# The Topology of Two-Dimensional Real Algebraic Varieties (*). 

R. Benedetti - M. Dedò (Pisa) (**)


#### Abstract

Sunto. - ̇̀ noto che ogni spazio analitico reale è localmente omeomorfo al cono su un poliedro con caratteristica di Eulero-Poincaré pari. Si dimostra che questa condizione è anche sufficiente affinchè un poliedro (compatto) di dimensione due $P$ sia omeomorfo ad una varietà algebrica reale affine $\hat{P}$. Segue inoltre dalla costruzione che la $\hat{P}$ ottenuta ha, in un certo senso, un insieme di singolarità algebriche minimale, compatibilmente con la topologia di $P$.


## Introduction.

The topological resolution of singularities is often a suitable tool for studying different kind of questions (see [5] or [4] for an application to the representation of homology classes). In [1] it is given a complete topological characterization of real algebraic affine varieties with isolated singularities, by means of both algebraic approximations of differentiable objects and the construction of a good resolution of singularities (see also [3]).

It seems natural that one can generalize this technique. It is known that every real analytic space is locally homeomorphic to the cone over a polyhedron with even Euler characteristic (see [7]; we shall call this property condition (E)). In this paper we show that every two-dimensional (compact) stratified space $P$ is homeomorphic to a real algebraic affine variety $\hat{P}$ if and only if $P$ satisfies $(E)$.

The main tool is again the construction of a good topological resolution of the singularities (similar, in some sense, to the algebraic one), whose existence is essentially equivalent to condition $(E)$. Using the one point compactification, we give at the end a complete topological characterisation of two-dimensional real algebraic varieties.

Many proofs are elementary; moreover the details of the constructions allow us to get precise informations about the algebraic singularities of $\hat{P}$ : we thus obtain a subset $\{A-B\}$ of the set of spaces satisfying $(E)$, such that any $P \in\{A-B\}$ is homeomorphic to a $\hat{P}$ whose algebraic and topological singularities are the same. This is not possible in general: however, we give a standard way to add a «minimal» (with respect to the topology of $P$ ) set of singularities in $\hat{P}$ (see $2.11 b$ ) for the precise statement).

[^0]The definition of $\{A-B\}$ and the proofs in this case seem to be more immediately generalizable to higher dimensional spaces. We have just learned that a similar result is announced in a later version of [1].

## 1. - Preliminaries.

We shall first make some remarks. By the word "smooth» we shall always mean differentiable of class $C^{\infty}$; due to the low dimension of the spaces considered, many constructions are clear: thus, for example, for the sake of simplicity, all topological constructions are meant up to smoothing, or else we shall assume some notions like attaching a handle to a manifold.

We shall work in the eategory of two-dimensional compact stratified spaces (see Thon [8], [9] and Mather [6]), eventually with (not empty collared) boundary. We recall here some known facts.

Let $P$ be such a space, where we assume that every 0 -dimensional stratum is exactly one point; if $X_{0}$ and $X_{1}$ are strata of $P, X_{0}<X_{1}$ means that $X_{0} \subset \bar{X}_{1} ; \dot{P}$ is the boundary of $P$. We can assume that $P$ is realized in an euclidean space $\boldsymbol{R}^{N}$, where $N$ is big enough.

For each $x \in P$, there exists a fundamental system of neighbourhoods of the kind $x Q_{i}$ (that is, the cone on $Q_{i}$ with vertex $x$ ), where $Q_{i}$ is a 1 -dimensional stratified space isomorphic to $Q, \forall i ; Q$ is called the link of $x$ in $P$, and we write $Q=1 \mathrm{k}(x, P)$.
1.1 REMARK. - If $x=X_{0}$ is a stratum of $P$, then $\mathrm{lk}(x, P)$ is isomorphic to the boundary of a tubular neighbourhood of $X_{0}$ in $P$ (see Thom [8], [9] and Mather [6]).

