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Introduction 

Triangula t ion  theorems have been proved  for sets of  increasing order  of generali-  
ty (semianalytic,  subanalytic ,  Whi tney  stratified, etc.). In semialgebraic  geometry ,  
we have the much  s t ronger  result that  t r iangulat ions  of semialgebraic  sets can 
be obta ined  in an effective way. In contras t  to the t r iangulat ion of sets, the 
t r iangulat ion of mappings  is often a more  difficult p rob lem (see [S]). The  results 
of the present  work  are based on an effective t r iangulat ion theorem for semialge- 
braic mappings  (Theorem 7). 

To  be a little more  precise let us in t roduce some notat ion.  We write 
X~S(n ,d , r )  if X ~ I R  ~ is a semialgebraic  set with a given presenta t ion  of the 
form:  

k s i 

x = U N {/ij* jo) 
i - l  j - 1  

where for each i and j, f~j is a po lynomia l  function on IR" of degree < d  and  
*ij means  " = " or " > ", and sl + ... + Sk <= r. Similarly f eS (n ,  n', d, r) means  tha t  
f is a cont inuous  semialgebraic  m a p  from a semialgebraic  set X c l R "  to ano the r  
Y c  lR"' with graph  F~ e S (n + n', d, r). 

The  effectiveness of semialgebraic triangulation of semialgebraic  sets implies 
that  there exists an a lgor i thm which, s tar t ing f rom any couple ((n, d, r), X ) e N  3 
x S(n, d, r) with compac t  X, produces  

(a) a t r iangula t ion of X, z: IK[ ~ X ,  where z is a semialgebraic  h o m e o m o r p h i s m  
and K is a finite simplicial complex  in lR ", and 
(b) a function N3~(n,  d, r) - , (D ,  R, h ) ~ N  3 

such that  zES(n, n, D, R) and # K, the n u m b e r  of simplexes of  K, is not  larger  
than  h. For  such an a lgor i thm see [ D - K ] ,  [B-C-R]  and [B-R].  It  is ul t imately 
based on Tarski -Seidenberg  theorem,  that  is, on what  we could call the "pro jec-  
t ion me thod" ,  it actual ly holds over  any  real closed field R. 
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Note  that an immediate consequence of this effective triangulation theorem 
is that the number of semialgebraic types of semialgebraic sets in S(n, d, r) is 
finite and effectively bounded in terms of (n, d, r) (the compactness assumption 
can be removed by the use of some standard compactification, as is shown 
later). 

In [F]  Fukuda proved that the number  of topological types of polynomial 
functions on IR n of degree < d  is finite. The proof  is not elementary and is 
based on the theory of Whitney stratification and Thorn's isotopy lemma. The 
aim of the present short paper  is to improve Fukuda 's  result, showing that 
the number  of semialgebraic types of such polynomial functions is finite and 
effectively bounded in terms of (n,d). Our proof will actually be a corollary 
of an @ c l i v e  triangulation theorem for semialgebraic functions; as in the case 
of sets the proof  is elementary and based on the projection method and works 
over any real closed field; note that we shall use also the notions of C ~' functions 
and manifolds which make sense on every such a field R (see [B-C-R, 2.9]). 
One of the author  (IS]) already obtained the triangulation theorem for functions. 
Here we have simply to take into account the effectiveness of the construction. 

It has been known since Thorn's work (see [T~) that finiteness of topological 
types fails for general polynomial maps. The basic source of the lack of finiteness 
stems from the existence of "explosions".  On the other hand Thorn himself 
conjectured (and the question is still open) that maps without explosion can 
be triangulated. (The condition is necessary since PL maps have no explosions.) 
We believe that, in the semialgebraic case, Thom's  conjecture should be streng- 
thenned by stating that semialgebraic maps without explosion can be effectively 
triangulated. 

! Statement of the effective triangulation of semialgebraic functions 

Let R denote a real closed field. Let us extend from IR to R the notations 
X e S ( n ,  d, r) and f e S ( n ,  n', d, r) stated in the introduction. Let X be a bounded 
closed semialgebraic set in R n and let f :  X---, R be a semialgebraic function. 
A triangulation of f is realized by a semialgebraic homeomorphism z: ]K[ --* X, 
where K is a finite simplicial complex in R "+"', for some n', such that the restric- 
tion of f o r  to every simplex of K is linear. 

