Surreal differential calculus and transseries

Alessandro Berarducci

University of Pisa

Stockholm, 15 August 2017

Mathoverflow question

• • •	$\langle \rangle$	a mathoverflo	w.net/ques	stions/278594	/are-su 💍			ð
III Ales	sandro Beare 2016-17	Save to Mendeley	Hotel Mode	erno - Siena, IT	Ale 🗸 Apple	Silvia e Car	nilla 🗸 🛛 Radio 🗸	>>
	Logic Colloquium 20	17 slides upload		nt.number	theory - Are Surr	eal Numbers th	ne same as Trans	+
ma	th overfl	ow		Question	ns Tags	Users	Badges	Una
MathOverflow is a question and answer site for professional mathematicians. Join them; it only takes a minute:			Here's how it works:			(A) (A) (A) Anybody can answer		
Are Surreal Numbers the same as Trans-series?								
I recently found the paper of Berarducci + Mantova [1, 2] saying that surreal numbers are equivalent to trans-series. These are very different objects:								
2	 trans-series are used in physics to correct, Laplace transforms [3] 							
	 Surreal Numbers, originate in Logic and describe combinatorial game theory, but may be used in Analysis [4]. 							
\$	Has anyone check	ed this equivalen	ce? Is it c	correct?				

Mathoverwlow answer

References I

[AvdDvdH15] Matthias Aschenbrenner, Lou van den Dries, and Joris van der Hoeven. The surreal numbers as a universal H-field. *ArXiv 1512.02267*, pages 1–17, dec 2015.

- [BM15] Alessandro Berarducci and Vincenzo Mantova. Surreal numbers, derivations and transseries. arXiv:1503.00315. To appear in: Journal of the European Mathematical Society, pages 1–47, 2015.
- [BM17] Alessandro Berarducci and Vincenzo Mantova. Transseries as germs of surreal functions. arXiv 1703.01995, pages 1–44, 2017.
- [KS05] Salma Kuhlmann and Saharon Shelah. κ-bounded exponential-logarithmic power series fields. Annals of Pure and Applied Logic, 136(3):284–296, nov 2005.

[vdDMM97] Lou van den Dries, Angus Macintyre, and David Marker. Logarithmic-Exponential Power Series. Journal of the London Mathematical Society, 56(3):417–434, dec 1997.

Hahn fields

- Let $(G, <, \cdot, 1)$ be an abelian ordered group.
- The Hahn field $\mathbb{R}((G))$ consists of series $\sum_{i < \alpha} r_i g_i$ where $\alpha \in \mathbf{On}$, $(g_i : i < \alpha)$ is decreasing in G and $r_i \in \mathbb{R}^*$.

•
$$\mathbb{R}((x^{\mathbb{Z}})) =$$
Laurent series (with $x > \mathbb{R})$

- If G is divisible, $\mathbb{R}((G))$ is a real closed field. Ex: $\mathbb{R}((x^{\mathbb{Q}}))$
- The Puiseux series $\bigcup_{d\in\mathbb{N}} \mathbb{R}((x^{\mathbb{Z}/d}))$ are contained in $\mathbb{R}((x^{\mathbb{Q}}))$.
- $\mathbb{R}((G))$ is maximal: it has no extensions with the same value group G and residue field \mathbb{R} .

Summability

- A sequence $(f_i : i \in I)$ in $\mathbb{R}((G))$ is summable if each $g \in G$ appears in finitely many f_i and the union of the supports of the f_i 's is a reverse well ordered subset of G.
- In this case we can define f = ∑_{i∈I} f_i as the unique element of ℝ((G)) such that for all g ∈ G, the coefficient f_g ∈ ℝ is given by ∑_{i∈I}(f_i)_g.
- Dominated convergence fails: $\sum_{i \in I} h_i$ may not exist even if $|h_i| \le |f_i|$ and $\sum_i f_i$ exists.

Defects: no integrals or exp

- The Puiseux series admit a natural derivation but they are not closed under integrals (antiderivatives): ∫ ¹/_x = log(x) is not a Puiseux series.
- They do not admit an exp function: $\exp(x)$ should be bigger than $x^n \forall n \in \mathbb{N}$, but there is not such a Puiseux series.
- R((G)) never admits an exp making it a model of
 T_{exp} = Th(R_{exp}) [KS05].
- The "transseries" overcome these defects, and were instrumental in Écalle's solution of Dulac's problem (a weakening of Hilbert's 16th).
- We shall approach the transseries via the surreal numbers.

Restricted Hahn fields

• Let κ be either **On** or a regular cardinal with $\kappa^{<\kappa} = \kappa$.