Let $p$ be the greatest integer such that $\mathrm{lk}(x, P)$ is homeomorphic to $S^{p} * T$, where $S^{p}$ is the unit sphere in $\boldsymbol{R}^{p+1}\left(p \geqslant \operatorname{dim} X_{0}\right.$, if $x$ belongs to the stratum $X_{0}$ ) and $*$ is the join operation defined by

$$
X * Y=X \times Y \times[0,1] /(x, y, 0) \sim\left(x, y^{\prime}, 0\right) ;(x, y, 1) \sim\left(x^{\prime}, y, 1\right)
$$

1.2 Definition. - The intrinsic codimension of $x$ in $P$ is

$$
\mathrm{CI}(x, P)=\operatorname{dim} T=2-(p+1)
$$

1.3 Definition. - Let $i$ be the length of a maximal chain of strata $x \in X_{0}<$ $<X_{1}<\ldots<X_{i}$. The coheight of $x$ in $P$ is

$$
\mathrm{OA}(x, P)=i
$$

1.4 Definition. - A stratified space $P$ is good if

$$
\mathrm{CI}(x, P) \geqslant \mathrm{CA}(x, P) \quad \text { for each } x \in P
$$

1.5 Definition. $-\Sigma P=\{x \in P: \mathrm{CI}(x, P)+\mathrm{CA}(x, P) \neq 0\} ; x \in P$ is regular if $\mathrm{CI}(x, P)=\mathrm{CA}(x, P)=0$.
1.6 Remark. - Let $P$ be a good stratified space; this means that its stratification describes exactly the topological regularity of a point in $P$ and in $\Sigma P$. In particular,

$$
\Sigma P=\left\{x \in P: \operatorname{lk}(x, P) \text { is not homeomorphic to } \mathbb{S}^{1}\right\} .
$$

As in dimension two there are no smoothing problems, we shall only consider, without loss of generality, good stratified spaces.
1.7 Definition. - Let $P$ be a good stratified space. We define

$$
\Sigma_{0} P=\{x \in P: \mathrm{CA}(x, P)=2\} \quad \text { and } \quad \Sigma_{1} P=\{x \in P: \mathrm{CA}(x, P)=1\}
$$

1.8 Remark. - a) $\Sigma P \neq \Sigma_{0} P \cup \Sigma_{1} P$; if $x \in \Sigma P \backslash\left(\Sigma_{0} P \cup \Sigma_{1} P\right)$, then or $x$ is an isolated point, or it belongs to a 1-dimensional stratum which is not incident to any 2 -dimensional stratum;
b) $\Sigma_{0} P$ consists of a finite number of points (as $P$ is compact and, if $x \in \Sigma_{0} P$, then $x$ is a stratum);
c) $\Sigma(\Sigma P)=\Sigma_{0} P \cup\{$ isolated points of $P\}$.

Using the tubular neighbourhoods of $P$ (see Thom [8], [9] and Mather [6]), we can find a closed neighbourhood $N$ of $\Sigma P$ in $P$ such that:
a) the boundary $\dot{N}$ of $N$ is a closed manifold;
b) there exists a (piecewise smooth) projection $p: N \rightarrow \Sigma P$ which is a deformation retraction;
c) $(N, p)$ is unique, up to isotopy;
d) $N$ is the mapping cylinder of $\dot{p}=\left.p\right|_{\dot{\lambda}}: \dot{N} \rightarrow \Sigma P$.

In the following we shall refer to $(N, p)$ as the regular neighbourhood of $\Sigma P$ in $P$.
1.9 Definition. - Let $f, g$ be two loops in $X, f(0)=f(1)=g(0)=g(1)$. We say that $f$ and $g$ are specially homotopic if they only differ for constant intervals; that is, if there exists a finite number of loops $f=f_{1}, f_{2}, \ldots, f_{n}=g$, such that $f_{i+1}$ can be obtained from $f_{i}$ (or vice-versa) in the following way:

$$
f_{i+1}(t)= \begin{cases}f_{i}\left(\left(x_{0} / t_{0}\right) \cdot t\right), & 0 \leqslant t \leqslant t_{0} \\ f_{i}\left(x_{0}\right), & t_{0} \leqslant t \leqslant t_{1} \\ f_{i}\left(\left(\left(1-x_{0}\right) /\left(1-t_{1}\right)\right) \cdot\left(t-t_{1}\right)+x_{0}\right), & t_{1} \leqslant t \leqslant 1\end{cases}
$$

with $0 \leqslant t_{0} \leqslant t_{1} \leqslant 1$ and $0 \leqslant x_{0} \leqslant 1$.
1.10 Remark. - a) if $f$ and $g$ are specially homotopic, then their mapping cylinders are homeomorphic;
b) $\dot{N}$ consists of a finite number of circles embedded in $P \backslash \Sigma P$ and the homeomorphism type of $N$ depends only on the class of special homotopy of $\dot{p}: \dot{N} \rightarrow \Sigma P$; it is thus possible to change the map $\dot{p}$, up to special homotopy, without changing the homeomorphism class of the stratified space $P$;
c) moreover, it is clear that, if we change $\dot{p}$ in $p^{\prime}$, specially homotopic to $\dot{p}$ and piecewise smooth (according to the strata of $P$ ), then we don't change the isomorphism class of $P$, as a stratified space.