Theorem ! We can define an algorithm which, starting from an), couple 
((n, d, r), f : X -* R ) e N  3 x S(n, 1, d, r) with X bounded and closed in R", produces 

(a) a triangulation o f f ,  z: IK[-*X,  and 
(b) a function N 3 ~(n, d, r) ~ (D, C, h )~N 3 

such that z ~ S (n + 1, n, D, C) and 4# K <= h. 

Note that we claim, in particular, that K can be realized in R "+1 

Remark. We can refine the theorem by replacing the data ((n,d,r) , f )  by 
((n, d, r),f: X ~ R, X 1 . . . . .  X " ) e N  3 x S(n, 1, d, r) x S(n, d, r)", where X 1 . . . . .  X" are 
closed subsets of X, and requiring z to satisfy the condition that each z - l (Xi )  
is the underlying polyhedron of a subcomplex of K. 

We postpone the proofs to w 3. 
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2 Finiteness of semialgebraic types of functions 

Let .]i: Xi -~  R, i =  1, 2, be semialgebraic  functions. We say that  f~ and f2 are 
semialgebraically equivalent if there are semialgebraic  h o m e o m o r p h i s m s  n l :  
X 2 - ~ X 1  and re2: R - * R  such that  f~ ~n l=n2of2 .  If we simply require that  nl 
and n2 are C o h o m e o m o r p h i s m s  we have the not ion of topological equivalence. 
If f l  and J2 are simplicial functions defined on complexes  K 1 and K2, respective- 
ly, then we get the simplicial equivalence by requiring n~: K 2 - ' K 1  to be a 
simplicial i somorph i sm and n2: R--+R to be a PL h o m e o m o r p h i s m .  

F u k u d a  result in IF ]  concerned finiteness of the n u m b e r  of  topological  equiv- 
alence classes of po lynomia l  functions. We want  to improve  it as follows. 

Theorem 2 There exists a computable function ~: N 2 ~ N  such that the number 
c?f semialgebraic equivalence classes of  polynomial functions on R n of  degree <= m, 
is bounded by O(n, m). 

Actual ly  this is a par t icular  case of  the following more  general s tatement.  

Theorem 3 There exists a computable function qb: IN 3 ~ IN such that the number 
of  semialgebraic equivalence classes of  all semialgebraic functions in S(n, 1, p, q) 
is bounded by 4) (n, p, q). 

Theo rem 3 is an immedia te  corol lary of Theo rem 1 together  with the follow- 
ing simple lemmas.  We need a little prepara t ion .  

Fix a bounded  semialgebraic  embedding  0: R ~ R  (for example,  O(t)=t/  
(1 +ltl)). Let ]b , b+t=O(R) .  For  each n, define 0,: R"--*R" by O,(xl . . . . .  x,) 
=(0(xt ) ,  . . . ,  O(x,)). We want  to define a m a p  

S(n, 1, p, q)~(f :  X ~ R) --* ((.)~: X -~ R), X ~ . . . .  , X " ) e S ( n +  1, l ,p' ,  q') 

x S (n+  l ,p ' ,q ' )  x ... x S (n+ l ,p ' ,q ' )  

so that  p' and q' turn out  to be compu tab l e  functions of (p,q), X , X  ~ . . . .  ,X"  
is a decreasing sequence of bounded  closed sets in R " x  R and the following 
l emma  holds true. 

L e m m a  4 (compact i f icat ion lemma)  Let f l ,  f z eS (n ,  1, p, q). Assume f l :  2~1 ~ R 
and f2 : X2 ~ R e S(n + 1, 1, p' q') are semialgebraically equivalent. Let n 1 : X2 ~ X 1, 
the semialgebraic homeomorphism realizing the equivalence, satisfy nl ( X ~ ) = X ] ,  
i = 1 . . . . .  n. Then f l  and f2 are semialgebraically equivalent. 

In order  to define the promised  m a p  f ~ f ,  let 37 be the closure in R " x  R 
of the graph  of (O~f, O2~)[o,(xl. Let .~ be the restriction to 37 of the project ion 
of R" x R onto  R, and set 

X 1 = )~-graph, X z = X ~ - ()~-graph) . . . . .  
X . = X,  - ~ _ (X . -  2 _ (. . .  ()7-graph) �9 �9 �9 )). 