- Let $|G| = \kappa$ and let $\mathbb{R}((G))_{sm} \subset \mathbb{R}((G))$ consist of the series of length $< \kappa$.
- For suitable G, it is possible to make ℝ((G))_{sm} into a model of T_{exp} [KS05].
- We can write
 - $(\mathbb{R}((G))_{sm}^{>0}, \cdot) = G \cdot \mathbb{R}^{>0} \cdot (1 + o(1));$ represent x as $rg(1 + \varepsilon)$.
 - $(\mathbb{R}((G))_{sm}, +) = \mathbb{J} \oplus \mathbb{R} \oplus o(1)$, where $\mathbb{J} := \mathbb{R}((G^{>1}))_{sm}$.
- In this case, log must take (1 + o(1)) to o(1), $\mathbb{R}^{>0}$ to \mathbb{R} , and G to a direct summand of $\mathcal{O}(1) := \mathbb{R} \oplus o(1)$, not necessarily equal to \mathbb{J} .

Conway's field No of surreal numbers

Normal form

- The surreal numbers **No** have the form $\mathbb{R}((G))_{sm}$. The group of monomials $G \subset \mathbf{No}^{>0}$ is a proper class, but we only take series $\sum_{i < \alpha} r_i g_i$ whose lenght is a SET
- There is a natural isomorphism $x \mapsto \omega^x$ from (No, +) to $(G, \cdot) \subset (No^{>0}, \cdot)$.

• Thus
$$G = \omega^{No} \subset No$$
 and

$$\mathbf{No} = \mathbb{R}((\omega^{\mathbf{No}}))_{sm},$$

so we can represent $x \in \mathbf{No}$ as

$$\sum_{i<\alpha} r_i \omega^x$$

with $\alpha \in \mathbf{On}$, $r_i \in \mathbb{R}^*$, $x_i \in \mathbf{No}$.

This extends Cantor's normal form for ordinals: $\alpha = \omega^{\alpha_1} n_1 + \ldots + \omega^{\alpha_k} n_k$

Surreal log

Start with a chain isomorphism h : No → No^{>0} with h(x) ≺ ω^x.
 Let log(ω^{ω^x}) = ω^{h(x)} and more generally

$$\log(\omega^{\sum_i r_i \omega^{x_i}}) = \sum_i \omega^{h(x_i)} r_i$$

This defines log on $G = \omega^{No}$.

• We extend it to $No^{>0}$ by

$$\log(r\omega^{x}(1+\varepsilon)) = \log(r) + \log(\omega^{x}) + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} \varepsilon^{n}$$

- This makes No into a model of T_{exp} .
- Normal form: since ω^{No} = exp(J), every x ∈ No can be written as

$$\sum_{i<\alpha} r_i e^{\gamma_i}$$

with $\gamma_i \in \mathbb{J} \subseteq \mathbf{No}$.

Derivation

We have seen that

$$\mathsf{No} = \mathbb{R}((\omega^{\mathsf{No}}))_{sm} = \mathbb{J} \oplus \mathbb{R} \oplus o(1)$$

 \blacksquare On the other hand $e^{\mathbb{J}}=\omega^{\mathbf{No}}$ so we also have

$$\mathsf{No} = \mathbb{R}((e^{\mathbb{J}}))_{sm}$$

Thus every $x \in No$ can be uniquely written either in the form

$$\sum_{i<\alpha} r_i \omega^{\mathsf{x}_i} \in \mathbb{R}((\omega^{\mathsf{No}}))_{sm}$$

with $x_i \in \mathbf{No}$, or in the form

$$\sum_{i$$

with $\gamma_i \in \mathbb{J}$.

• [BM15]: There is a derivation ∂ on **No** such that $\partial \omega = 1$ and

$$\partial\left(\sum_{i<\alpha}r_ie^{\gamma_i}\right)=\sum_{i<\alpha}r_ie^{\gamma_i}\partial\gamma_i$$

Transseries

- Omega-series: Let ℝ⟨⟨ω⟩⟩ be the smallest subfield of No containing ω and closed under exp, log and all sums of summable sequences. Ex. ∑_{n∈ℕ} ωⁿ log(ω) / exp_n(ω). On this subfield (a proper class) the derivation is unique.
- Transseries: Let ℝ((ω))^{LE} ⊂ ℝ⟨⟨ω⟩⟩ be the set of all f ∈ No which can be obtained from ℝ(ω) by finitely many applications of ∑,exp,log.

• $\omega^n = \exp(n \log(\omega))$ is obtained in 3 steps (independent of n).