Let $P$ be a good stratified space. We call $\left(N_{1}, p_{1}\right)$ the regular neighbourhood of $\Sigma P$ in $P$. The regular neighbourhood of $\Sigma(\Sigma P)$ in $\Sigma P$ is the union of a neighbourhood $N_{01}$ of $\Sigma_{0} P$ in $\Sigma P$ and a finite number of isolated points in $P . N_{01}$, with the natural projection $p_{01}: N_{01} \rightarrow \Sigma_{0} P$, will be called the regular neighbourhood of $\Sigma_{0} P$ in $\Sigma P$. Moreover, we can choose a tubular neighbourhood ( $N_{0}, p_{0}$ ) of $\Sigma_{0} P$ in $P$ such that:
a) if $\Sigma_{0} P=\left\{x_{1}, \ldots, x_{n}\right\}$, then $N_{0}$ is isomorphic to the disjoint union $\left\lfloor x_{i} \operatorname{lk}\left(x_{i}, P\right)\right.$;
b) $N_{01}=N_{0} \cap \Sigma P$;
c) $\left.p_{0}\right|_{N_{1} \cap N_{0}}=\left.p_{01} \circ p_{1}\right|_{N_{1} \cap N_{0}}$;
d) $\dot{p}_{1}^{-1}\left(N_{01}\right)=\dot{N}_{0} \cap \dot{N}_{1}$.

From now on, if no statement is made to the contrary, all stratified spaces will be without boundary.
1.11 Definition. - Let $P$ be a good stratified space. We say that $P$ satisfies condition ( $A$ ) if $\forall x \in \Sigma_{1} P$ such that $1 \mathrm{k}(x, P)=S^{0} * M, M$ consists of an even number of points.

Let $\dot{N}_{01}=\dot{N}_{0} \cap \Sigma P=\left\{r_{1}, \ldots, r_{s}\right\}$ and $\mathrm{lk}\left(r_{i}, P\right)=S^{0} * M_{i}$, with $M_{i}=\operatorname{lk}\left(r_{i}, \dot{N}_{0}\right)=$ $=\left\{n_{i}\right.$ points $\}, n_{i} \geqslant 0$.
1.12 Definition. - Let $P$ be a good stratified space. We say that $P$ satisfies condition (B) if, $\forall n \in N, \forall x \in \Sigma_{0} P, \#\left\{i: n_{i}=n\right.$ and $\left.\dot{p}_{01}\left(r_{i}\right)=x\right\}$ is even.
1.13 Remark. - a) If $P$ satisfies $(A)$ and $(B)$, then it also satisfies Sullivan's condition $(E): \chi(\mathrm{lk}(x, P))$ is even, for each $x \in P$. To see this, note that if $x \in \Sigma_{0} P$ (otherwise the statement is obvious), then $\mathrm{lk}(x, P)$ is a graph $\Gamma$ with $2 k$ vertices $r_{1}, \ldots, r_{2 k}$ (for $\left.(B)\right)$ and $\left(n_{1}+\ldots+n_{2 k}\right) / 2$ edges; from (A) it follows that each $n_{i}$ is even, and from $(B)$ that they are equal in pairs; therefore $\chi(\Gamma)$ is even;
$b$ ) the contrary of $a$ ) is no longer true: for example the suspension of the wedge of three circles $P=S^{1} \vee S^{1} \vee S^{1}$ satisfies ( $E$ ) and doesn't satisfy ( $B$ ).

## 2. - Topological resolution of singularities.

We shall give polynomial equations for a (compact) stratified space satisfying ( $E$ ) by means of a topological resolution of singularities of a special kind, whose existence we shall prove in this paragraph.

