Corso di Laurea in Matematica Elementi di Teoria degli Insiemi: Prova scritta del 18 Sett. 2013

COGNOME E NOME

ll seguente esercizio chiede sostanzialmente di calcolare la cardinalità di un'unione sotto varie ipotesi.

Esercizio 1. Vero o falso? Siano dati un insieme totalmente ordinato (I, \leq) e, per ciascun $i \in I$, degli insiemi X_i ed Y_i tali che $|X_i| = |Y_i|$. Determinare se:

- 1. Valga sempre l'uguaglianza $|\bigcup_{i\in I} X_i| = |\bigcup_{i\in I} Y_i|$.
- 2. Valga $|\bigcup_{i\in I} X_i| = |\bigcup_{i\in I} Y_i|$ sotto l'ipotesi che le funzioni $i\mapsto X_i$ e $i\mapsto Y_i$ siano iniettive.
- 3. Valga $|\bigcup_{i\in I} X_i| = |\bigcup_{i\in I} Y_i|$ sotto l'ipotesi che $i\mapsto X_i$ e $i\mapsto Y_i$ siano crescenti rispetto all'inclusione di insiemi, ovvero per i< j in I si abbia $X_i\subset X_j$ e $Y_i\subset Y_j$ (inclusioni strette).
- 4. Valga $|\bigcup_{i\in I} X_i| = |\bigcup_{i\in I} Y_i|$ supponendo che la cardinalità di I sia minore o uguale a $\sup_{i\in I} |X_i|$ e che gli X_i e gli Y_i siano infiniti.
- 5. Valga $|\bigcup_{i\in I} X_i| = |\bigcup_{i\in I} Y_i|$ supponendo che $i\mapsto X_i$ e $i\mapsto Y_i$ siano crescenti (come sopra) e che la cofinalità di (I,\leq) coincida con la cardinalità di I.

Soluzione. La (1) è falsa. Per dimostrarlo possiamo prendere $I = \mathbb{N}, X_i = \{0\}, Y_i = \{i\}.$

La (2) è falsa. Prendiamo come I i numeri reali con l'usuale ordine \leq . Per $i \in I = \mathbb{R}$ sia X_i l'insieme dei numeri razionali minori di i. Dunque tutti gli X_i sono numerabili e la loro unione è \mathbb{Q} , che è numerabile. Come Y_i prendiamo $X_i \times \{i\}$ e osserviamo che l'unione degli Y_i è $\mathbb{Q} \times \mathbb{R}$, che non è numerabile.

La (4) è vera. Ciò segue dal fatto che in generale si ha $\sup_{i \in I} |X_i| \le |\bigcup_{i \in I} X_i| \le \sum_{i \in I} |X_i| \le |I| \cdot \sup_{i \in I} |X_i|$. Poiché sotto le ipotesi di (4) abbiamo $\sup_{i \in I} |X_i| = |I| \cdot \sup_{i \in I} |X_i|$, componendo le disuguaglianze otteniamo $|\bigcup_{i \in I} X_i| = \kappa = \sup_{i \in I} |X_i|$, e lo stesso ragionamento mostra che anche l'unione degli Y_i ha cardinalità $\sup_{i \in I} |Y_i| = \kappa$.

La (3) e la (5) sono vere. Sia κ la cofinalità di (I, \leq) , sia $f : \kappa \to I$ una funzione cofinale crescente, e sia $\mu = \sup_{i \in I} |X_i|$. Poiché gli X_i sono crescenti, abbiamo sia $\mu = \sup_{\alpha \in \kappa} |X_{f(\alpha)}|$ che $\bigcup_{i \in I} X_i = \bigcup_{\alpha \in \kappa} X_{f(\alpha)}$. Mostriamo che $|\bigcup_{i \in I} X_i| = |\bigcup_{i \in I} Y_i| = \mu \cdot \kappa$. Basta trattare il caso degli X_i . Una disuguaglianza segue dal fatto che $|\bigcup_{\alpha \in \kappa} X_{f(\alpha)}| \leq \Sigma_{\alpha \in \kappa} \mu = \kappa \cdot \mu$. Per l'altra disuguaglianza possiamo supporre κ infinito (altrimenti $\kappa = 1$, (I, \leq) ha un

massimo, e il risultato è ovvio). Per ogni $\alpha \in \kappa$, possiamo prendere un elemento x_{α} appartenente ad $X_{f(\alpha+1)} \setminus X_{f(\alpha)}$ (qui si usa il fatto che κ , essendo un cardinale infinito, è in particolare un ordinale limite, e quindi $\alpha+1<\kappa$). Chiaramente gli x_{α} sono distinti, e dunque $\kappa \leq |\bigcup_{i\in I} X_i|$. D'altra parte vale anche $\mu = \sup_{i\in I} |X_i| \leq |\bigcup_{i\in I} X_i|$ e dunque $\kappa \cdot \mu \leq |\bigcup_{i\in I} X_i|$.

Esercizio 2. Vero o falso?

- 1. $\omega \times \omega \subseteq V_{\omega}$.
- 2. Esiste un ordinale $\alpha > \omega$ tale che $\alpha \times \alpha \subseteq V_{\alpha}$ (dove V_{α} è il livello α della gerarchia di von Neumann).

Soluzione. Entrambe vere. Basta mostrare che se α è un ordinale limite abbiamo $\alpha \times \alpha \subseteq V_{\alpha}$. Per dimostrarlo ricordiamo la funzione rango $\rho(x) = \sup_{y \in x} (\rho(y) + 1)$ ed il fatto che V_{α} consiste degli insiemi di rango strettamente minore di α . Per calcolare il rango di un prodotto cartesiano dobbiamo prima calcolare il rango delle coppie di Kuratowski: $\rho(\langle x, y \rangle) = \rho(\{\{x\}, \{x, y\}\}) = \max\{\rho(\{x\}) + 1, \rho(\{x, y\}) + 1\} = \max\{\rho(x) + 2, \rho(y) + 2\}$. Ne segue che se $x, y \in \alpha$, abbiamo $\rho(x) < \alpha$, $\rho(y) < \alpha$ e pertanto $\rho(\langle x, y \rangle) = \max\{\rho(x) + 2, \rho(y) + 2\} < \alpha$ visto che α è limite. Poiché V_{α} consiste esattamente degli elementi di rango $< \alpha$, otteniamo l'inclusione $\alpha \times \alpha \subseteq V_{\alpha}$.