the way the infinite matrices have been truncated. In fact, the models obtained by
truncating the infinite dimensional problem may have asymptotic properties, like the
decay rate, which are not consistent with the original problem [15], [29].

More recently, conditions under which the solution G of (1.1) can be represented
as the sum G = T (g) + Eg are given in [5], so that, despite the solution G has
infinitely many entries, it can be represented up to any arbitrary approximation error
by using a finite number of parameters. Moreover, in [3] and [4], by using the structure
properties of QT matrices, the algorithm of Cyclic Reduction has been extended to
the case of infinite matrices. This algorithm still keeps a fast convergence speed in
terms of number of iterative steps. However, in certain cases the cost of each step
becomes extremely large due to the cost of certain operations with QT matrices, like
matrix inversion and the compression of the correction part. Another drawback of
CR is that this iteration is not self-correcting.

In this paper, we restrict the attention to the computation of the matrix G since
the matrix R can be explicitly expressed in function of G [19, Theorem 6.2.9]. We
propose and analyze some fixed point iterations which have a low cost per step and,
unlike CR, are self-correcting and allow keeping separated the computation of the
Toeplitz part T (g) and the correction part Eg.

In fact, we show that the symbol g(z) defining the Toeplitz part satisfies the
functional equation

a1(z)g(z)2 + a0(z)g(z) + a−1(z) = g(z), |z| = 1.

We use this property to design an algorithm based on evaluation and interpolation at
the roots of 1 for approximating the coefficients of g(z), which is extremely fast and
allows for an automatic control of the number of interpolation points, according to
the desired approximation error.
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The correction part Eg is obtained by simply applying fixed point iterations. We
consider three iterations of the kind Xk+1 = F (Xk), k = 0, 1, . . ., defined by suitable
functions F1, F2, F3, where F1 requires no matrix inversion, F2 requires to compute an
inverse matrix once for all, while F3 requires one inversion per step. These iterations
are well known in the case of QBD with finitely many phases [2], [19], [21], and are
here extended to coefficients with the QT structure (1.3).

We show that, under mild assumptions, starting with X0 = 0, the sequences
generated by F1, F2, F3 converge monotonically and linearly to G in the infinity norm.
Moreover, we prove that the rate of convergence of the sequence generated by F3 is
better than the rate of the sequence generated by F2, which in turn is better than
that generated by F1. We prove that if X0 is row-stochastic then all the matrices Xk

are row-stochastic and the rate of convergence of each of the three iterations is better
than that obtained with X0 = 0. Numerical experiments show also the evidence that
for X0 = T (g) the rate of convergence of the three sequences is even better.

Then we adapt Newton’s iteration, in the form given by [16], to the case of QT
coefficients. In order to solve the Sylvester equation arising at each step of Newton’s
iteration we rely on the solver introduced in [28]. Under mild conditions, we prove
that, for X0 = 0, convergence holds in the infinity norm, is monotonic and quadratic.

In order to evaluate an a posteriori bound on the approximation error in the com-
putation of G, we also perform the analysis of the structured condition number. More
specifically, we provide perturbation results related to perturbations of the Toeplitz
part and of the correction part in the matrix coefficients Ai, i = −1, 0, 1, and we
estimate the consequent variation of the solution G and of its Toeplitz part T (g).

Numerical experiments are reported which show the effectiveness of our approach
and the reliability of our algorithms with respect to the algorithm CR. In particular we
show that in certain cases the combination of Newton’s iteration and cyclic reduction
provides a substantial acceleration of the convergence.

The paper is organized as follows: in Section 2 we recall some preliminary prop-
erties and concepts useful for the analysis of the problem; in Section 3 we present
an algorithm for computing the Toeplitz part T (g) of the solution; Section 4 deals
with the analysis of three fixed-point iterations applied to infinite QT matrices, while
Section 5 concerns the algorithmic analysis of Newton iteration; in Section 6 we carry
out the analysis of the conditioning by providing some perturbation results, while in
Section 7 we present and discuss some numerical experiments which show the effec-
tiveness of our approach.

2. Preliminaries. Let `∞ be the set of sequences x = (xi)i∈N such that ‖x‖∞ :=
supi |xi| is finite. Consider the set of matrices A = (ai,j) such that the application
x→ y = Ax, where yj =

∑∞
j=1 ai,jxj , defines a linear operator from `∞ to `∞. Denote

this set by L∞ and define the induced norm ‖A‖∞ = sup‖x‖∞=1 ‖Ax‖∞. It can be

verified that ‖A‖∞ = supi
∑∞
j=1 |ai,j |. Recall that L∞ is a Banach algebra, that is, it

is closed under the row-by-column product, the norm satisfies ‖AB‖∞ ≤ ‖A‖∞ ·‖B‖∞
for any A,B ∈ L∞, and the normed space is complete.

We introduce the following notation

(2.1)
ai(z) = ai,−1z

−1 + ai,0 + ai,1z

bi(z) = bi,0 + bi,1z,

so that we may write Ai = T (ai) + Ei, for i = −1, 0, 1, where Ei has null entries
except for those in the first row which are equal to [bi,0 − ai,0, bi,1 − ai,1, 0, . . .]. We
assume that the entries of Ai are nonnegative and (A−1 + A0 + A1)1 = 1, where 1
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is the vector of all ones of appropriate dimension. It is known [19], [31] that under
these conditions, there exist the minimal nonnegative solutions R and G of (1.1) and
(1.2), respectively, and the Laurent matrix polynomial ϕ(z) = z−1A−1 +A0−I+zA1

admits the factorization

ϕ(z) = −(I − zR)W (I − z−1G)

where

(2.2)

A1 = RW, A−1 = WG, A0 = I −W −RWG,

W = I −A0 −A1G = I −A0 −RA−1,
G1 ≤ 1.

From the above equations it follows that, once G has been computed, the matrix
R can be obtained explicitly by means of R = A1(I − A0 − A1G)−1. Observe that
if a−1(1) = 0, i.e., A−1 = e1w

T , wT = (b−1,0, b−1,1, 0, . . .) 6= 0, then the minimal
nonnegative solution G of equation (1.1) can be expressed in the form G = 1vT ,
where v = 1

b−1(1)
w, [19, Theorem 8.5.1]. Therefore, without loss of generality we may

assume that a−1(1) > 0.
The following result is valid if a−1(1) > 0 and b−1(1) > 0, that is, A−11 > 0.

Lemma 2.1. Assume A−11 > 0 and define

(2.3) θ = min{a−1(1), b−1(1)}, γ = max

{
a1(1)

a−1(1)
,
b1(1)

b−1(1)

}
.

Then the matrix W = I − A0 − A1G is invertible in L∞, has nonnegative inverse,
and ‖W−1‖∞ ≤ 1

1−‖(A0+A1)1‖∞ = 1
θ . Moreover, ‖W−1RW‖∞ ≤ γ. If A−11 > A11

then γ < 1.

Proof. Observe that ‖A0 + A1G‖∞ = ‖(A0 + A1G)1‖∞ ≤ ‖(A0 + A1)1‖∞ =
‖(I − A−1)1‖∞ = 1 − θ < 1, since (A0 + A1)1 = (I − A−1)1, A−11 > 0 and
A−11 = (b−1(1), a−1(1), a−1(1), . . .)T . This implies that W−1 ∈ L∞, since in general,
if I −B ∈ L∞ is such that ‖B‖∞ < 1 then the series

∑∞
i=0B

i has norm bounded by
1/(1 − ‖B‖∞) and coincides with (I − B)−1. Moreover, W−1 is nonnegative, being
W−1 =

∑∞
i=0(A0 +A1G)i and

‖W−1‖∞ = ‖
∞∑
k=0

(A0 +A1G)k1‖∞ ≤
1

1− ‖A0 +A1‖∞
=

1

θ
.

Now we show that ‖W−1RW‖∞ ≤ γ. Since W−1RW = W−1A1 by (2.2), it is
sufficient to consider ‖W−1A1‖∞ = ‖W−1A11‖∞. By definition of γ we have A11 ≤
γA−11, therefore

W−1A11 ≤ γW−1A−11 = γG1 ≤ γ1,

where we used the fact that W−1A−1 = G. Thus we have ‖W−1RW‖∞ ≤ γ.
Since A11 = (b1(1), a1(1), a1(1), . . .)T and A−11 = (b−1(1), a−1(1), a−1(1), . . .)T then
A−11 > A11 implies γ < 1.