We shall first give the construction for a good stratified space $P$ satisfying ( $A$ ) and $(B)$, and then we generalize it to a space $P$ satisfying $(E)$; we do this for many reasons: first, the $(A-B)$ case is much simpler, and it is easier then to understand the modifications which must be given in the $(E)$ case; the existence of the $(A-B)$ special resolution of singularities characterizes the spaces satisfying conditions $(A)$ and $(B)$ and it seems easier to generalize this construction to higher dimensional spaces (see remark 2.7); the $(A-B)$ case is the most general one such that we can make the construction without changing the stratification of $P$ : in the $(E)$ case it will be necessary to add some 1-dimensional strata to the topological singularities of $P$ (thus $P$, in particular, will no more be a good stratified space).

We first give a construction which will be useful later:
2.1 Remark. - Let $M_{n}$ be a two-dimensional compact orientable manifold of genus $n$ and with boundary $\partial M_{n}=S_{1} \cup \ldots \cup S_{n+2}$. We shall give a standard way to find a family $\left\{\gamma_{i}\right\}$ of circles embedded in $M_{n}$, in general position and such that $M_{n} \backslash\left\{\gamma_{i}\right\}$ is a collar of $\partial M_{n}$ in $M_{n}$. We say also that $M_{n}$ is a normal neighbourhood of $\bigcup_{i} \gamma_{i}$.

The proof is by induction on $n ; M_{0}$ is the cylinder $S^{1} \times[0,1]$ and $M_{k+1}$ can be obtained from $M_{k}$ by attaching a «handle with a hole».

On $M_{0}$, the family is the only circle $\gamma=S^{1} \times\left\{\frac{1}{2}\right\}$; suppose now we have given the family $\left\{\gamma_{i}\right\}$ on $M_{k}$ and consider

$$
M_{k+1}=\overline{M_{k} \backslash\left(S^{0} \times D^{2}\right) \bigcup_{S^{0} \times S^{1}}} \overline{\left(\left([0,1] \times S^{1}\right) \backslash D\right)}
$$

$D$ is a 2 -disk embedded in $[0,1] \times S^{1}$ and we can suppose there exists $x_{0} \in \mathbb{S}^{1}$ such that $D \subset] \frac{1}{4}, \frac{3}{4}\left[\times\left(\mathcal{S}^{1} \backslash\left\{x_{0}\right\}\right)\right.$.
$S^{0} \times D^{2}$ are two disks $D_{1}$ and $D_{2}$ embedded in $M_{k}$, which we choose to be in different connected components $V_{1}$ and $V_{2}$ of $M_{k} \backslash\left\{\gamma_{i}\right\}$, such that $\bar{V}_{1} \cap \bar{V}_{2}$ is a circle $\gamma_{i_{0}}$ of the given family.

Let $x_{1}=\left(x_{0}, 0\right) \in \partial D_{1}$ and $x_{2}=\left(x_{0}, 1\right) \in \partial D_{2}$; there exists a path $\alpha$ in $M_{k}$, with endpoints $x_{1}$ and $x_{2}$, which intersects $\gamma_{i_{0}}$ transversally in one point and doesn't intersect any other circle of the family $\left\{\gamma_{i}\right\}$. Put

$$
\tilde{\gamma}_{1}=\alpha \bigcup_{\left\{x_{1}, x_{2}\right\}}\left([0,1] \times\left\{x_{0}\right\}\right) ; \quad \tilde{\gamma}_{2}=S^{1} \times\left\{\frac{1}{4}\right\} ; \quad \tilde{\gamma}_{3}=S^{1} \times\left\{\frac{3}{4}\right\}
$$