One  might  expect to be able to use .]' directly, but for technical reasons (which 
will be clear in a momen t )  it is bet ter  to comple te  (3~,j~ as follows. Let a +, a -  s R  

r + 
be points outside O(R). Set a + = ( a  • . . . . .  a •  ~. Then  set 37=37w ?(a#, b• 
and define f, X l . . . . .  X" as before. 

Proof  of Lemma 4 Note  that  we could use f~ and  ~ instead ofj~ and f2 provided  
tha t  the equivalence should be realized by n~: X 2 ~ ) ~  1 and nz: R ~ R  such 
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that 7~2(O(R))=O(R). The introduction of extra points (aft, b t) in the definition 
of )( forces the equivalence of f l  and f2 to be realized by hi: )72-+)( t  and 
7~2: R ~ R  with that condition nz(O(R))=O(R). The condition n l ( X ~ ) = X ]  
implies that nl is invariant on graph (Oof.~ O, ~)[o,(x) because 

graph = ()~ - X 1) vo (X 2 - X 3) w .... 

Hence the lemma is clear. [] 

Let us denote by T(r) the set of simplicia] complexes having at most  r 
simplexes. Let T(n, r) denote the set of all pairs of sequences K ~ K l ~ ... ~ K ~ 
in T(r) and simplicial functions f on K. We say (Ki,K~ . . . .  , K~,fi)eT(n,r), 
i=  1, 2, are simplicially equivalent if f l  and ./~ are simplicially equivalent by a 
simplicial homeomerph ism which maps each K~ onto Kil. 

Lemma 5 The number of simplicial equivalence classes of T(n, r) is a computable 
function in (n, r). 

Proof. This is an immediate consequence of the fact that a simplicial function 
is determined by its behaviour on the vertexes of the complex. [] 

n Lemma 6 Let X ~  X~ ~ ... X~ , i= I, 2, be sequences of bounded semialgebraic 
sets in R", and let f i , i=  1,2, be semialgebraic .functions on X i. Let ~i: IKzI-+X~ 
be triangulations of fi such that the se t s  T/- I (x  j) are the underlying polyhedra 

n n of subcomplexes K~ of K~. I f  (K 1 , K1 . . . .  , K~,f~ozl) and (K2, K~ . . . .  , K2,f2 ~2)  
are simplicially equivalent then f l  and f2 are semialgebraically equivalent by a 
semialgebraic homeomorphism n 1 which maps each X~ onto X~. 

ProoJ2 Trivial. []  

3 Proof  of  Theorem 1 and its remark 

Replace f: X ~ ReS(n, 1, d, r) in Theorem 1 by f :  Fy--+ R~S(n + 1, 1, d, r+ 1), 
where F, is the graph of f and f is the restriction to Fy of the projection of 
R" x R onto R. Then it is enough to prove the following statement. 

Theorem 7 There exists an algorithm which, starting from data 
((n,n',d,r),X, y l  . . . .  , Y, ,)~N4• X, y1 . . . . .  y,,, are 
bounded closed sets in R" + 1 and X ~ Yi, Vi' produces: 

(a) a triangulation of X, r: [K I ~ X, and 
(b) a function N4~(n, n', d, r) --* (D, C, h ) e N  3 

such that r E S (n + 1, n + 1, D, C), ~ K <= h, each r 1 ( yi) is the underlying polyhedron 
of a subcomplex oJ" K and r is of the form 

z(x, t )=(r ' (x , t ) , t )  .[or ( x , t ) ~ r K l c R " x R .  

In the proof  of the effective triangulation theorem for semialgebraic sets, 
z did not have to be of the above form. A triangulation was constructed by 
induction on the dimension n +  1 by means of a projection of R"x  R on a 
hyperplane in a good direction. In the present case we can not use this projection 
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m e t h o d  direct ly.  The fol lowing lemma,  which provides  a way of " b e n d i n g "  
the di rect ion of projec t ion ,  mus t  first be appl ied.  

Let  Z be an  a lgebra ic  set in R " x  R. Let p denote  the pro jec t ion  R " x R  
__, R n- 1 x R which forgets the first factor. We call  p good for Z if p - l ( y ,  t)c~ Z 
is of d imens ion  0 for every (y, t )~R  ~ i x R. 