Define W = {f(z) =
∑
i∈Z fiz

i : ‖f‖w :=
∑
i∈Z |fi| < ∞}. Consider the

following class

QT := {A = T (f) + E}
4



where f(z) ∈ W, the matrix E = (ei,j) ∈ L∞ is such that limi vi = 0, where vi =∑∞
j=1 |ei,j |.

Observe that Ai ∈ QT for i = −1, 0, 1, moreover, in [5] it is shown that QT is an
algebra with the infinity norm, and the matrices W,G and R in (2.2) belong to QT
if A−11 > A11 or if A−11 ≥ A11 > 0. More precisely we have the following result [5,
Theorem 9].

Theorem 2.2. The minimal nonnegative solution G of the matrix equation (1.1)
can be written as G = T (g) + Eg where Eg ∈ L∞, ‖Eg‖∞ ≤ 1 + g(1), |Eg|1 ≤ 2 · 1,
and g(z) =

∑
i∈Z giz

i ∈ W is such that gi ≥ 0 and ‖g‖w = g(1) ≤ 1. Moreover,
for any z such that |z| = 1, g(z) is a solution of minimum modulus of the quadratic
equation

a−1(z) + a0(z)λ+ a1(z)λ2 = λ.(2.4)

This solution is unique if there exists j such that ai,j 6= 0 for at least two different
values of i. If

A−11 > A11, or A−11 ≥ A11 > 0,

then G ∈ QT , G1 = 1 and g(1) = 1. Conversely, if G1 = 1 and G ∈ QT then
a−1(1) ≥ a1(1) and g(1) = 1.

Observe that the condition

(2.5) A−11 > A11

is equivalent to a−1(1) > a1(1) and b−1(1) > b1(1). In the following we assume that
(2.5) holds and that there exists i such that ai,j 6= 0 for at least two values of j. The
latter condition is very mild.

3. Computing the symbol g(z). Relying on Theorem 2.2, we provide an al-
gorithm, based on the evaluation/interpolation at the roots of 1, for computing an
approximation ĝi, i = −n + 1, . . . , n, to the coefficients gi of g(z), where n is such
that |ĝi − gi| ≤ ε/(2n), for any i and for a given tolerance ε > 0. In this analysis we
may relax the assumption a−1(1) > a1(1) so that the result holds in general.

Let n > 0 be an integer and set m = 2n. Define ωm = cos 2π
m + i sin 2π

m a principal
mth root of 1, where i is the imaginary unit such that i2 = −1. Rewrite g(z) as

(3.1) g(z) =

n∑
j=−n+1

gjz
j +

n∑
j=−n+1

∑
k≥1

(zmk+jgmk+j + z−mk−j+1g−mk−j+1).

Since ωkmm = 1, from (3.1) we have

g(ωim) =

n∑
j=−n+1

gjω
ij
m +

n∑
j=−n+1

(ωijm
∑
k≥1

gmk+j + ω−i(j−1)m

∑
k≥1

g−mk−j+1).

Therefore, the Laurent polynomial defined by

(3.2)

ĝ(z) =

n∑
j=−n+1

gjz
j +

n∑
j=−n+1

(zj ĝ+j + z−j+1ĝ−−j+1),

ĝ+j =
∑
k≥1

gmk+j , ĝ−−j+1 =
∑
k≥1

g−mk−j+1, j = −n+ 1, . . . , n,
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is such that g(ωim) = ĝ(ωim), that is, it interpolates g(z) at the m-th roots of 1.
The following lemma provides a bound to the tail of the Laurent series g(z) and

extends to the case of Laurent series a similar property proved in [8] valid for power
series.

Lemma 3.1. Let g(z) be the solution of minimum modulus of equation (2.4). Let
ĝ(z) =

∑n
j=−n+1 ĝjz

j be the Laurent polynomial interpolating g(z) at the m-th roots

of 1, i.e., such that g(ωim) = ĝ(ωim), i = −n+ 1, . . . , n, where m = 2n. If g′′(x) ∈ W,
then g′′(1) ≥ 0 and

(3.3) g′′(1)− ĝ′′(1) ≥ 2n

 ∑
j<−n+1

gj +
∑
j>n

gj

 ,

moreover 0 ≤ ĝj − gj ≤ 1
2n (g′′(1)− ĝ′′(1)), for j = −n+ 1, . . . , n.

Proof. Since the coefficients gi are nonnegative then also g′′(z) has nonnegative
coefficients, moreover, since g′′(z) ∈ W, then the series g′′(1) is absolutely convergent
and g′′(1) ≥ 0. Thus, from the representation (3.1), in view of (3.2), we deduce that

g′′(1)− ĝ′′(1) =

n∑
j=−n+1

∑
k≥1

(gmk+jαj,k + g−mk−j+1αj,k) ,

where αj,k = (mk + j)(mk + j − 1)− j(j − 1). The inequality (3.3) follows from the
nonnegativity of the coefficients and from the property αj,k ≥ m, valid for k ≥ 1, j =
−n + 1, . . . , n which can be verified by a direct inspection. The bound on ĝj − gj
follows from (3.3) since ĝj = gj + ĝ+j + ĝ−j and ĝ+j + ĝ−j ≤

∑
j<−n+1 gj +

∑
j>n gj in

view of (3.2).

Observe that ĝ′′(1) is computable once the coefficients of the polynomial ĝ(z)
have been computed. Moreover, the value of g′′(1) is computable even though g(z)
is not known. In fact, by taking the second derivative in the equation obtained by
replacing λ with g(z) in (2.4), i.e.,

a1(z)g(z)2 + (a0(z)− 1)g(z) + a−1(z) = 0,

for z = 1, the value of g′′(1) can be easily expressed in terms of ai(1), a′i(1) and a′′i (1).
More precisely, by taking the first derivative we obtain

a′1(z)g(z)2 + 2g(z)g′(z)a1(z) + (a0(z)− 1)g′(z) + a′0(z)g(z) + a′−1(z) = 0,

which yields

(3.4) g′(1) =
a′1(1)g(1)2 + a′0(1)g(1) + a′−1(1)

1− 2a1(1)g(1)− a0(1)
, g(1) = min(1, a−1(1)/a1(1)).

By taking the second derivative for z = 1, we get

a′′1(1)g(1)2+2a′1(1)g′(1)g(1) + 2a′1(1)g′(1)g(1) + 2a1(1)g′(1)2

+2a1(1)g′′(1)g(1) + (a0(1)− 1)g′′(1) + a′0(1)g′(1)

+a′′0(1)g(1) + a′0(1)g′(1) + a′′−1(1) = 0

which yields

(3.5)
g′′(1) =

[
a′′−1(1) + a′′0(1)g(1) + a′′1(1)g(1)2 + 2a1(1)g′(1)2

+ 2g′(1)(2g(1)a′1(1) + a′0(1))] /(1− 2a1(1)g(1)− a0(1)).
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Lemma 3.1 provides an a posteriori bound to the error in the approximation of
the Laurent series g(z) together with a stop condition for the following evaluation
interpolation algorithm for computing the coefficients of g(z).

Algorithm 3.1 Approximation of g(z)

Require: The coefficients of ai(z), i = −1, 0, 1 and a tolerance ε > 0.
Ensure: Approximations ĝi, i = −n+1, . . . , n, to the coefficients gi of g(z) such that

ĝi − gi ≤ ε/(2n).
1: Set n = 4, and compute g(1) = min(1, a−1(1)/a1(1)), g′(1) and g′′(1) by means

of (3.4) and (3.5);
2: Set m = 2n, ωm = cos 2π

m + i sin 2π
m , and evaluate a−1(z), a0(z), a1(z) at z = ωim,

i = −n+ 1, . . . , n;
3: For i = −n + 1, . . . , n, compute the solution λi of minimum modulus of the

quadratic equation (2.4), where z = ωim;
4: Interpolate the values λi, i = −n + 1, . . . , n by means of FFT and obtain the

coefficients ĝi of the Laurent polynomial ĝ(z) =
∑n
i=−n+1 ĝiz

i such that g(ωim) =

ĝ(ωim), i = −n+ 1, . . . , n;
5: Compute δm = g′′(1)− ĝ′′(1), where ĝ′′(1) =

∑n
i=−n+1 i(i− 1)ĝi;

6: If δm/m ≤ ε then exit, else set n = 2n and continue from Step 2.