Then the required family on $M_{k_{+1}}$ is $\left\{\gamma_{i}, \tilde{\gamma}_{1}, \tilde{\gamma}_{2}, \tilde{\gamma}_{3}\right\}$ : to see this, it is enough to note that the connected component of $M_{k+1} \backslash\left(\left(\cup \gamma_{i_{0}}\right) \cup\left(\cup \tilde{\gamma}_{j}\right)\right)$ containing $\partial D$ is homeo-
morphic to a cylinder, while the others, when different from a connected component of $M_{k} \backslash\left(\cup \gamma_{i}\right)$, may be obtained from one of these by adding a hole and a cutting from the boundary of the hole to the previous boundary (and thus they are still homeomorphic to a cylinder).
2.2 Remark. $-M_{n} \backslash\left(\cup \gamma_{i}\right)$ has $n+2$ connected components $V_{1}, \ldots, V_{n+2}$, where we denote by $V_{i}$ the one containing $S_{i} \subset \partial M_{n}$. In the following, we shall need that the closure of one of these components, say $V_{1}$, intersects each $\bar{V}_{j}, j=2, \ldots, n+2$, in a circle of the family $\left\{\gamma_{i}\right\}$. To achieve this, it is enough to choose one of the two disks $D_{1}$ and $D_{2}$ of the last remark to be always in the connected component of $M_{k} \backslash\left(\cup \gamma_{i}\right)$ containing $S_{1}$. Note that, in this case, we can choose paths $\alpha_{j}$, with endpoints a point of $S_{1}$ and a point of $S_{j}(j=2, \ldots, n+2)$, such that each $\alpha_{j}$ intersects in exactly one point and transversally just one circle of the family $\left\{\gamma_{i}\right\}$, and different paths intersect different circles (see fig. 1).


Figure 1
We want to prove the following theorem, whose statement makes clear what we mean by a special resolution of singularities.
2.3 Theorem. - Let $P$ be a good stratified space, satisfying $(A)$ and $(B)$; then there exists an $(A-B)$ special resolution of the singularities of $P$, that is a chain $P^{\prime \prime} \xrightarrow{f^{\prime \prime}} P^{\prime} \xrightarrow{f^{\prime}} P$ such that:

1) $P^{\prime}$ is a good stratified space, satisfying $(A)$ and $(B)$ and such that $\Sigma_{0} P^{\prime}=\emptyset$;
2) $f^{\prime-1}\left(\Sigma_{0} P\right)=\mathcal{F}=\bigcup_{r} F_{r}$, where
a) for each $r, F_{r}$ is or a circle or a wedge of circles (where we agree that a wedge of 0 circles is a single point);
b) if $F_{r}$ is a circle, then $F_{r}$ is embedded in $P^{\wedge} \Sigma P^{\prime}$;
c) if $F_{r}$ is a wedge of $m_{r}$ circles, then the center $x_{r}$ of $F_{r}$ is a point of $\Sigma P^{\prime}$ such that lk $\left(x_{r}, P^{\prime}\right)=S^{0} *\left(2 m_{r}\right.$ points $) ; x_{r}=F_{r} \cap \Sigma P^{\prime}$;
d) the $F_{r}^{\prime}$ 's intersect transversally in $P^{\prime} \backslash \Sigma P^{\prime}$;
3) $f^{\prime}$ is a continuous epimorphism such that $\left.f^{\prime}\right|_{P^{\prime} \backslash \mathcal{F}}: P^{\prime} \backslash \mathcal{F} \rightarrow P \backslash \Sigma_{0} P$ is an isomorphism and $\left.f^{\prime}\right|_{P^{\prime} \backslash f^{\prime-1}\left(N_{0}\right)}: P^{\prime} f^{\prime-1}\left(N_{0}\right) \rightarrow P \backslash N_{0}$ is the identity;
4) $P^{\prime \prime}$ is a good stratified space such that $\Sigma_{0} P^{\prime \prime}=\Sigma_{1} P^{\prime \prime}=\emptyset$; that is, $P^{\prime \prime}$ is a manifold, maybe not equidimensional;
5) $f^{\prime \prime-1}\left(\Sigma_{1} P^{\prime}\right)=\mathcal{F}^{\prime}=\bigcup_{k} F_{k}^{\prime}$ is a family of circles in general position embedded
in $P^{\prime \prime} ;$
6) $f^{\prime \prime}$ is a continuous epimorphism such that $\left.f^{\prime \prime}\right|_{P^{\prime \prime} \backslash \mathcal{F}}: P^{\prime \prime} \backslash \mathcal{F}^{\prime} \rightarrow P^{\prime} \Sigma_{1} P^{\prime}$ is an isomorphism and $\left.f^{\prime \prime}\right|_{P^{\prime \prime} \backslash f^{\prime \prime-1}\left(N_{1}^{\prime}\right)}: P^{\prime \prime} \backslash f^{\prime \prime-1}\left(N_{1}^{\prime}\right) \rightarrow P^{\prime} \backslash N_{1}^{\prime}$ is the identity;
7) $f^{\prime \prime-1}(\mathcal{F})=\mathscr{F}^{\prime \prime}=\bigcup_{h} F_{h}^{\prime \prime}$ is a family of circles embedded in $P^{\prime \prime}$ and such that $\mathcal{F}^{\prime} \cup \mathcal{F}^{\prime \prime}$ is a family in general position;
8) putting $f=f^{\prime} \mathfrak{o}^{\prime \prime}$, we have that $f \mid: P^{\prime \prime} \backslash\left(\mathcal{F}^{\prime} \cup \mathcal{F}^{\prime \prime}\right) \rightarrow P \backslash \Sigma P$ is an isomorphism; moreover, for each $F_{i}^{\prime \prime} \in \mathscr{F}^{\prime \prime},\left.f\right|_{F_{i}^{\prime \prime}}$ is the constant map on a point of $\Sigma_{0} P$, while, for each $F_{j}^{\prime} \in \mathcal{F}^{\prime},\left.f^{\prime \prime}\right|_{F_{j}^{\prime}}$ or is the constant map on a point of $\Sigma P^{\prime}$, or it is an $n$-covering of a circle of $\Sigma P^{\prime}$.

