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Introduction

Triangulation theorems have been proved for sets of increasing order of generali-
ty (semianalytic, subanalytic, Whitney stratified, etc.). In semialgebraic geometry,
we have the much stronger result that triangulations of semialgebraic sets can
be obtained in an effective way. In contrast to the triangulation of sets, the
triangulation of mappings is often a more difficult problem (see [S]). The results
of the present work are based on an effective triangulation theorem for semialge-
braic mappings (Theorem 7).

To be a little more precise let us introduce some notation. We write
XeS(n,d,r) if X<R" is a semialgebraic set with a given presentation of the
form:

k §;

X=1) (N {fij*;0}

i=1j=1

where for each i and j, f;; is a polynomial function on R" of degree <d and
*;;means “ =" or “>"”, and s; + ... +s,<r. Similarly feS(n, n’, d, r) means that
£ 1s a continuous semialgebraic map from a semialgebraic set X —=R" to another
Y<R"™ with graph IeS(n+n',d, r).

The effectiveness of semialgebraic triangulation of semialgebraic sets implies
that there exists an algorithm which, starting from any couple ((n,d, r), X)e N?
x S(n, d, r) with compact X, produces

(a) a triangulation of X, 1: |K|— X, where 1 is a semialgebraic homeomorphism
and K is a finite simplicial complex in R", and
(b) a function N*3(n, d, r) — (D, R, h)e N?

such that 7eS(n,n, D, R) and # K, the number of simplexes of K, is not larger
than k. For such an algorithm see [D-K], [B-C-R] and [B-R]. It is ultimately
based on Tarski-Seidenberg theorem, that is, on what we could call the “projec-
tion method”, it actually holds over any real closed field R.
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Note that an immediate consequence of this effective triangulation theorem
is that the number of semialgebraic types of semialgebraic sets in S(n. d, ) is
finite and effectively bounded in terms of (n. d, r) (the compactness assumption
can be removed by the use of some standard compactification, as is shown
later).

In [F] Fukuda proved that the number of topological types of polynomial
functions on R" of degree =d is finite. The proof is not elementary and is
based on the theory of Whitney stratification and Thom’s isotopy lemma. The
aim of the present short paper is to improve Fukuda’s result, showing that
the number of semialgebraic types of such polynomial functions is finite and
effectively bounded in terms of (n,d). Our proof will actually be a corollary
of an effective triangulation theorem for semialgebraic functions; as in the case
of sets the proof is elementary and based on the projection method and works
over any real closed field; note that we shall use also the notions of C* functions
and manifolds which make sense on every such a field R (see [B-C-R, 2.9]).
One of the author ([S]) already obtained the triangulation theorem for functions.
Here we have simply to take into account the effectiveness of the construction.

It has been known since Thom’s work (see [T]) that finiteness of topological
types fails for general polynomial maps. The basic source of the lack of finiteness
stems from the existence of “explosions”. On the other hand Thom himself
conjectured (and the question is still open) that maps without explosion can
be triangulated. (The condition is necessary since PL maps have no explosions.)
We believe that, in the semialgebraic case, Thom’s conjecture should be streng-
thenned by stating that semialgebraic maps without explosion can be effectively
triangulated.

1 Statement of the effective triangulation of semialgebraic functions

Let R denote a real closed field. Let us extend from IR to R the notations
XeS(n,d,r) and feS(n,#', d, r) stated in the introduction. Let X be a bounded
closed semialgebraic set in R"” and let f: X - R be a semialgebraic function.
A triangulation of f is realized by a semialgebraic homeomorphism t: |[K[— X,
where K is a finite simplicial complex in R"*", for some ', such that the restric-
tion of -7 to every simplex of K is linear.

Theorem 1 We can define an algorithm which, starting from any couple
(n,d,r), f: X - R)eIN? x S(n, 1, d, r) with X bounded and closed in R", produces

(a) a triangulation of f, 1. |K|— X, and
(b) a function N3s(n, d,r)— (D, C, h)eN?
such that teS(n+1,n,D,C) and # K<h.

Note that we claim, in particular, that K can be realized in R"* 1.