Observe that the error bound converges to zero at least as O(1/n). If the func-
tion g(z) is analytic in a neighborhood of the unit circle, then its coefficients decay
exponentially to zero [12] so that also the the bound on the error converges exponen-
tially to zero. It is also interesting to observe that, for n → ∞, the convergence of
the coefficients of ĝ(z) to the corresponding coefficients of g(z) is monotonic. Finally
observe that the overall computational cost of this algorithm is O(n log n) arithmetic
operations. This way, the Toeplitz part of G is approximated by the banded Toeplitz
matrix T (ĝ), i.e., the approximation of the Toeplitz part is obtained by truncating to
finite size the bandwidth of T (g).

In order to complete the computation of G it remains to approximate the correc-

tion Eg. In view of the fact that Eg has entries e
(g)
i,j such that vi =

∑
j |e

(g)
i,j | is finite

and limi vi = 0, we can approximate Eg with a finite number of parameter within an
error bound ε. This computation is performed by means of functional iteration and
is analyzed in the next section.

Finally, we point out that, while G = T (g) + Eg has always nonnegative entries
and g(z) has nonnegative coefficients, the entries of the correction Eg may have any
sign in general.

4. Fixed point iterations. In this section we analyze the convergence of se-
quences generated by a functional iteration of the kind Xk+1 = F (Xk), k = 0, 1, . . .,
where F (X) is a matrix function such that G = F (G) where G is the minimal non-
negative solution of (1.1). More precisely, we will consider the following cases

(4.1)

F1(X) = A−1 +A0X +A1X
2,

F2(X) = (I −A0)−1(A−1 +A1X
2),

F3(X) = (I −A0 −A1X)−1A−1,

while Newton iteration is considered in the next section.
In the case where A−1, A0, A1 are finite matrices, the convergence analysis of

the sequences generated by the functions (4.1) has been performed in [21]. Here, we
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extend the results of [21] to the case of matrices of infinite size belonging to L∞. We
need the following

Lemma 4.1. Let A−11 > A11, and

(4.2) σ = 1−min(a−1(1)− a1(1), b−1(1)− b1(1)) < 1.

Let H1 = A0 +A1 +A1G. Then ‖H1‖∞ ≤ σ, so that ‖A0‖∞ ≤ σ, ‖A0 +A1G‖∞ ≤ σ.
Therefore I−A0 and I−A0−A1G are invertible and, for H2 = (I−A0)−1(A1+A1G),
H3 = (I −A0 −A1G)−1A1 we have

‖H3‖∞ ≤ ‖H2‖∞ ≤ ‖H1‖∞ ≤ σ < 1.

Proof. We have ‖A0 +A1 +A1G‖∞ = ‖(A0 +A1 +A1G)1‖∞. Moreover, since by
Theorem 2.2 we have G1 = 1 and 1 = (A−1 +A0 +A1)1, then (A0 +A1 +A1G)1 =
(A0 +A1 +A1)1 = 1− (A−1−A1)1 ≤ σ1, by definition of σ. This implies ‖A0 +A1 +
A1G‖∞ ≤ σ. Since A0, A1, G are nonnegative, then ‖A0‖∞ ≤ ‖A0 +A1 +A1G‖∞ ≤ σ
and ‖A0 +A1G‖∞ ≤ σ. By following the same arguments used in the proof of Lemma
2.1 we find that the matrices I−A0 and I−A0−A1G are invertible in L∞. Concerning
H2 we have ‖H2‖∞ = ‖H21‖∞. Moreover,

H21 = (I −A0)−1(A1 +A1G)1 = (I −A0)−1(I −A0 − (A−1 −A1G))1

= 1− (I −A0)−1(A−1 −A1G)1 ≤ 1− (A−1 −A1G)1

= (A0 +A1 +A1G)1 = H11,

where we used the properties (A−1 − A1G)1 > 0 and (I − A0)−1 ≥ I. Concerning
H3, since A11 = (I −A0 −A−1)1 = (I −A0 −A1G− (A−1 −A1G))1 we have

H31 = (I −A0 −A1G)−1A11 = 1− (I −A0 −A1G)−1(A−1 −A1G)1

≤ 1− (I −A0)−1(A−1 −A1G)1 = H21,

where we used the fact that G1 = 1, (A−1 − A1G)1 > 0 and (I − A0 − A1G)−1 ≥
(I −A0)−1.

Observe that, from Lemma 2.1 and from (2.2), it follows that H3 = W−1RW and
‖H3‖∞ = ‖W−1RW‖∞ ≤ γ where γ < 1 is defined in (2.3). This provides a different
bound on the norm of H3. Therefore we have

(4.3) ‖H3‖∞ ≤ τ, τ = min{γ, σ},

with γ and σ defined in (2.3) and (4.2), respectively.
We are ready to prove the following result which shows that the three sequences

generated by (4.1) starting with X0 = 0 monotonically converge to G, convergence
holds in the infinity norm and is linear. Moreover, the convergence of the third
iteration is faster than that of the second one, while the convergence of the second
iteration is faster than that of the first one.

Theorem 4.2. Assume that A−11 > A11. For i ∈ {1, 2, 3} define X
(i)
k+1 =

Fi(X
(i)
k ), k = 0, 1, 2, . . ., where X

(i)
0 = 0 and Fi(X) are given in (4.1). Then

1. the three sequences {X(i)
k } are well defined,

2. 0 ≤ X(i)
k ≤ X

(i)
k+1 ≤ G,
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3. for the error E(i)k = G−X(i)
k we have ‖E(i)k+1‖∞ ≤ ‖Hi‖∞‖E(i)k ‖∞, where Hi,

i = 1, 2, 3 are the matrices defined in Lemma 4.1, so that limk→∞ ‖E(i)k ‖∞ =
0.

Proof. The first iteration is clearly well defined. The second is well defined since,
according to Lemma 4.1, the matrix I − A0 is invertible in L∞. The third iteration
is well defined as long as the matrix I − A0 − A1Xk is invertible. On the other
hand if 0 ≤ Xk ≤ G, the latter matrix is invertible in view of Lemma 4.1 since

‖A0 + A1Xk‖∞ ≤ ‖A0 + A1G‖∞. In order to prove that 0 ≤ X
(i)
k ≤ X

(i)
k+1 ≤ G we

use an induction argument. We prove it for the first iteration, i.e., for i = 1, the same
technique can be used for the other iterations. For notational simplicity we omit the

superscript and write Xk in place of X
(1)
k . Since for X0 = 0 we have X1 = A−1, so

that 0 ≤ X0 ≤ X1 and G −X1 = G − A−1 = (A0 + A1G)G ≥ 0. For the inductive
step, assume that 0 ≤ Xk−1 ≤ Xk ≤ G. We first show that 0 ≤ Xk ≤ Xk+1. From
Xk+1 = A1X

2
k +A0Xk +A−1 and from the property 0 ≤ Xk−1 ≤ Xk we get

Xk+1 ≥ A1X
2
k−1 +A0Xk−1 +A−1 = Xk.

Now consider

G−Xk+1 = A1(G2 −X2
k) +A0(G−Xk) =

= A1((G−Xk)G+Xk(G−Xk)) +A0(G−Xk).
(4.4)

Since G−Xk ≥ 0 then also G−Xk+1 ≥ 0.

Concerning the norm bounds to Ek, for Ek = E(1)k for the sequence defined by F1,
from (4.4) we obtain

(4.5) Ek+1 = A1EkG+A1XkEk +A0Ek.

Since Ek ≥ 0 for any k, then ‖Ek‖∞ = ‖Ek1‖∞, so that

‖Ek+1‖∞ = ‖Ek+11‖∞ ≤ ‖A1Ek1 +A1XkEk1 +A0Ek1‖∞
≤ ‖(A0 +A1 +A1G)Ek1‖∞ ≤ ‖H1‖∞‖Ek‖∞.

Similarly, concerning F2 we obtain

(4.6) Ek+1 = (I −A0)−1A1(EkG+XkEk),

whence
‖Ek+1‖∞ = ‖Ek+11‖∞ ≤ ‖(I −A0)−1A1(I +Xk)Ek1‖∞

≤ ‖(I −A0)−1(A1 +A1G)Ek1‖∞ ≤ ‖H2‖∞‖Ek‖∞.
Concerning F3, we have

(4.7) Ek+1 = (I −A0 −A1Xk)−1A1EkG,

whence
‖Ek+11‖∞ ≤ ‖(I −A0 −A1G)−1A1Ek1‖∞ ≤ ‖H3‖∞‖Ek‖∞.