L e m m a  8 There is an algorithm which, starting f rom an algebraic set Z in R ~ x R 
which does not containing any set o f  the j'orm R" x c, ca R, produces an isomorphism 
7r of  R" x R of  the form 

n ( x , y , t ) = ( x , y + r c ' ( x ) , t )  j o t  ( x , y , t ) = ( x , y  I . . . . .  y.  1 , t ) ~ R n x R  

such that p is good for  re(Z), where n' is a polynominat map n' : R --* R" -  ~. 

Proof  We will find effectively po in t s  a~ . . . .  , a , + l  in R and bl . . . .  , b ,+ l  in R"-1 
so that  if n' satisfies the cond i t ion  n ' ( a i ) = b ~ , / = 1 ,  . . . ,  n +  1, then p is good  for 
~(z). 

Let al  . . . . .  an+ 1, bt  . . . . .  b~+ 1 and  n' be given so that  rc'(ai) = b i, i = 1 . . . . .  n + 1, 
but  p is not  necessari ly good  for ~z(Z). Set 

W =  {(y, t ) e R " -  1 x R: d im (R x (y, t)) c~ re(Z) = 1 }. 

By defini t ion p is good  for re(Z) if W is empty.  Let  g be a p o l y n o m i a l  funct ion 
on R" x R whose  zero set is Z. Then 

n(Z)=(g,7~ -1) 1(0), g o n - l [ x , y , t } = g ( x , y - - l r ' ( x ) , t ) .  

F o r  each i = l  . . . . .  n + l ,  let W~ deno te  the c o m m o n  zero set of g(a~ ,y  
- b l , t )  . . . . .  g(a i ,y  b~,t) in R " - Z x R .  Then  W ~ W 2 ~ . . . D W , + ~ W b e c a u s e  
W is an a lgebra ic  set. Thus  it suffices to cons t ruc t  an a lgo r i thm which p roduces  
af and  b~ from g so tha t  the sequence n, d im W 1 . . . . .  d im W,+ 1 is s tr ict ly decreas-  
ing. 

We choose  ai and  b i by induc t ion  on i. Choose  a poin t  (al, Yo, to )eR  x R" -  1 

x R - - Z  and set bl =0 .  Then  

W l = g ( a l , y , t ) - l ( O ) = ( a l  x R "  I x R ) c ~ Z  

is of d imens ion  < n. Assume  a~ . . . .  , a~_ 1, b] ,  . . . ,  hi_ ~ have been chosen. Choose  
effectively a set Yi-1 con ta in ing  exact ly  one  po in t  f rom each semia tgebra ica l ly  
connected  c o m p o n e n t  of the C ~: s m o o t h  po in t  set of W~_ 1. We want  to choose  
a~ and bl so tha t  g(ai, y - b i ,  t) does  not  vanish  en  Yi-1. F o r  such al and  b~, Wi 
does  no t  con ta in  Y~ i and  hence is of d imens ion  < d im W~_ 1. Let  ai be a po in t  
of  R such that  Z does not  con ta in  any  set of the form a~ x R " -  1 x c, (b, c)a  Y~_ l- 
The existence of a~ follows from the hypothes i s  in the lemma.  This implies  
that  the y-funct ion  g(az, y, c) for any  (b, c)e  Y~_ L is not  ident ica l ly  zero. Choose  
b, so tha t  g(ai, b - b l ,  c) does  not  vanish  for any (b, c)~ Yi 1 - T h u s  (ai, bi) satisfies 
the a b o v e  requirements .  [ ]  

Proof  of  Theorem 7 W e  write a po in t  of R " x  R as (x ,y ,  t ) = ( x ,  Yl, . .- ,  Y , -1 ,  t). 
We  prove  the theorem by induc t ion  on n. The  case of  n = 0  is trivial.  Hence  
assume the theorem for n -  l. Let  X and { Y,,.} be given by non-ze ro  p o l y n o m i a l  
funct ions gj, j = l ,  . . . ,  r, on  R " x  R. We can assume tha t  gl . . . .  , g,, are  of  the 
form t - c ,  c e R ,  and  g , ,+ l ,  . .- ,  g, are  not  divisible by po lynomia l s  of  this form. 
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This is possible because of the following effectiveness of unique factorizat ion 
of po lynomia l  functions. 

Regard  a polynomia l  function f ( x l  . . . . .  x , )  of degree =<d as a point  of  R N 
for some integer N by the m a p  f = ~ a~ x ~ ~ ( .. . .  a . . . . .  )~ R '~. Moreover ,  regard 
a point  of R ~ as a semialgebraic  set in R ~. Then there exists an a lgor i thm 
which produces  the following correspondence.  