Remark. We can refine the theorem by replacing the data ((n,d,r),f) by
(nd,r), [ X =R X' ...,X")eN3>xSn,1,d,r)x S, d,r)", where X!, ..., X" are
closed subsets of X, and requiring t to satisfy the condition that each t~!(X?)
is the underlying polyhedron of a subcomplex of K.

We postpone the proofs to § 3.
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2 Finiteness of semialgebraic types of functions

Let fi: X;— R, i=1,2, be semialgebraic functions. We say that f; and f, are
semialgebraically equivalent if there are semialgebraic homeomorphisms 7,:
X, X, and 7,: R— R such that fim,=m,cf,. If we simply require that =,
and 7, are C° homeomorphisms we have the notion of topological equivalence.
If f, and f, are simplicial functions defined on complexes K, and K ,, respective-
ly, then we get the simplicial equivalence by requiring n,: K, > K, to be a
simplicial isomorphism and n,: R — R to be a PL homeomorphism.

Fukuda result in [F] concerned finiteness of the number of topological equiv-
alence classes of polynomial functions. We want to improve it as follows.

Theorem 2 There exists a computable function yr: N? — N such that the number
of semialgebraic equivalence classes of polynomial functions on R" of degree <m,
is bounded by s (n, m).

Actually this is a particular case of the following more general statement.

Theorem 3 There exists a computable function ¢: N* — N such that the number
of semialgebraic equivalence classes of all semialgebraic functions in S(n, 1, p, q)
is bounded by ¢(n, p, q).

Theorem 3 is an immediate corollary of Theorem 1 together with the follow-
ing simple lemmas. We need a little preparation.

Fix a bounded semialgebraic embedding 6: R— R (for example, 8(t}=t/
(1+1t]). Let 1b7,b*[=0(R). For each n, define 0,: R"-R" by #,(x,,...,x,)
=(0(x,), ..., 0(x,))- We want to define a map

S, L,p,)a(f: X > R)»(([: X >R, X', ..., X"eSn+1,1,p.¢)
xSn+1,p,qg)x ... xSn+1,p,q)

so that p’ and ¢’ turn out to be computable functions of (p,q), X, X', ..., X"
is a decreasing sequence of bounded closed sets in R"x R and the following
lemma holds true.

Lemma 4 (compactification lemma) Let f,, f,€S(n, 1,p,q). Assume fy: X, >R
and f,: X, > ReS(n+ 1,1, p'q') are semialgebraically equivalent. Let 7, X2 - X1 ,
the semialgebraic homeomorphism realizing the equivalence, satisfy n,(X5) =X,
i=1,...,n. Then f, and f, are semialgebraically equivalent.

In order to define the promised map f—f, let X be the closure in R"x R
of the graph of (8=/<6, ")y, x,- Let f be the restriction to X of the projection
of R"x R onto R, and set

Xlzf-kgirjaipfh X*= Xlw(X graph)
X"ZX"_I—(X" 2 ( (Xgraph) ).

One might expect to be able to use [ directly, but for technical reasons (which
will be clear in a moment) it is better to complete (X, ) as follows. Let a®,a” eR
be points outside O(R). Set af =(a*, ...,a¥)eR" Then set X=X U {(af,b*)}
and define f, X', ..., X" as before.

Proof of Lemma 4 Note that we could use f; and fiinstegd of f, and f, provided
that the equivalence should be realized by n,: X, » X, and n,: R— R such
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that n,(6(R))=0(R). The introduction of extra points (a7, b*) in the definition
of X forces the equivalence of f; and f, to be realized by n,: X, > X, and
7,: R— R with that condition n,(6(R))=6(R). The condition n,(X%)=X}
implies that 7, is invariant on graph (0<f<0, '), x, because

graph=(X—-XHu(X? -X3Hu -

Hence the lemma is clear. []

Let us denote by T(r) the set of simplicial complexes having at most r
simplexes. Let T(n,r) denote the set of all pairs of sequences Ko>K'> ... K"
in T(r) and simplicial functions f on K. We say (K;, K}, ..., K", f)eT(n,71),
i=1,2, are simplicially equivalent if f, and f, are simplicially equivalent by a

simplicial homeomorphism which maps each K} onto K.