Observe that the reduction of the error per step of the ith iteration is bounded
from above by ‖Hi‖∞ which are in turn bounded by σ for i = 1, 2 and by τ for i = 3.
These constants are explicitly computable by means of (4.2) and (4.3).

The following result shows convergence properties in the case where X0 is a sto-
chastic matrix, say X0 = I.
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Theorem 4.3. Assume that A−11 > A11. For i ∈ {1, 2, 3} define X
(i)
k+1 =

Fi(X
(i)
k ), k = 0, 1, 2, . . ., where X

(i)
0 ≥ 0, X

(i)
0 1 = 1 and Fi(X) are given in (4.1).

Then
1. the three sequences {X(i)

k } are well defined,

2. X
(i)
k ≥ 0, and X

(i)
k 1 = 1,

3. for the error E(i)k = G−X(i)
k we have the following property: E(i)k 1 = 0, and for

any other eigenvector w 6= 1 of G such that Gw = λw, the sequence w
(i)
k =

E(i)k w satisfies ‖w(i)
k+1‖∞ ≤ ‖Hi(λ)‖∞‖w(i)

k ‖∞, for i = 1, 2 where H1(λ) =

(|λ| + 1)A1 + A0, H2(λ) = (|λ| + 1)(I − A0)−1A1. Moreover, ‖w(3)
k+1‖∞ ≤

|λ| · ‖(I −A0 −A1Xk)−1A1‖∞‖w(3)
k ‖∞, and lim supk

‖w(3)
k+1‖∞

‖w(3)
k ‖∞

≤ |λ|.

Proof. We show that if X ≥ 0 and X1 = 1 then Fi(X) ≥ 0 and Fi(X)1 = 1. For
F1 this property can be easily checked. For F2, since X ≥ 0 and (I −A0)−1 ≥ 0 then
F2(X) ≥ 0. Moreover F2(X)1 = (I −A0)−1(A−1 +A1)1 = (I −A0)−1(I −A0)1 = 1.
Concerning F3, since X1 = 1 then ‖A0 +A1X‖∞ = ‖A0 +A1G‖∞ so that in light of
Lemma 4.1 the matrix I −A0 −A1X is invertible and has nonnegative inverse. This
implies that F3(X) ≥ 0. Moreover, since X1 = 1 then (I − A0 − A1X − A−1)1 = 0

so that F3(X)1 = (I −A0−A1X)−1A−11 = 1. From (4.5) we obtain w
(1)
k+1 = (λA1 +

A1Xk + A0)w
(1)
k so that ‖w(1)

k+1‖∞ ≤ ‖λA1 + A1Xk + A0‖∞‖w(1)
k ‖∞. On the other

hand ‖λA1 +A1Xk +A0‖∞ ≤ ‖|λ|A1 +A1Xk +A0‖∞ = ‖(|λ|A1 +A1Xk +A0)1‖∞ =
‖(|λ|A1 + A1 + A0)1‖∞ = ‖H1(λ)‖∞. Similarly, we proceed with F2 relying on

(4.6). Concerning F3, from (4.7) we have w
(3)
k+1 = λ(I−A0−A1Xk)−1A1w

(3)
k , whence

‖w(3)
k+1‖∞ ≤ |λ|‖(I−A0−A1Xk)−1A1‖∞‖w(3)

k ‖∞. Since A11 < A−11 then ‖(I−A0−
A1Xk)−1A1‖∞ = ‖(I − A0 − A1Xk)−1A11‖∞ ≤ ‖(I − A0 − A1Xk)−1A−11‖∞ = 1.
Taking the limsup for k →∞ we obtain lim supk ‖(I − A0 − A1Xk)−1A1‖∞ ≤ ‖(I −
A0 −A1G)−1A−1‖∞ = ‖G‖∞ = 1. This completes the proof.

The above theorem provides an estimate of the rate of convergence of the pro-

jection wk of the error E(i)k along each eigenvector w of G. In particular, wk = 0 for
w = 1. In the finite dimensional case, this property, together with a compactness

argument, implies convergence of ‖E(i)k ‖∞ to 0 [21]. In the infinite dimensional case,

the compactness arguments cannot be used to prove convergence of ‖E(i)k ‖∞ to 0.
Concerning the speed of convergence of the sequences defined by F1(X) and F2(X),
since ‖H1(λ)‖∞ ≤ ‖H1‖∞ and ‖H2(λ)‖∞ ≤ ‖H2‖∞, then the projection wk of the

error E(i)k , i = 1, 2, along each eigenvector of G converges faster than the infinity
norm of the error obtained with X0 = 0. Concerning the sequence defined by F3(X),

if limk ‖E(3)k ‖∞ = 0, then ‖w(3)
k+1‖∞/‖w

(3)
k ‖∞ ≤ |λ| limk ‖(I − A0 − A1Xk)−1A1‖∞ =

|λ| · ‖H3‖∞. Since |λ| ≤ 1, this inequality shows that the projection wk of the error

E(i)k along each eigenvector of G converges faster than the infinity norm of the error
obtained with X0 = 0. The convergence of the sequence wk is faster the smaller
sup{|λ| : λ 6= 1, λ eigenvalue of G}. It is important to point out that, while in the
finite dimensional case, under mild conditions, 1 is the only eigenvalue of maximum
modulus of G [2], in the infinite dimensional case the situation is more involved. In-
deed, in some situations 1 is the only eigenvalue of modulus 1 and is isolated, in other
situations 1 is an accumulation point of an infinite set of eigenvalues [17]. In this latter
case there is not advantage in choosing a stochastic matrix as starting approximation.
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4.1. Implementation issues. Let g(z) be the solution of minimum modulus of
(2.4) and consider the sequences generated by the fixed point iterations (4.1) obtained
starting with X0 = T (g) + C, where C is any correction. Denote by Xk any one of
these three sequences so that we have Xk = T (g) + Ek, E0 = C, where Ek is the
correction part. In this section we aim to explicit the equation which relates Ek+1 to
Ek.

Consider the first iteration Xk+1 = A1X
2
k + A0Xk + A−1 and denote by F the

correction matrix such that T (g) + F = A1T (g)2 + A0T (g) + A−1. Subtracting the
latter equation from the former and performing formal manipulations yields

(4.8) Ek+1 = F + (A1Ek + S)Ek +A1EkT (g), S = A0 +A1T (g).

This equation provides a more efficient way to implement the first iteration since it
involves multiplications of QT matrices and correction matrices and avoids the multi-
plication of QT matrices having a nonzero symbol. In this version, the precomputation
of g, S and F is needed.

Consider the second iteration Xk+1 = (I−A0)−1(A1X
2
k +A−1). Subtract it from

the equation T (g) = (I−A0)−1(A1T (g)2+A−1)−(I−A0)−1F and performing formal
manipulations yields

(4.9)
Ek+1 = Ŝ((T (g) + Ek)Ek + EkT (g)) + S̃,

Ŝ = (I −A0)−1A1, S̃ = (I −A0)−1F.

Also in this case the precomputation of T (g), Ŝ, F and S̃ is needed.
Concerning the third iteration and proceeding similarly we arrive at the recursion

(4.10)
Ek+1 = V̂ Ek(I −A1(T (g) + Ek)−A0)−1A−1 + Ṽ ,

V̂ = (I −A1T (g)−A0)−1A1, Ṽ = (I −A1T (g)−A0)−1F.

Also in this case the precomputation of T (g), V̂ , and Ṽ is needed. However, at each
step the inverse of a QT matrix must be computed.

The iterations (4.8)–(4.10) can be started with X0 = T (g), that is, E0 = 0.
Alternatively, they can be started with X0 = T (g) + veT1 , where eT1 = (1, 0, . . .) and v
is chosen in such a way that X0 is row-stochastic so that convergence is faster. This
can be accomplished by setting E0 = veT1 .

5. Newton’s method. Rewrite equation A1X
2 +A0X +A−1 = X as

(5.1) L(X) = 0, L(X) := A1X
2 + (A0 − I)X +A−1.

Newton’s method applied to equation (5.1) generates the sequence

(5.2) Xk+1 = Xk − Zk, k = 0, 1, . . . ,

where the matrix Zk solves the equation L′(Zk) = L(Xk), and L′(H) = A1XH +
A1HX + (A0 − I)H is the Fréchet derivative of L(X) at X applied to the matrix H.
More specifically, Zk solves the following Sylvester equation

(5.3) (A1Xk +A0 − I)Zk +A1ZkXk = L(Xk).