(n, d,J)~ {(n, d , J ) ~ N  2 x R Ix1,  x2 . . . .  ] :  d e g f < = d , f = f ( x  l . . . . .  x,)} 

(d', N, D, R, X) ~ IN 4 x S (N, D, R), 

where X consists of d' points  which represent  po lynomia l  functions f l  . . . . .  fd' 
such that  []f~ is a unique factor izat ion o f f  into pr ime po lynomia l  functions. 

We prove  this s ta tement  as follows. Let  f be a po lynomia l  function of degree 
d in the variables Xl . . . . .  x~. After  changing linearly the coord ina te  system we 
can assume that  f is mon ic  in x~, that  is, of  the form 

f ( x ) = x ~  + g , ( x ' ) x e l - l  + ... +gd(x ' ) ,  X'=(X2, . . . ,  X,). 

Let R u [ x :  . . . . .  xn] denote  the set of po lynomia l  functions in the variables 
x l ,  . . . ,  x~ and monic  in Xl. Then  it suffices to find an a lgor i thm which produces  
the cor respondence  

(n, d , f )  e {(n, d , f ) e N  2 x R~ Ix  l, X 2 . . . .  ] : degf=< d, f = f  (xl . . . . .  xn)} 

( d ' , f t , j l  . . . .  ) e N  x R ~ [ x l , x 2 ,  . . .3  x R ~ [ x l , x 2  . . . .  ] x ... 

d' 

such that  ~ f~ is a unique factor izat ion of .1 into pr ime polynomials .  Here 

we regard an element of  R , , [ x ~ , x a  . . . .  ] as a semialgebraic  subset  of R N for 
some integer N as above.  Let us consider  a m a p  

~-: {(f, ,f2 . . . .  ) e R , [ x t ,  X 2 . . . .  ] X .. .  : f ,  # I . . . .  ' f~ ,#  1,~+1 = f t+2  
. . . . .  1 for some f } - - + R , [ x ,  . . . .  ] 

given by ~ ( f l , f 2  . . . .  ) = l - I l l -  Then d is a f ini te-to-one map.  F o r  each 
f e R n [ x 1  . . . .  ,x , ] ,  let ( f l , f 2  . . . . . .  1), i, 1 . . . .  ) be an element  of { l(.f) such that  
f e #  l and if(g~ . . . . .  &,, 1, 1 . . . .  ) e ~ - l ( f )  with ge ,#  1 then f ' < { .  Then this corre- 

spondence  is computab le ,  and ~ f, is a unique factorizat ion o f f  [ ]  
i = 1  

Let Z denote  the union of the zero sets of g~,+t, --., g~, and  let C denote  
the set of  points  c of  R where t - - c  = g j  for some j. Then by L e m m a  4 we can 
assume that  the project ion p: R ' x  R - - . R " - ~ x  R which forgets the first factor  
is good  for Z. 

App ly  the d6montage  theorem 2.3.1 in [B-C-R]  to g~,+1 . . . . .  g,. Then we 
ob ta in  effectively a finite par t i t ion  of R " -  ~ x R into semialgebraic  sets {Ak} and, 
for each k, semialgebraic  functions {k, ~ < . - - < ~ k , e ~  on Ak such that  for each 
(y,t) of  A k , { { k , ~ ( y , t )  . . . . .  {k,e~(y,t)} is the set of  roo ts  of  the x -po lynomia l s  
gj(x, y, t), j = r ' +  1 . . . .  , r. Here  we note tha t  gj(x, y, t) are not  identically zero 
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as x-polynomials by the goodness of p. Subdivide effectively the partition {Ak} 
so that each member  is semialgebraically connected (see 2.4 in [B-C-R]) and 
R ' -  t x c is a member  for each c of C. Then the family 

n &.~.={(x,),t)eR x R:(y, 0~&,x=G.~.(y, t )} ,  

B~,,k,---- {(x, y, t)e R" x R: (y, t)e Ak, ~k. k' (Y, t)< X < C-k, ~' + ~ (Y, t)}, 

for all possible k, k', is compatible with X and { Y/}, and the union of members  
of the family included X. These are clear because X is bounded, each R"- 
x c, cEC, is a member  of {Ak}, and because A k are semialgebraically connected. 

