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1 . INTRODUCTION 

Throughout  the paper a 'curve' C will be a simple, connected (smooth or 
simplicial) closed plane curve embedded in R z satisfying the following 
assumptions: 

(1) if C is smooth, the inflection points of C are isolated; 

(2) if C is simplicial, any two consecutive sides of C are not collinear. 

Let us first fix the notations. K = K ( C )  will be the total curvature of C; if 
C is simplicial, this means the sum of the exterior angles of the polygon 
bounded by C. f = f ( C )  will be the number of inflection points of C (if C is 
smooth) and the number of inflection sides of C (if C is simplicial): a side s 
of a simplicial curve C is said to be an inflection side of C if the two sides of 
C adjacent to s do not lie in the same half-plane with respect to the straight 
line containing s. d=d(C) will be the (geometric) degree of C; that is, 

d(C)=max # {r c~ C; r is a straight line transversal to C}. 
Note that d and f are always even numbers and that the convexity of C is 

equivalent to each of the following properties: K(C)=2~r, f ( C ) = 0 ,  d(C)=2. 
The aim of this note is to prove the following inequality: 

THEOREM.  Let C be a curve for which f (C)  > O. Then: 

REMARK 1. The inequality (*) is sharp for f = 2 and for any d; to see this, 
consider for instance the family of curves shown in Figure 1 (rounding off 
corners gives a smooth example). 

REMARK 2. The inequality (*) is not sharp for d = 4 and any fixed f > 2. 
In fact, for d = 4, (*) reduces to K < 3~f, while one can prove that 

(**) K < ~(f + 4) 

(see [1]); note that (**) is increasingly better than (*) when f grows. 

REMARK 3. It seems reasonable to conjecture that the inequality (*) is 
not sharp for any fixed d >~ 4 and is increasingly far from being sharp when 
f grows. For  example, choose a curve C' with two inflection sides and 
degree d in the family with 'maximal' curvature defined in Remark 1; 
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d = 4  d = 6  d = 8  d=10  d = 1 2  
K = 6 n - 4 e  K=8rE--4g K = 1 0 r t - 4 e  K = 1 2 n - 4 e  K =  14n-4~ 

K = 4 ( n -  ~)+ 2(d - 2)n/2 = n(d+ 2 ) - 4 e  

Fig. 1 

i/ \\ 

f = 6 ; n = 3 ;  
K = 3(10~ - ~) - 6~" 2/3 

Fig. 2. 

consider  then the curve C ob ta ined  by ' compos ing '  n copies of C'  (with an 

edge deleted) as shown in F igure  2; C has f = 2n inflection sides and degree 

at  least d; even assuming tha t  it could  be possible  to place the  curves C '  in 

such a way  tha t  d ( C )  = d, we still get 

K ( C )  = n K ( C ' )  - ( f  - 2)7z < [ f (1  + d /2 )  - ( f  - 2)]r~. 

R E M A R K  4. One  could  hope that ,  for fixed d, there  could  be a b o u n d  for f 
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depending only on d; thus the inequality (*) would give an inequality of the 
kind 

(°) K < h(d). 

For instance, if C is a non-singular algebraic curve defined by a polynomial 
of degree n, then clearly d(C) ,K< n and, on the other hand, one can easily 
prove that K ( C )  < ~n(n - 1) (see [3]). 

However, the example given in Figure 3 shows that (°) is in general false: 
here Q(i) (i = 1 , . . . ,  n, modulo n) is the midpoint of the diagonal P(i)P(i  + 2) 
of a regular n-gon P(1)...  P(n); rounding off corners gives a smooth 
example. 

P(2) P(3) 

P( 1 ) Q(6I 0{31 / ~  PC/, ) 

P(6I P{51 

d(C) = 4; f (C) = 2n 
K(C) = x(n + 2) 

Fig. 3. 

In [1] we study more deeply the reasons of the failure of inequality (°). 
We refer to the bodies and references of [-2] and [3] as regards the 

motivations for the study of this kind of geometrical invariants (especially 
in the case of surfaces); even if we do not use their results, we had in mind 
[4] and the other papers on plane curves listed in its references. 

We are grateful to professor N. H. Kuiper and to the referee for useful 
suggestions. 