Observe that we may write

(5.4) Zk = −
∞∑
i=0

Sik(I −A0 −A1Xk)−1L(Xk)Xi
k, Sk = (I −A0 −A1Xk)−1A1,
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provided that ‖(I−A0−A1Xk)−1‖∞ is bounded from above, ‖Sk‖∞ < 1 and ‖Xk‖∞ ≤
1 so that we have

(5.5) ‖Zk‖∞ ≤
‖L(Xk)‖∞‖(I −A0 −A1Xk)−1‖∞

1− ‖Sk‖∞
.

Moreover, we have

(5.6) L(Xk+1) = A1Z
2
k .

The latter equality can be proved by observing that in general, for Y = X −H, we
have L(Y ) = A1(X−H)2 + (A0− I)(X−H) +A−1 = L(X)−L′(H) +A1H

2 so that,
if H is such that L′(H) = L(X) as in a Newton step, then L(Y ) = A1H

2.
Another useful property is the following. Equation (5.2) can be rewritten as

Zk = Ek+1 − Ek, where Ek = G − Xk, and L(Xk) can be rewritten as L(Xk) =
L(Xk)− L(G) = −A1(EkG+XkEk)− (A0 − I)Ek. Replace these two representations
for Zk and L(Xk) in (5.3), and get

(I −A0 −A1Xk)Ek+1 −A1Ek+1Xk = A1E2k .

By following the same arguments used to arrive at (5.4), we may rewrite the above
equation as

Ek+1 − (I −A0 −A1Xk)−1A1Ek+1Xk = (I −A0 −A1Xk)−1A1E2k

and get

(5.7) Ek+1 =

∞∑
i=0

Si+1
k E2k Xi

k.

The following result extends to QT matrix coefficients the convergence results
valid in the finite dimensional case [16]:

Theorem 5.1. Assume that A−11 > A11. Let Xk, k = 0, 1, . . . , be the sequence
generated by (5.2) and (5.3) starting with X0 = 0. Then, for any k = 0, 1, 2, . . .,

1. equation (5.3) has a solution Zk such that ‖Zk‖∞ ≤ β, where

β =
2‖W−1‖∞

1− ‖W−1A1‖∞
,

for W = I −A0 −A1G, so that Xk+1 is well defined;
2. Zk ≤ 0, L(Xk+1) ≥ 0 and 0 ≤ Xk ≤ Xk+1 ≤ G;
3. limk→∞(Ek)i,j = 0 for any i, j ≥ 1, where Ek = G−Xk;
4. ‖Ek+1‖∞ ≤ τ

1−τ ‖Ek‖
2
∞, ‖Zk+1‖∞ ≤ τ

1−τ ‖Zk‖
2
∞, where τ = min{γ, σ}, with

γ and σ defined in (2.3) and (4.2), respectively.

Proof. We prove properties 1 and 2 by induction on k. For k = 0 we have
X0 = 0, Z0 = −(I − A0)−1A−1 ≤ 0, L(X1) = A1Z

2
0 ≥ 0, X1 = −Z0 ≥ X0 and

X1 = (I − A0)−1A−1 ≤ G. Moreover, clearly ‖Z0‖∞ ≤ β. For the inductive step,
assume that properties 1 and 2 are valid for k and prove them for k+1. We show that
‖Zk+1‖ ≤ β. Consider (5.5). Since by induction L(Xk+1) ≥ 0 then ‖L(Xk+1)‖∞ =
‖L(Xk+1)1‖∞ ≤ ‖(A1X

2
k+1 + A0Xk+1 + A−1)1‖∞ + ‖Xk+11‖∞. Moreover, since

Xk+1 ≤ G then Xk+11 ≤ G1 so that ‖L(Xk+1)‖∞ ≤ 2. From Xk+1 ≤ G it follows also
A0 +A1Xk+1 ≤ A0 +A1G so that (I−A0−A1Xk+1)−1 ≤ (I−A0−A1G)−1 = W−1,
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whence ‖(I − A0 − A1Xk+1)−1‖∞ ≤ ‖W−1‖∞. Similarly, ‖Sk+1‖∞ ≤ ‖(I − A0 −
A1G)−1A1‖∞ = ‖W−1A1‖∞ < 1 in view of Lemma 4.1. From (5.4) and (5.5) we
get ‖Zk+1‖∞ ≤ β. The property Zk+1 ≤ 0 follows from (5.4) since Sk+1 ≥ 0,
(I − A0 − A1Xk+1)−1 ≥ 0, and L(Xk+1) ≥ 0 by the inductive assumption. The
inequality L(Xk+2) ≥ 0 follows from (5.6) since Zk+1 ≤ 0. Consequently Xk+2 =
Xk+1 − Zk+1 ≥ Xk+1. The property Xk+2 ≤ G follows from (5.7) since Ek+1 ≥ 0,
Sk+1 ≥ 0 and Xk+1 ≥ 0. Given i, j consider the sequence (Ek)i,j for k = 0, 1, . . .. This
sequence is non-increasing and bounded from below by 0 therefore it has a limit. The
value of the limit cannot be positive since G is the minimal nonnegative solution to the
matrix equation. From the representation (5.7) of Ek+1, since ‖Xk‖∞ ≤ ‖G‖∞ ≤ 1,
and ‖Sk‖∞ ≤ ‖(I −A0 −A1G)−1A1‖∞ ≤ τ < 1 in view of (4.3), we deduce that

‖Ek+1‖∞ ≤
τ

1− τ
‖Ek‖2∞.

Similarly we can do for ‖Zk+1‖∞.

6. Perturbation results. For the case where the coefficient matrices are finite,
Higham and Kim [13] derived a condition number Ψ(X) for a solvent X of a general
quadratic matrix equation of the kind (1.1) namely,

Ψ(X) = ‖P−1[α(X2)T ⊗ In, βXT ⊗ In, γI2n]‖2/‖X‖F ,

where P = In⊗A1X+XT⊗A1+In⊗(A0−I) and α, β, γ are nonnegative parameters.
However, when the coefficient matrices are semi-infinite, there are cases where

P−1 does not exist or ‖X‖F = ∞, so the definition of Ψ(X) does not apply. In this
section, we take into account the structure of the coefficient matrices and derive a
structured condition number for the minimal nonnegative solution of equations (1.1)
and (1.2). Without loss of generality we consider only equation (1.1).

Consider the perturbed matrix equation obtained from (1.1) by replacing the
coefficients Ai by Ai + ∆Ai

where ∆Ai
= T (δi) + Eδi ∈ QT , Ai + ∆Ai

≥ 0, for
i = −1, 0, 1, and (A1 + ∆A1

+ A0 + ∆A0
+ A−1 + ∆A−1

)1 = 1. Denote X + ∆X a
solution of the perturbed equation so that we may write

(A1 + ∆A1)(X + ∆X)2+(A0 + ∆A0)(X + ∆X) +A−1 + ∆A−1 = X + ∆X .(6.1)

The analysis is separated into two parts, that is, the the analysis of the structured
condition number of the Toeplitz part and the analysis of the condition number of
the whole matrix.

6.1. Toeplitz part. In this section we provide a perturbation result for the
function g(z) which is the solution of minimum modulus of the scalar equation (2.4).

For the sake of notational simplicity, we omit the variable z from the symbols,
say, we write g in place of g(z) and ai in place of ai(z).

Under the assumption that the matrix coefficients Ai + ∆Ai
of equation (6.1)

still satisfy the condition Ai + ∆Ai
≥ 0,

∑1
i=−1(Ai + ∆Ai

)1 = 1, for Theorem 2.2
the minimal nonnegative solution of (6.1) can be written as G + ∆G , where ∆G =
T (δg) + Eδg ∈ QT and g + δg is the solution of minimum modulus of the equation

a−1 + δ−1 + (a0 + δ0)µ+ (a1 + δ1)µ2 = µ.
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Taking the difference of the above equation with (2.4), where we set µ = g + δg and
λ = g, we obtain

δ−1 + δ0(g + δg) + δ1(g + δg)
2 + (a0 − 1)δg + a1((g + δg)

2 − g2) = 0.

Whence, neglecting higher order terms in the perturbations we get

δ−1 + δ0g + δ1g
2 + (a0 − 1)δg + 2a1gδg

.
= 0,

where
.
= means equality up to higher order terms with respect to the perturbations.