Lemma 5 The number of simplicial equivalence classes of T(n,r) is a computable
function in (n, r).

Proof. This is an immediate consequence of the fact that a simplicial function
is determined by its behaviour on the vertexes of the complex. []

Lemma 6 Let X,oX}>...oX!, i=1,2, be sequences of bounded semialgebraic
sets in R", and let f,,i=1,2, be semialgebraic functions on X;. Let 1,:|K,| > X,
be triangulations of f; such that the sets t7'(XJ) are the underlying polyhedra
of subcomplexes Kiof K;. If (K{,K1, ..., K%, fiot,) and (K,, K5, ..., K%, [>°7T3)
are simplicially equivalent then f; and f, are semialgebraically equivalent by a
semialgebraic homeomorphism r, which maps each X, onto X',.

Proof. Trivial. []

3 Proof of Theorem 1 and its remark

Replace f: X > ReS(n,1,d,r) in Theorem 1 by f:F,—»ReS(n—i—l, 1,d,r+1),
where T} is the graph of f and f is the restriction to I, of the projection of
R"x R onto R. Then it is enough to prove the following statement.

Theorem 7  There exists an algorithm which, starting from data
((n,n,d,r), X,Y", ..., Y )eN“xSn+1,d,r)" " '-where X,Y' .Y,  are
bounded closed sets in R""' and X =Y, Vi’ — produces:

(a) a triangulation of X, t:|K|— X, and
(b) a function N*a(n, n',d,r)— (D, C, h)e N3

such that te S(n+1,n+1, D, C), % K <h, each 1~ '(Y)) is the underlying polyhedron
of a subcomplex of K and t is of the form

o(x, t)=(7'(x, t),t) for (x,t)e!K|=R"xR.

In the proof of the effective triangulation theorem for semialgebraic sets,
7 did not have to be of the above form. A triangulation was constructed by
induction on the dimension n+1 by means of a projection of R"x R on a
hyperplane in a good direction. In the present case we can not use this projection
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method directly. The following lemma, which provides a way of “bending”
the direction of projection, must first be applied.

Let Z be an algebraic set in R"x R. Let p denote the projection R*x R
— R"~ ! x R which forgets the first factor. We call p good for Z if p~'(y, )" Z
is of dimension O for every (y,1)e R* ' x R.

Lemma 8 There is an algorithm which, starting from an algebraic set Z in R" x R
which does not containing any set of the form R" x ¢, ce R, produces an isomorphism
7 of R"x R of the form

R(X, s [):(Xa y+7t’(x)a t) f()l" (xa Vs t):(x’ Yis s Vn—1> I)ER" X R

n—1

such that p is good for n(Z)}, where o' is a polynominal map w': R - R

Proof. We will find effectively points a,, ..., a,,, in R and by, ..., b, in R*"!
so that if n" satisfies the condition #'(a;)=b;,i=1, ..., n+1, then p is good for
n(Z).

Letay,...,q,+15b1, ..., b,y and 7’ be given so that n'(a)=b;,i=1, ..., n+1,

but p is not necessarily good for n(Z). Set
W={(y,)eR" "' x R: dim (R x (y, ) nn(Z)=1}.

By definition p is good for n(Z) if W is empty. Let g be a polynomial function
on R”x R whose zero set is Z. Then

n(Z)=(g-n 1) 10), gom 'x,y,0)=glx,y—7'(x),1).

For each i=1,...,n+1, let W, denote the common zero set of g(a,,y
—by,t),...,gla,y—b;,t) in R""'x R, Then W, o> W,> ...o>W,,,>W because
W is an algebraic set. Thus it suffices to construct an algorithm which produces
a; and b, from g so that the sequence n, dim W,, ..., dim W, , , is strictly decreas-
ing.