2. PROOF OFTHETHEOREM 

The proof works in the same way for the smooth and the simplical cases. 
We shall begin by proving the theorem under a further 'genericity' assump- 
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tion which allows us to avoid some technical details; at the end we shall 
prove the theorem in the general case. 

Fix an orientation on C; then: 

(G. Smooth) I f  C is smooth, the straight line through two consecutive 
inflection points of  C is transversal to C. 

(G. Simplicial) I f  C is simplicial, any two consecutive inflection sides of C 
are not collinear. 

Let w(1), . . . ,w(f)  be respectively (in the smooth case) the inflection 
points of C, cyclically ordered with respect to the fixed orientation; and (in 
the simplicial case) points in the interior of the inflection sides of C (ordered 
as before) chosen in such a way that the straight line through w(i) and 
w(i + 1) is transversal to C. (Here and in the sequel, we intend that 
w(f + 1) -- w(1).) 

Denote by A(i) the closed subarc of C from w(i) to w(i + 1). We say that a 
subarc A of a curve C is convex (resp. concave) if (in the smooth case) the 
tangent line to C at any point P ~ A is locally outside (resp. inside) the 
interior of the compact region bounded by C; and if (in the simplicial case) 
the straight line through any side s of A is locally outside (resp. inside) 
the interior of the compact polygon bounded by C. 

Note that the arcs A(i) are convex for i even and concave for i odd or 
vice-versa. (See Figure 4, where dotted arcs are concave.) 

Let l(i) be the straight line through w(i) and w(i + 1), arbitrarily oriented; 
label the points of C c~ l(i) with a ' + '  or a ' - ' ,  according to which of the 
situations shown in Figure 5 occurs. (The dashed region represents a part of 
the compact region bounded by C.) 

The points of C c~ l(i) can be 'naturally' ordered in two different ways: 
either according to their position on l(i) (and the fixed orientation on l(i)) or, 
cyclically, according to their position on C (and the fixed orientation on C). 

Fig. 4. 
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) 

r(i) 

C C 

Fig, 5. 

Note  that: 

(1) with respect to both these orderings, the points labelled ' + '  or ° - '  
are alternating; 

(2) with respect to the first ordering, we can speak about  a 'first' point 
and a 'last' point: the first point is labelled ' + '  and the last one is 

labelled ' - '" 
(3) these remarks  do not  depend on the fixed orientations. 

C L A I M  1. Consider the points of l(i)~A(i), ordered with respect to their 
position on l(i). Then the configuration of their labels can only be one of the 
following." 

(a) a certain number of points labelled ' + ' , fo l lowed  by a certain number of 
points labelled - , we denote this configuration by 
( + . . .  + ) (  . . . . .  ); 

(b) ( . . . . .  ) ( +  - "  +); 
(c) ( + - . .  + ) (  . . . . .  ) ( + - . .  + ) (  . . . . .  ); 

(d) ( . . . . .  ) ( + - - "  + ) (  . . . . .  ) ( + " "  +).  

Proof of Claim 1. Let v(1) . . . . .  v(m) be the points of l(i) ~ A(i), ordered with 

respect to their position on A(i), so that v(1) = w(i) and v(m) = w(i + 1) and 
their labels are alternating. The points v(1) and v(2) divide l(i) into a segment 
S and two half-lines h(l) and h(2) with endpoints  v(1) and v(2) respectively; 
the point v(3) can lie either in S or in h(1): this (as all the following 

arguments) depends on the fact that  the arc A(i) is convex (or concave) and 
C is a simple curve. Consider now the point v(4): if v(3) lies in S, then v(4) is 
forced to lie in a segment (that is, in the segment with endpoints  v(3) and 
v(2)); if v(3) lies in h(1), then we have again two possibilities for v(4), either in 
a segment (that is, in the segment of endpoints  v(3) and v(1)) or in a half-line 
(that is, in h(2)). 