This yields

(6.2) δg
.
=
δ1g

2 + δ0g + δ−1
1− 2a1g − a0

.

Note that g(z), a0(z) and a1(z) have nonnegative coefficients so that ‖g‖w =∑
i∈Z gi = g(1) = 1, and |2a1(z)g(z) + a0(z)| ≤ 2a1(1)g(1) + a0(1) = 2a1(1) + a0(1) =

1 − a−1(1) + a1(1) < 1, due to (2.5). This way, we have ‖(1 − 2a1g − a0)−1‖w =
(1− 2a1(1)g(1)− a0(1))−1 = (a−1(1)− a1(1))−1. Whence, from (6.2), we obtain

‖δg‖w ≤̇ (a−1(1)− a1(1))−1‖δ1g2 + δ0g + δ−1‖w,

where ≤̇ means inequality up to higher order terms with respect to the perturbations.
Therefore we arrive at the bound

(6.3) ‖δg‖w ≤̇
1

a−1(1)− a1(1)

(
‖δ1‖w + ‖δ0‖w + ‖δ−1‖w

)
.

If we measure the perturbations by

ε = max
{ ‖δi‖w
‖ai‖w

, i = −1, 0, 1
}
,

we have ‖δi‖w ≤ ε‖ai‖w, moreover, since ‖a−1‖w +‖a0‖w +‖a1‖w = a−1(1) +a0(1) +
a1(1) = 1, the relative variation of the symbol is bounded by

(6.4)
‖δg‖w
‖g‖w

= ‖δg‖w ≤
1

a−1(1)− a1(1)
ε+O(ε2).

It follows from (6.4) that condT (g) := 1
a−1(1)−a1(1) is an upper bound to the

condition number of the Toeplitz part of G.

6.2. Whole matrix. Expanding (6.1), omitting the second and higher order
terms in the perturbations, and setting X = G lead to

(6.5) (I −A1G−A0)∆G −A1∆GG
.
= (∆A1G

2 + ∆A0G+ ∆A−1).

Now we prove some properties that will be useful to estimate the condition number
of the whole solution.

Let ∆A := ∆A1
G2 + ∆A0

G + ∆A−1
. According to (2.2), equation (6.5) can be

written as

(6.6) F (∆G)
.
= W−1∆A
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where F : QT → QT is the map defined by

F (Y ) = Y − (W−1RW )Y G.

Now, we prove that the map F (Y ) is invertible in L∞, that is, F−1 has bounded
infinity norm. By Lemma 2.1, we have ‖W−1RW‖∞ ≤ γ < 1 and ‖G‖∞ = 1 so
that the series

∑∞
k=0(W−1RW )kV Gk is convergent for any V ∈ L∞. Therefore, if

V = F (Y ) then Y =
∑∞
k=0(W−1RW )kV Gk. Thus, we get

∆G = F−1(W−1∆A) =

∞∑
k=0

(W−1RW )k(W−1∆A)Gk.

Since
∑∞
k=0 ‖W−1RW‖k∞ = 1/(1−‖W−1RW‖∞), taking norms in the above expres-

sion and applying Lemma 2.1 yields

(6.7) ‖∆G‖∞ ≤
‖W−1‖∞

1− ‖W−1RW‖∞
‖∆A‖∞ ≤

1

θ(1− γ)
‖∆A‖∞.

Whence we conclude with the following

Theorem 6.1. If A−11 > A11, then for the perturbation ∆G we have

(6.8)

‖∆G‖∞ ≤
‖W−1‖∞

1− ‖W−1RW‖∞
‖∆A‖∞

≤ 1

θ(1− γ)
‖∆A‖∞ ≤

1

θ(1− γ)
(‖∆A−1

‖∞ + ‖∆A0
‖∞ + ‖∆A1

‖∞),

where θ and γ are defined in (2.3) and ∆A = ∆A1
G2 + ∆A0

G+ ∆A−1
.

From the above result it turns out that ‖W−1‖∞/(1−‖W−1RW‖∞) is an estimate
of the conditioning of the problem, while 1/(θ(1−γ)) provides an upper bound. Since
1− a1(1)/a−1(1) = (a−1(1)− a1(1))/a−1(1), we may rewrite the upper bound to the
conditioning in the following form which is closer to the expression obtained for the
Toeplitz part of G in Section 6.1.

1

θ(1− γ)
= max

(
a−1(1)

a−1(1)− a1(1)
,

b−1(1)

b−1(1)− b1(1)

)
1

min(a−1(1), b−1(1))
.

It is interesting to observe that if a−1(1) ≤ b−1(1) and a−1(1)
b−1(1)

≤ a1(1)
b1(1)

, which in

turn is verified if a−1(1) ≤ b−1(1) and b1(1) ≤ a1(1), then

1

θ(1− γ)
=

1

a−1(1)− a1(1)
,

that is, the conditioning of the Toeplitz part coincides with the conditioning of the
whole problem.

It is interesting to point out that, since RW = A1 (see equation (2.2)), the esti-
mate of the condition number ‖W−1‖∞/(1− ‖W−1RW‖∞), appears in the uniform
bound β to the norm of the Newton correction Zk introduced in Theorem 5.1. Con-
sequently, if the quadratic matrix equation is well conditioned, the uniform bound to
the norm of Zk is smaller.
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Case λ1 λ2 µ1 µ2 p q
1 1 0 1.5 2 1 0
2 1 0 2 1.5 1 0
3 0 1 1.5 2 0 1
4 0 1 2 1.5 0 1
5 1 1 2 2 0.1 0.8
6 1 1 2 2 0.8 0.1
7 1 1 2 2 0.4 0.4
8 1 1 10 10 0.5 0.5
9 1 5 10 15 0.4 0.9
10 5 1 15 10 0.9 0.4

Table 6.1
Parameters defining the matrices A−1, A0, A1 in the 2-node Jackson network of [24]

6.3. A simple example. This example is taken from Example 6.2 in [24], where
a continuous time Markov process modeling a two-node Jackson network is considered.
Here, the matrices are modified by means of the uniformization technique [19] in order
to represent a discrete-time model. In details,

A−1 = α

 (1− q)µ2 qµ2

(1− q)µ2 qµ2

. . .
. . .

 , A1 = α

 λ2
pµ1 λ2

. . .
. . .

 ,

A0 = α

 −(λ1 + λ2 + µ2) λ1
(1− p)µ1 −(λ1 + λ2 + µ1 + µ2) λ1

. . .
. . .

. . .

+ I,

where the parameters λ1, λ2, µ1, µ2, p, q are chosen as in Table 6.1 and α = (λ1 +λ2 +
µ1 +µ2)−1. Each case denotes one instance of the two-node Jackson network, formed
by two servers and two queues, where customers arrive at nodes 1 and 2 accord-
ing to independent Poisson processes with rates λ1 and λ2, respectively. Customers
are served according to a first-come-first-served discipline, service times at nodes 1
and 2 are independent and exponentially distributed with means 1/µ1, 1/µ2. After
completing service at node 1, customers enter node 2 with probability p or leave the
system with probability 1− p, where 0 < p < 1. After completing service at node 2,
customers enter node 1 with probability q or leave the system with probability 1− q,
where 0 < q < 1.

In [24], 10 cases defined by the parameters given in Table 6.1 are analyzed. It
can be easily seen that the condition A−11 > A11 holds for cases 1, 3, 4, 5, 7, 8, 9,
while the same condition holds in the cases 2, 6 and 10 for the flipped problems where
phases and levels are exchanged.

For the flipped problem, the coefficient matrices are

A−1 = α

 (1− p)µ1 pµ1

(1− p)µ1 pµ1

. . .
. . .

 , A1 = α

 λ1
qµ2 λ1

. . .
. . .

 ,

A0 = α

 −(λ1 + λ2 + µ1) λ2
(1− q)µ2 −(λ1 + λ2 + µ1 + µ2) λ2

. . .
. . .

. . .