It also is clear that p(X)  is a union of some Ak's. Let ~c denote the index set 
of these A~. For each k ~ ,  define index sets 2 k and Ftk SO that 

k ~ K  k '  E;'.k k '  e f zk  

Subdivide effectively (A k;k~ SO that each (/tk, Ak) is semialgebraically homeo- 
morphic to (a simplex, its interior) (for example, a semialgebraic triangulation 
compatible with ~Ak}k~).  We want to show that for each ke~c and k ' e2  k, ~k,~, 
is extensible to Ak. For  this it suffices to see the following fact. Let (Yo, to) 
be a point of A k -  A k. Then 

D = Bk. k' ~ R x (Yo, to) 

consists of a point. This set is not empty by Proposition 2.5.3 in [B-C-R] and 
of dimension 0 since p is good for Z. Assume that D contains two points 
(xl,  Yo, to) and (x2, yo, to) with Xl <x2 .  Let U be a small semialgebraic neighbor- 
hood of (Y0, to) in Ak such that U c~ A~ is semialgebraically connected. (The 
existence of U follows if we regard (Ak, Ak) as (a simplex, its interior).) As 
~k,k,(U C~ Ak) is semialgebraically connected, G . r  (U c~ Ak) is also semialgebrai- 
cally connected and hence contains the interval [Xl, x2]. Therefore D includes 
[x l , x2 ]  X yoXto,  which contradicts the fact D is of dimension 0. Thus ~k,k' 
is extensible to A k. Keep the same notat ion ~k.k' for the extension. 

Consider p(X)  and {Ak}k~. By the induction hypothesis we can assume 
that p(X)  is the underlying polyhedron of a simplicial complex L the family 
of whose open simplexes is compatible with {Ak}k~ ~. Here replace L by its 
barycentric subdivision if necessary. Then we can suppose, moreover,  for crEL 
and for k'a=#k'z~2k with A k ~ I n t a , ~ . k ~  and ~k.k~ take distinct values at one, 
at least, of the vertexes of a. 

Now we can define the underlying polyhedron of the required simplicial 
complex K as the union of the following sets. For  each a e L  and k'e2k with 
A k ~ Int  a, let F~. k, denote the simplex spanned by (~k. k' (Y, t), y, t), (y, t) E a ~ ( = the 
vertexes of a), and for each ~EL and k'e#k with A k ~ I n t  a, let F~,k, denote the 
cell lying between F~,k, and F,,k,+ 1 . Define P as the union of all F~, k, and F~.k,. 
Then we can define effectively a semialgebraic homeomorphism r : P ~ X  of 
the form 

z ( x , y , t ) = ( z " ( x , y , t ) , y , t )  for ( x , y , t )~P ,  



596 R. Benedetti and M. Shiota 

for  s o m e  f u n c t i o n  r", so  t h a t  

z (F., k') = Bk, k' c~ p -  1 (a),  

r (F;, k') = B~,, k' m P-1 (Or), 

and z" is linear on F~,k, n R x ( y , O  for each F2,r and (y,t)ecr for the following 
reason .  

C lea r ly  on  F~.k, an d  F[ , , k ,~p - l ( In t  cr)r is wel l -def ined.  M o r e o v e r  r is so on  
F~. k, c~p-1 (&r) if for each (y, t)e~?cr a n d  F~,.k; 

F~ , , k ,~F~l , k ,~mp- l (y , t )=F~,k ,c~p- l (y , t )  or  = qS. 

Th i s  c o n d i t i o n  ho lds  t rue  if we a d d  to {gr,+l . . . . .  gr} the i r  de r iva t ives  wi th  
respect  to the va r i ab le  x. I n d e e d  in  this case the  u n i o n  of  the zero sets of 
gr'+ 1 . . . . .  gr i nc ludes  a dense  C ~ s u b m a n i f o l d  to which  the res t r ic t ion  of  p is 
a local  d i f f eomorph i sm,  a n d  hence  D F~,k,= ~ F,, k'. 

d i m e r =  n 

Let K be a simplicial complex with underlying polyhedron P such that 
F~, k' and F~, k' are unions of some simplexes of K. Note that a canonical construc- 
tion of K exist (see 2.9 in [R-S]). Then (K, r) fulfills the requirements in the 
theorem. []  
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