One sees easily that  this analysis can be iterated and at each of the 
following stages we find a situation analogous to the one described above 
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h(1 ) " , ~ ~ ' V ( 2  ) 

, 

@ @ , - - ,  
/ 

\.,, / 

: \ J 
• V • 

AA .... A BB.,. BAA...A BB .... B 

1 : ( +  - "  + ) (  . . . . .  ) 3 : ( + " "  + ) (  . . . . .  ) ( +  " ' "  + ) (  . . . . .  ) 2 : ( +  " - '  + ) (  . . . . .  ) 

or  ( "  . . . .  ) ( + - ' - + )  o r  ( . . . . .  ) ( + " - + ) (  . . . . .  ) ( + ' - ' + )  o r  ( . . . . .  ) ( + - " + )  

h { 2 1  

Fig.  6 

(see Figure 6); at the end, we get three possible cases: 
(1) the point v(3) lies in the segment S, and consequently all the points 

v( i )  are forced to lie in the segment of endpoints v( i  - 1) and v( i  - 2); 
as the points v( i )  a r e  alternatively labelled ' + '  and ' - ' ,  we get 
configurations (a) or (b) of the claim; or 

(2) at each stage the point v( i )  lies in a half-line (referring to the previous 
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analysis): again we get configurations (a) or (b); or 
(3) v(i) ties in a half-line for 3 ~< i < i ° (i ° > 3), v(i °) lies in a segment and, 

from then on, the position of all the following points v(i) will be 
forced in a segment: in this case we get configurations (c) or (d). 

The claim is proved. 

C L A I M  2. I f  A(i) is convex (resp. concave), then only configurations (a) or (c) 
(resp. (b) or (d)) o f  Claim 1 can occur. 

Proof  o f  Claim 2. Suppose, for instance, that  A(i) is convex and let Q be 
the first point of l(i) rv A(i), according to the ordering on l(i); if configuration 
(b) or (d) occurs, then Q is labelled with a ' - ' ;  let l -  (resp. l + )  be the half- 
line of origin Q preceding (resp. following) Q according to the fixed 
orientat ion on l(i). 

The  fact that  l(i) is the straight line joining the two endpoints  of A(i) 
implies that  there is at least another  point, besides Q, in l(i)c~ A(i); the fact 
that A(i) is convex implies that  there is at least one in 1 -  ; this is absurd for 
the choice of Q. The other cases are analogous. 

Let re(i) and h(i) be the numbers  of points 

re(i) ~- # {/(i) ~ A(i)} and h(i) = # {/(i) ~ (C - A(i))}. 

Clearly, 

re(i) + h(i) = # {I(i) c~ C} ~< d. 

C L A I M  3. (h(1) + - . "  + h( f ) )  >~(m(1) + . . .  + m(f)) - 2f. 

Proof  o f  Claim 3. Claim 1 gives us four possible cases for the configuration 
of the labelled points of l ( i )~ A(i), ordered on the line 1(i); in each of these 
cases, consider the minimal number  of points which must be added in order  
to get the possible configurat ion of the labelled points of l(i) c~ C, which is 
necessarily of the form + - + . . . .  + - (see Remarks  1 and 2 preceding 
Claim 1). In this way we get an inequality on h(i), in terms of m(i), that is: 

Case (a): h(i) >~ m(i) - 2; 
Case (b): h(i) >~ m(i); 
Case (c): h(i) >~ re(i) - 4; 

Case (d): h(i) >~ re(i) - 2. 
In fact, we shall prove that  in Case (d) the following stricter inequality 
holds: 

Case (d): h(i) >1 m(i). 
Assuming this for the moment ,  we can conclude by noting that 
h(i) >1 re ( i ) -  4, for each i = 1 , . . . , f ,  and h(i) >~ re(i) for at least half of the 
indices i (due to Claim 2). The  required inequality follows. 
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In order to conclude the proof of the claim, consider now the con- 
figuration of Case (d), that is ( . . . . .  ) (+  ... +) (  . . . . .  ) (+  ' "  +), and let 
Q (resp. Q') be the last point labelled ' + '  in the first block of ' + '  (resp. the 

first point labelled ' - '  in the second block of ' - ' ) ;  to prove that h(i) >~ m(i), 
it is enough to show that there are at least two other points of 
l(i) ~ (C - A(i)) in the segment S with endpoints Q and Q': in fact, otherwise, 
the whole segment S would be contained in the interior of the compact 
region bounded by C and this is absurd, because C is a connected curve. 
(See Figure 7, where dotted arcs represent part of the arcs of C - A(i) and 
the dashed region is part of the compact region bounded by C.) 

Fig. 7. 