+ I.
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Problem Conditioning ‖δg‖w δg-bound ‖∆G‖∞ ∆G-bound

1 9.0000 3.0601e-09 1.3211e-08 2.3583e-09 1.9817e-08
2∗ 4.5000 1.5565e-09 4.8528e-09 1.5649e-09 4.8528e-09
3 4.5000 2.9937e-09 9.3015e-09 4.2850e-09 2.0256e-08
4 9.0000 4.7978e-09 2.0256e-08 2.5845e-09 1.8119e-08
5 7.5000 5.9099e-09 1.2456e-09 1.1106e-09 5.9334e-09
6∗ 7.5000 4.4110e-10 8.2441e-09 3.8574e-10 8.3809e-09
7 30.0000 5.4766e-09 6.8300e-08 5.4809e-09 8.1645e-08
8 5.5000 4.9898e-10 4.0333e-09 5.9838e-10 4.9549e-09
9 5.1667 7.7413e-10 2.8017e-09 7.7413e-10 3.1621e-09

10∗ 5.1667 6.3154e-10 3.8820e-09 5.3199e-10 4.4169e-09

Table 6.2
Conditioning of the matrix equation for the 2-node Jackson network of [24]: actual perturbations

in the solution and in the Toeplitz part and related upper bounds.

If we perturb the parameters λ1, λ2, µ1, µ2 by

λ̃i = λi(1 + ελi ) µ̃i = µi(1 + εµi ), i = 1, 2,

ελi , ε
µ
i ∈ [10−8, 2 · 10−8],

where the perturbations are randomly chosen, then we get the perturbed matrices
A−1 + ∆A−1

, A0 + ∆A0
and A1 + ∆A1

.
Note that a−1(1) = b−1(1), a−1(1) − a1(1) < b−1(1) − b1(1) holds true for both

the original and the flipped problems, it follows 1
θ(1−γ) = 1

a−1(1)−a1(1) , that is, the

conditioning of the Toeplitz part coincides with the conditioning of the whole problem.
We denote by “Conditioning” the upper bound on the condition number for the

minimal nonnegative solution G, that is, 1
θ(1−γ) . Moreover, we denote by δg-bound

and ∆G-bound, respectively, the perturbation bound (6.3) on ‖δg‖w and the bound
(6.8) on ‖∆G‖∞. In Table 6.2, we report the upper bound on the condition number
for the minimal nonnegative solution G of equation (1.1), and we compare the pertur-
bation bound (6.3) on the Toeplitz part of G and the bound on the solution G with
the corresponding perturbation errors.

It can be seen from Table 6.2 that the upper bound 1
θ(1−γ) can serve as a very

good estimate of the conditioning of the problem. Inequalities (6.3) and (6.8) provide
very sharp and revealing perturbation bounds to the Toeplitz part and to the solution
G with respect to small perturbations on the coefficients.

7. Computational issues and numerical experiments. Observe that, since

the class QT is an algebra, then all the matrices X
(i)
k generated by the fixed point

iterations of Section 4 belong to QT and each fixed point iteration can be easily
implemented in Matlab relying on the CQT-Toolbox of [6]. Concerning Newton it-
eration, a crucial role is played by the solution of the Sylvester-like equation (5.3).
In the case where the coefficients have finite size n, this equation can be solved by
the Bartels-Stewart algorithm [1] in O(n3) arithmetic operations. The case of infinite
size coefficients is much more complicated. For quasi-Toeplitz matrices, the problem
has been analyzed in [28] by using rational Krylov subspaces techniques where it is
proved that Zk ∈ QT under suitable assumptions that are satisfied by the condition
A−11 > A11. In the numerical experiments reported in this section we have used the
implementation of [28] to solve (5.3).

In the implementation of the algorithms we have exploited the decomposition of G
as the sum of a Toeplitz part and a correction. We have implemented the computation
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0 I T (g) T (g) + veT1
F1 58.6 54.7 65.7 69.1
F2 37.2 34.8 40.0 28.9
F3 59.5 56.2 73.3 52.2

0 I T (g) T (g) + veT1
F1 735 654 668 472
F2 466 416 421 297
F3 242 215 217 152

Table 7.1
Two-node Jackson network for Problem 7 of Table 6.1: CPU time in seconds (left) and number

of steps (right) required by the three fixed point iteration to arrive at a residual error at most
5.0 · 10−14 starting with different values of X0.

of the Toeplitz part, i.e., of the coefficients of g(z), relying on the evaluation and
interpolation strategy at the roots of 1 with automatic handling of the number of
interpolation points described in Algorithm 3.1. Concerning the computation of the
correction part, we have applied the three fixed point iterations analyzed in Section
4 by following two strategies: the implementation in the standard version (4.1) and
in the version which only computes the correction part, see (4.8), (4.9) and (4.10).
In the standard version, we have used the pre-computation of the Toeplitz part by
setting X0 = T (g) or X0 = T (g) + veT1 where e1 = (1, 0, . . .)T and v is chosen so
that X0 is row-stochastic. Since there is not much difference in the performances of
the version based on computing only the correction and the version where the whole
matrix is computed, we report only the results concerning the latter version.

For each fixed point iteration, we have also tested different starting approxima-
tions, namely, X0 = 0, X0 = I.

We have compared the three fixed point iterations to Newton’s iteration and to the
algorithm of cyclic reduction (CR) analyzed in [4] which, in the case of finite matrices,
is the method of choice commonly used in practice. For each experiment, we report
the number of iterations, and CPU time needed to reach the bound ‖A1X

2 + (A0 −
I)X+A−1‖∞ ≤ ε to the residual error where ε = 5.0·10−14. We have considered some
test problems modeling real world networks. More precisely, the “Two-node Jackson
network” of Example 6.2 in [24], reported in Section 6.3, and the model “Assistance
from an idle server” of [24] with different choices of the parameters, together with a
general random walk in the quarter plane where the assigned probabilities have been
chosen in such a way to have long queues in the system.

7.1. Two-node Jackson network. The model that we consider has been de-
scribed in Section 6.3. Among the 10 problems in the list of Table 6.1, we report
the results of Problem 7 which is the most ill-conditioned in the list, together with
the case obtained with different values of the parameters λi, µi, p and q which make
the matrix G numerically very large so that the computational effort is substantially
large.

Figure 7.1 concerns Problem 7 in the list of Table 6.1. The first three graphs
report the residual errors at each step for different values of X0. The fourth graph
compares the residual errors of the three iterations for X0 = T (g) + veT1 . In Table
7.1 it is reported the CPU time in seconds (left) together with the number of steps
(right) required by the three iterations to arrive at a residual error at most 5.0 ·10−14.
The computation of the symbol g(z) is very inexpensive since the coefficients gi are
computed in 0.003 seconds. For this problem, cyclic reduction provides the solution
in just 8 steps and in 1.97 seconds, while Newton iteration requires 8 steps but takes
a larger amount of seconds, i.e., 256.8.

We may observe that in this case CR is the most efficient algorithm and that the
results of Theorems 4.2 and 4.3 are respected. In fact the iteration given by F3 with
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Fig. 7.1. Two-node Jackson network for Problem 7 of Table 6.1: Residual error per step in
the three functional iterations F1, F2, F3 for different values of the initial matrix X0. In the fourth
graph, comparisons of the errors for the three iterations with X0 = T (g) + veT1 .

0 I T (g) T (g) + veT1
F1 102.8 96.0 17.5 16.0
F2 49.0 46.6 9.8 9.8
F3 4981.0 4502.0 997.0 913.0

0 I T (g) T (g) + veT1
F1 806 738 103 100
F2 310 285 47 46
F3 169 149 37 35

Table 7.2
Two-node Jackson network for λ1 = 5, λ2 = 0.7, µ1 = 2, µ2 = 2, p = 0.5, q = 0.5: CPU time

in seconds (left) and number of steps (right) required by the three fixed point iteration to arrive at
a residual error at most 5.0 · 10−14 starting with different values of X0. Cyclic reduction requires 8
steps for the overall CPU time of 70.8 seconds.

X0 = T (g) + veT1 is the fastest one in terms of number of steps. While concerning the
CPU time, the iteration F2 with X0 = T (g) + veT1 is the fastest.

Table 7.2 concerns the case of a Two-node Jackson network with the choice of
parameters given by λ1 = 5, λ2 = 0.7, µ1 = 2, µ2 = 2, p = 0.5 and q = 0.5. In this
model, seen as a random walk in the quarter plane, the overall probability to move
right is higher than the overall probability to move left, while the probability to move
down is higher than the probability to move up. The table reports the CPU time
in seconds (left) together with the number of steps required by the three iterations
(right) to arrive at a residual error at most 5.0 ·10−14. The computation of the symbol
g(z) remains almost inexpensive even though the numerical length of the coefficient
vector of the symbol g(z) is quite large, in fact the coefficients gi are computed in less
than 0.007 seconds, and the size of the coefficient vector is 31 for the coefficients of the
negative powers of z and 8424 for the coefficients of the positive powers, respectively.
The numerical size of the correction is 28× 6937.