- $\sum_{n} n! \omega^{-1-n} \exp(\omega) = \int \frac{\exp(\omega)}{\omega}$ is a transseries.
- $\sum_{n \in \mathbb{N}} \log_n(\omega)$ is an omega-series, not a transseries.
- [BM17]: There is a natural isomorphism between $\mathbb{R}((\omega))^{LE}$, as defined above, and the LE-series of [vdDMM97].

Hardy fields

- A Hardy field is a field germs at $+\infty$ of functions $f \in C^1(\mathbb{R}, \mathbb{R})$ closed under differentiation. Examples:
 - ℝ(*x*);
 - Hardy L-functions, given by terms involving +, ·, exp, log and constants;
 - Germs of functions definable in $(\mathbb{R}, +, \cdot, \exp)$.
- The natural derivation on a Hardy field is compatible with the order: if $f > ker(\partial, then \partial f > 0.$
- [AvdDvdH15]: Every Hardy field embeds in (No,∂) as a differential field.
- No ≡ ℝ((ω))^{LE} as differential fields [AvdDvdH15]; both closed under integrals (anti-derivatives).

Composition

• [BM17] There is a composition operator $\circ : \mathbb{R}\langle\langle\omega\rangle\rangle \times \mathbf{No}^{>\mathbb{R}} \to \mathbf{No}$ satisfying the following conditions for all $f, g \in \mathbb{R}\langle\langle\omega\rangle\rangle$ and $x \in \mathbf{No}^{>\mathbb{R}}$:

If
$$f = \sum_{i < \alpha} r_i e^{\gamma_i}$$
, then $f \circ x = \sum_{i < \alpha} r_i e^{\gamma_i \circ x}$;

• If $f, g \in \mathbb{R}\langle\langle\omega\rangle\rangle$, then $f \circ g \in \mathbb{R}\langle\langle\omega\rangle\rangle$;

•
$$(f \circ g) \circ x = f \circ (g \circ x);$$

•
$$f \circ \omega = f$$
 and $\omega \circ x = x$.

• The idea is to substitute x for ω in the expression for $f \in \mathbb{R}\langle \langle \omega \rangle \rangle$ and evaluate the resulting expression, but the proof of summability is long and complex.

Example:

$$\sum_{n \in \mathbb{N}} \log_n(\omega) \circ \sum_{n \in \mathbb{N}} \log_n(\omega) = \sum_{n \in \mathbb{N}} \log_n(\sum_{i \in \mathbb{N}} \log_i(\omega))$$

is a well defined surreal number (in fact, an omega-series).

Derivation and composition

 \blacksquare There is a nice interaction between ∂ and $\circ.$

Chain rule:

$$\partial(f \circ g) = (\partial f \circ g) \cdot \partial g$$

Limit formula:

$$\partial f \circ x = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (f \circ (x + \varepsilon) - f \circ x)$$

• Analyticity: for small $\varepsilon \in \mathbf{No}$,

$$f \circ (x + \varepsilon) = \sum_{n \in \mathbb{N}} \frac{1}{n!} (\partial^n f \circ x) \varepsilon^n$$

namely $\hat{f}(x) := f \circ x$ defines a surreal analytic germ $\hat{f} : \mathbf{No}^{>\mathbb{R}} \to \mathbf{No}.$

Conjecture: No equipped with all the \hat{f} for $f \in \mathbb{R}\langle\langle\omega\rangle\rangle$ is tame.

A negative result

- The derivation ∂ : No \rightarrow No in [BM15] is not compatible with a composition \circ : No \times No^{> \mathbb{R}} \rightarrow No.
- I am going to show that if there is a compatible composition, then there is a proper class of elements λ with derivative 1, contradicting the fact that ker(∂) = ℝ is a SET.

• Let
$$\partial \ell_{\omega} = \frac{1}{\prod_{n \in \mathbb{N}} \ell_n}$$
 where $\ell_n = \log_n(\omega)$.

• Let λ be a "log-atomic" number with $\lambda > \exp_n(\omega) \ \forall n \in \mathbb{N}$.

• By [BM15] $\partial \lambda = \prod_n \log_n(\lambda)$. Now,

$$\partial(\ell_{\omega} \circ \lambda) = (\partial\ell_{\omega} \circ \lambda) \cdot \partial\lambda$$
$$= \left(\frac{1}{\prod_{n} \ell_{n}} \circ \lambda\right) \cdot \partial\lambda$$
$$= \left(\frac{1}{\prod_{n} \log_{n}(\lambda)}\right) \cdot \partial\lambda = 1$$