End of  the proof (in the ~generic' case). Let K(i) be the contribution to the 
curvature given by the arc A(i). If C is simplicial, this is the sum of the 
exterior angles (with respect to C) between two consecutive oriented sides of 

A(i). Clearly 

K = K(1) + ' " +  K(f ) .  

For each i, K(i) can be estimated in terms of the number m(i), using the fact 

that the arc A(i) is convex (or concave) (see Figure 8); that is, 

K(i) < 2rt(m(i) - 1) - ~(m(i) - 2) = 7rm(i). 

On the other hand, Claim 3 gives us 

2(m(1) + ' "  + re(f))  ~< 
~<(m(1) + " '  + m( f ) )  + (h(1) + "  + h( f ) )  + 2 f  ~< f ( d  + 2). 

Thus 
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/ 
/ 

\ %"4.' 
I 

re(i) = 5 

K(i) = Ze.i = 
4 - 2 g  - Zf l j  = 

8 ~ - 3 ~ - f l l - f l s <  

F ig .  8. 

The theorem is proved. 

Proof  of  the general case. Let w(i), A(i), K(i), l(i) be defined as above and 
assume that the straight line l(i) is not transversal to C; the different 
situations which may occur are sketched in Figure 9. (Note that, in the 
simplicial case, (c) necessarily occurs, eventually together with (a) and (b).) 

Moreover, we can always assume that (a) does no t  occur: in fact, the 
modifications outlined in Figure 10 give a curve C' for which (a) does not 
occur and such that K(C')  = K(C), f ( C ' )  = f (C) ,  d(C') ~< d(C). 

Assume then only (b) and (c) occur. Let m ( i ) = m ' ( i ) + m " ( i ) ,  
h(i) = h'(i) + h"(i), where m'(i) = #M'( i ) ,  m"(i) = # M " ( i )  and M'( i )=  {P: 
P ~ (l(i) c~ A(i)), l(i) intersects A(i) transversally in P}. 

P P s 

f / 

Fig .  9. 
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/ \  . . . . . . . . . . . . .  

C 

; - " , , c ,  / \c , 
Fig. 10. 

(Simplicial case) 

M"(i)  = {s: s is a side of C contained in /(i)}; 

(Smooth case) 

M " ( i ) = { P :  P ~ ( l ( i ) n A ( i ) )  and the intersection is not  
transverse}. 

h(i) will be defined in the same way, referring to the intersections of l(i) 
with C - A(i). Note  that: 

(i) the points (resp. sides) in M"(i)  or H"(i) are necessarily inflection 
points (resp. inflection sides) of C; 

(ii) m"(i) -.< 2: in fact, (b) cannot  occur for a point  P (or a side s) in the 
interior of the arc A(i), as one easily sees with a reasoning analogous 
to the proof  of Claim 1; 

(iii) h(i) + re(i) ~< d - 2: in fact, let P be a point (resp. s be a side) in M"(i)  
or in H"(i) and consider a line I transversal to C, near to l(i) and such 

that  i intersects C in three points in a ne ighbourhood of P (resp. s) 
(see Figure 11); then h(i) + rn(i) = # {l r~ C} - 2 ~< d - 2; 

(iv) as all the intersection points (or sides) are either transversal or 
inflection points (or sides), one can label them with ' + '  or ' - '  signs 
exactly as before and claims 1, 2 and 3 hold with the same proof. 

P I 

Fig. 11. 

~ ~ I l i l  
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F o r  (ii) above,  one can  compu te  the  curva ture  K(i) exact ly  as in the 

'generic '  case; however ,  we only get K(i)-.< ~m(i), ins tead  of the strict  

inequal i ty ,  because  the  angles between C and l(i) in the points  w(i) and  

w(i + 1) (il l  and  f18 in F igure  8) m a y  be zero. However ,  when we consider  

the sum K = K(1) + . . .  + K ( f ) ,  either one at  least of the s t ra ight  lines l(i) is 

t ransversa l  to C (and in this case K < re(m(1) + " ' re ( f ) )  ~< re f (1  + d/2)) or  

for each one of them we can use (iii), thus  get t ing 

K < rt(m(1) + "-"m(f))  < re f(1 + d/2): in bo th  cases the inequal i ty  is proved.  
t 
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