We choose ¢; and b; by induction on i. Choose a point (a,, yo, to)€R x R"™!
x R—Z and set b, =0. Then

I/I/l:g(alay’ t)¥1(0):(a1 XRI'?] XR)mZ

is of dimension <n. Assume a,, ..., d;_, by, ..., b;_, have been chosen. Choose
effectively a set Y., containing exactly one point from each semialgebraically
connected component of the C* smooth point set of W,_,. We want to choose
a; and b; so that g(a;, y—b;,t) does not vanish on Y;_,. For such a; and b;, W,
does not contain Y; , and hence is of dimension <dim W,_,. Let g; be a point
of R such that Z does not contain any set of the form a, x R" "' x ¢, (b, c)e Y,_,.
The existence of a; follows from the hypothesis in the lemma. This implies
that the y-function g(a;, y, ¢) for any (b, c)e Y;_, is not identically zero. Choose
b; so that g(a;, b—b,, ¢) does not vanish for any (b, ¢)e Y;_,. Thus (a;, b;) satisfies
the above requirements. [

Proof of Theorem 7 We write a point of R"X R as (x, y,)=(X, Y, ...» Vy-1,1).
We prove the theorem by induction on n. The case of n=0 is trivial. Hence
assume the theorem for n—1. Let X and {Y;} be given by non-zero polynomial
functions g;, j=1,...,r, on R"x R. We can assume that g,, ..., g, are of the
form t—c¢,ceR, and g, 4, ..., g are not divisible by polynomials of this form.
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This is possible because of the following effectiveness of unique factorization
of polynomial functions.

Regard a polynomial function f(x,, ..., x,) of degree <d as a point of RY
for some integer N by the map f=) a,x*>(...,4,, ...)6 RY. Moreover, regard
a point of R as a semialgebraic set in RY. Then there exists an algorithm
which produces the following correspondence.

(n,d. fef{ind NeN? x R[x,,x,,...]: deg f<d, f=f(xy, ..., X,)}

!
d,N,D,R, X)eIN*x S(N, D, R),

where X consists of d' points which represent polynomial functions f,, ..., f,
such that [ ] f; is a unique factorization of f into prime polynomial functions.

We prove this statement as follows. Let f be a polynomial function of degree
d in the variables x, ..., x,. After changing linearly the coordinate system we
can assume that f is monic in x;, that is, of the form

f(x):xi _‘_gl('x,)x‘{_1 +.. +gd(x,): X,:(x25 LR ] xn)'

Let R,[x,, ..., x,] denote the set of polynomial functions in the variables
Xy, ..., X, and monic in x,. Then it suffices to find an algorithm which produces
the correspondence

(n,d.f)e{(n,d, HeEN? xR, [x,,x5, ... 1:deg f<d, f=[(x,, ..., x;)}

!
d.fi.fz, . JENXR,[x{, x5, ... | xR, [x1, %5, ... ]% ...

P

such that [] f is a unique factorization of / into prime polynomials. Here
i=1

we regard an element of R,[x;, x,,...] as a semialgebraic subset of R" for

some integer N as above. Let us consider a map

E (S fos o )ER DX xg, ) x i L LF: L =

=..=1 forsome ¢/} >R, [x,,...]

given by &(f,.f,,...)=][fi. Then ¢ is a finite-to-one map. For each

JeR, [xy, ..., x,]), let (f1,fs, ... fpo 1,1, ...) be an element of £ !(f) such that

fo+landif(g,, ..., g 1,1, ...)eé " (f) with g, &1 then #'<7. Then this corre-
4

spondence is computable, and [] f; is a unique factorization of f. [
i=1

Let Z denote the union of the zero sets of g,.. 4, ..., g,, and let C denote
the set of points ¢ of R where t —c=g; for some j. Then by Lemma 4 we can
assume that the projection p: R*x R - R""' x R which forgets the first factor
is good for Z.