For this problem, cyclic reduction provides the solution in 8 steps and in 70.8
seconds, while Newton iteration requires 8 steps and takes 782 seconds. In this case,
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Fig. 7.2. Two-node Jackson network for λ1 = 5, λ2 = 0.7, µ1 = 2, µ2 = 2, p = 0.5, q = 0.5:
Solution G. In the upper part, the log-scale graph of the coefficients gi of the symbol for i ≤ 0
(left) and for i ≥ 0 (right). In the lower part the log-scale graph of the absolute value of the whole
correction (left) together with a zoom (right).

due to the large size of the matrices involved in the computation of matrix inverses,
CR takes a much larger time than the simple functional iterations given by F1 and
F2 which either do not involve inversion or require just only one matrix inversion.
While iteration given by F2 takes less than 10 seconds, the iteration given by F3,
even though is the fastest in terms of number of steps, needs a large CPU time. In
fact, similarly to CR, it requires a matrix inversion at each step which becomes more
expensive as the approximation approaches the limit. Newton iteration has the same
convergence features as CR, however, the larger cost of solving a Sylvester equation
makes this iteration much slower than the other ones at least for this problem.

In this model, increasing the values of λ1 makes the size of the output much
larger. In particular, with values λ1 ≥ 6, cyclic reduction breaks down for memory
overflow while F2(X) provides the solution with a slight increase of the CPU time.

Figure 7.2 provides the solution G in log scale where the Toeplitz part and the
correction parts are separately represented.

7.2. Assistance from idle server. Here we consider a class of queueing models
for a system with two servers and two queues. Arrivals to queues 1 and 2 occur as
independent Poisson processes with parameters λ1 and λ2, respectively. The service
times of servers 1 and 2 are exponentially distributed with parameters µ1 and µ2

respectively. Each server serves its own queue according to a first-come-first-served
discipline. If one of the queues is empty, the server for that queue assists the other
server, doubling the latter’s service rate. If there is an arrival to a queue while its
server is assisting the other queue, the server immediately ceases assisting and serves
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Fig. 7.3. Assistance from idle server model from [24] for λ1 = 0.01, λ2 = 2.9, µ1 = 0.03,
µ2 = 2.0: Residual error per step in the three functional iterations F1, F2, F3 for different values of
the initial matrix X0. In the fourth graph, comparisons of the errors for the three iterations with
X0 = T (g) + veT1 .

0 I T (g) T (g) + veT1
F1 * * 204.8 191.6
F2 16.4 13.7 4.6 3.9
F3 405.1 402.6 218.3 183.6

0 I T (g) T (g) + veT1
F1 * * 844 782
F2 42 40 10 9
F3 26 25 9 7

Table 7.3
Assistance from idle server model from [24] for λ1 = 0.01, λ2 = 2.9, µ1 = 0.03, µ2 = 2.0:

CPU time in seconds (left) and number of steps (right) required by the three fixed point iterations to
arrive at a residual error at most 5.0 · 10−14 starting with different values of X0. A “∗” denotes a
number of steps greater than 1000. Cyclic reduction requires 5 steps and 17 seconds of CPU time.

its own queue. This stochastic process is ergodic if and only if ρ1 + ρ2 < 2, where
ρi = λi/µi, i = 1, 2.

For this model, the matrices A−1, A0, A1 are given by A−1 = diag(2µ1, µ1, µ1, . . .),
A0 = trid(µ2,−λ1 − λ2 − µ1 − µ2, λ2) + (µ2 − µ1)e1e

T
1 , A1 = λ1I.

In this example, we have chosen the values of the parameters in order that the
numerical size of the matrix G is substantially large, namely, λ1 = 0.01, λ2 = 2.9,
µ1 = 0.03, µ2 = 2.0.

The situation is analogous to that of the second example in Section 7.1 where
the methods based on functional iterations perform better than cyclic reduction and
Newton iteration. The graphs in Figure 7.3 and the values in Table 7.3 synthesize
the behavior of the algorithms. Cyclic reduction takes about 17 seconds of CPU
while Newton iteration about 600 seconds. Slightly increasing the value of λ1, CR
breaks down for memory overflow while functional iterations still compute correctly
the solution G.
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7.3. Random walk in the quarter plane. Here we consider an example where
the condition A−11 > A11 is satisfied everywhere exept in the first component. The
example describes a random walk in the quarter plane where a particle can occupy
positions in a grid and we know the probabilities that the particle moves to the
neighboring positions. In order to better describe the test problem, we denote H =
(hi,j)i,j=−1,1 the matrix with the probabilities of transition in the inner part of the
quarter plane, while we denote Y = (yi,j) the 3 × 2 matrix with the probabilities
of transition in the y axis. These two matrices fully describe the coefficients Ai
which can be written as Ai = T (ai) + Ei where ai(z) =

∑1
j=−1 hi,jz

j and Ei =
e1[yi,0 − hi,0, yi,1 − hi,1, 0, . . .], compare with (2.1).

The random walk of this example is obtained with the values

H =
1

9

1 0 1
2 0 0
2 2 1

 , Y =
1

3

1 1
0 1
0 0


so that the condition A−11 > A11 is satisfied in all the components but the first.

For this problem, there exist two nonnegative solutions G and Ĝ to equation (1.1)

which satisfy the inequality G ≤ Ĝ. Moreover Ĝ is stochastic while G is substochastic.
The two solutions have the same symbol g(z) and differ only for the correction part.
Starting with X0 = 0 or with X0 = T (g) the sequences generated by the functional
iterations converge to G. Starting with X0 = I or X0 = T (g) + veT1 the sequences

converge to Ĝ, while CR and Newton iteration converge to G.
The results of this test are summarized in Table 7.4. Both CR and Newton

iteration take 23 steps in order to arrive at numerical convergence. However CR takes
more than 8 minutes of CPU time while Newton iteration just 3.4 seconds. The large
amount of CPU time taken by CR is due to the fact that the inverse matrices involved
at each step of CR are QT matrices with a correction having a size which increases
step after step and reaches values larger than 106, while Newton iteration involves QT
matrices with corrections having almost the same size of the correction of G which is
126 × 36. The growth of the sizes of the correction matrices in the algorithms is an
issue which deserves further analysis.

Functional iterations F1, F2 and F3 with X0 = 0 or with X0 = T (g) take a large
number of steps to converge numerically to G while with X0 = I or X0 = T (g) + veT1
the number of iterations is much smaller but the limit of the sequences is the stochastic
solution Ĝ which is not the minimal one.

For this problem, the combination of few steps of CR followed by few steps of
Newton iteration provide a substantial acceleration in terms of CPU time. In fact,
the first iterations of CR, involving matrices of small size, have a low cost. The last
few steps of CR, which have a much higher cost, are replaced by Newton steps.

8. Conclusions. We have analyzed quadratic matrix equations encountered in
the solution of random walk in the quarter plane where the solution of interest is the
minimal nonnegative solution G. This class of equations is characterized by matrix
coefficients with infinite size which belong to the class QT of Quasi-Toeplitz matrices.
We have provided a perturbation analysis ofG, introduced some fixed point algorithms
for computing G and compared their convergence speed. The algorithms rely on
the properties of QT matrices recently investigated in [6]. Numerical experiments
show that in many cases the CPU time and the memory resources required by our
approach are significantly inferior to the ones required by the algorithm of cyclic
reduction, which is considered as the algorithm of choice for this class of problems. The
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F1 F2 F3 F1 F2 F3 CR Newton CR+Newton
iter * * * 285 205 119 23 23 15+10

CPU * * * 3.1 2.3 2.6 524 3.4 0.4+1.5
Table 7.4

Random walk in the quarter plane: Number of iterations and CPU time in seconds. From left
to right: fixed point iterations with X0 = T (g), fixed point iterations with X0 = T (g) + veT1 , cyclic
reduction, Newton iteration with X0 = 0, combination of cyclic reduction and Newton iteration. A
“∗” denotes more than 10000 iterations and a CPU larger than 1000 seconds. Starting the iterations
with X0 = T (g) + veT1 generates sequences converging to the stochastic solution Ĝ, while starting
with X0 = 0 or applying CR, Newton iteration and their combinations generate sequences converging
to the minimal (substochastic) solution G.

effectiveness of Newton iteration depends on the growth of the sizes of the correction
part in the QT matrices generated by the algorithm.
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