Apply the démontage theorem 2.3.1 in [B-C-R] to g,-1, ..., g. Then we
obtain effectively a finite partition of R"~! x R into semialgebraic sets {4,} and,
for each k, semialgebraic functions &, ;< ... <&, on A, such that for each
1) of Ay, {&. 1 1) ..., & o, 1)} is the set of roots of the x-polynomials
g;(x,y,1), j=r'+1,...,r. Here we note that g;(x, y,t) are not identically zero
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as x-polynomials by the goodness of p. Subdivide effectively the partition {4;}
so that each member is semialgebraically connected (sce 2.4 in [B-C-R]) and
R"" ! x ¢is a member for each ¢ of C. Then the family

By o ={(x, v, )eR" x R: (y, )€ Ay, x =&, . (3, 1)},
BL,k'Z{(’C ¥, )ER"X Ri(v,)e Ay, & p () <x <&y poaq (Vs t)},

for all possible k, k', is compatible with X and {Y;}, and the union of members
of the family included X. These are clear because X is bounded, each R""!
x ¢, ceC, is a member of {4,}, and because A, are semialgebraically connected.
It also is clear that p(X) is a union of some A,’s. Let k denote the index set
of these A,. For each kek, define index sets 4, and p, so that

=U (U Buwu(J B

kerk k'eix k'epy

Subdivide effectively {4 ;. so that each (4,, A,) is semialgebraically homeo-
morphic to (a simplex, its interior) (for example, a semialgebraic triangulation
compdtible with {A,}i.,0)- We want to show that for each kex and k'ed,, &,
is extensible to A,. For this it suffices to see the following fact. Let (yq, 1)
be a point of 4, —A,. Then

D=B, "R x(yy, to)

consists of a point. This set is not empty by Proposition 2.5.3 in [B-C-R] and
of dimension 0 since p is good for Z. Assume that D contains two points
(X1, Yo»to) and (x,, yg, fo) with x; <x,. Let U be a small semialgebraic neighbor-
hood of (yy.te) in A, such that Un A, is semialgebraically connected. (The
existence of U follows if we regard (4,, 4,) as (a simplex, its interior).) As
& (U Ay is semialgebraically connected, &, .. (U A4,) is also semialgebrai-
cally connected and hence contains the interval [x;, x,]. Therefore D includes
[x;,x,]xygxty, which contradicts the fact D is of dimension 0. Thus ¢, ;.
is extensible to A,. Keep the same notation &, . for the extension.

Consider p(X) and {A4,}... By the induction hypothesis we can assume
that p(X) is the underlying polyhedron of a simplicial complex L the family
of whose open simplexes is compatible with {A4,},.,.. Here replace L by its
barycentric subdivision if necessary. Then we can suppose, moreover, for gL
and for ki +kiyel, with 4,>Inte, &, . and ¢, ;. take distinct values at one,
at least, of the vertexes of ¢.

Now we can define the underlying polyhedron of the required simplicial
complex K as the union of the following sets. For each el and k’e)k with
A, o1Inta,let F, . denote the simplex spanned by (¢ . (v, 1), y, 1), (¥, )e6® (=the
vertexes of o), and for each oel. and k'ep, with Ak:Int a, let F; . denote the
cell lying between F, ;. and F, ;... Define P as the union of all F v and Fy ..
Then we can define effectively a semialgebraic homeomorphism 1: P— X of
the form

(x, p, )=0"(x, y, 1), », 1) for (x,y,1)eP,
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for some function t”, so that

T(Fn,k'):mmpvl(g),
©(Fy)=Bw0p” (o),

and t” is linear on F, ,.nRx(y,t) for each F, . and (y,t)eo for the following
reason.

Clearly on F, ,. and F, ,.~p~'(Int o)t is well-defined. Moreover 7 is so on
F, . np~'(do)if for each (y,1)edo and F,, 4,

B ooF wop tnt)=F  op 'y, or=4¢.

This condition holds true if we add to {g,.,,..., g} their derivatives with
respect to the variable x. Indeed in this case the union of the zero sets of
2415 -.-, 8, includes a dense C* submanifold to which the restriction of p is
a local diffeomorphism, and hence () F, .=UF, .
dimo=n

Let K be a simplicial complex with underlying polyhedron P such that
F, . and F] . are unions of some simplexes of K. Notc that a canonical construc-
tion of K exist (see 2.9 in [R-S]). Then (K, 1) fulfills the requirements in the
theorem. [
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