We shall prove this theorem in three steps:
2.4 Step 1: construction of $P^{\prime}$. - Let $P$ be a good stratified space satisfying ( $A$ ) and $(B)$ and assume first $\Sigma_{0} P=\left\{x_{0}\right\} . \quad \Gamma=\mathbb{l k}\left(x_{0}, P\right)$ is a graph with an even number of vertices $r_{1}, \ldots, r_{2 k}=\dot{N}_{01}$ and such that, for each $i=1, \ldots, 2 k$, a neighbourhood $U_{i}$ of $r_{i}$ in $\Gamma$ is a cone with vertex $r_{i}$ on an even number of points $P_{i j}$ ( $\left.j=1, \ldots, 2 n_{i} ; n_{i} \geqslant 0\right)$; as $P$ satisfies $(B)$, we may assume also $n_{1}=n_{2}, \ldots, n_{2 k-1}=n_{2 k}$ :

One can prove easily (by induction on $k$ ) that there exist $s$ circles $\Gamma_{1}, \ldots, \Gamma_{s}$ in $\Gamma$ such that $\Gamma$ is the quotient of the disjoint union $\left(\underset{t=1, \ldots, s}{\coprod} \Gamma_{t}\right) \coprod\left(\underset{i=1, \ldots, 2 k}{\lfloor } r_{i}\right)$ by an equivalence relation such that:
a) if $r_{i}$ is isolated in $\Gamma$, then $\left[r_{i}\right]=\left\{r_{i}\right\}$;
b) if $r_{i}$ is not isolated in $\Gamma$, then $\left[r_{i}\right]=\left\{r_{i}, P_{1}, \ldots, P_{n_{i}}\right\}$, where $P_{j} \in \Gamma_{j}$ and $j \neq h \Rightarrow \Gamma_{j} \neq \Gamma_{h} ;$
c) if $p \notin\left[r_{i}\right]$ for some $i$, then $[p]=\{p\}$.

Let us choose once for all $\Gamma_{1}, \ldots, \Gamma_{s}$; reorder then the points $P_{i j} \in \partial U_{i}$ so that $P_{i, 2 j-1}$ and $P_{i, 2 j}$ belong to the same circle $\Gamma_{h}$, for any $j=1, \ldots, 2 n_{i}$ (this construction is clearly empty if $n_{i}=0$ ).

Attach now $n_{1}+\ldots+n_{k}$ edges to $\coprod_{i=1, \ldots, 2 k} U_{i}$ so that the boundary of each edge are two points of the kind $P_{i, 2 i-1}$ and ${ }^{i=1, \ldots, 2 k} P_{i, 2 j}$, and let $\tilde{\Gamma}$ be the resulting graph.
$\tilde{\Gamma}$ is the disjoint union of $2 k$ wedges of circles, with centers in $r_{i}$, such that each circle meets the boundary of $U_{i}$ in two points belonging to the same $\Gamma_{h}$.

Put

$$
\tilde{P}=\overline{P \backslash N_{0}} \bigcup_{U_{i} \times\{0\}} U_{i} \times[0,1] \bigcup_{U_{i} \times\{1\}} \tilde{\Gamma}
$$

and consider one of the circles $\Gamma_{h}$, say $\Gamma_{1} ;$ let $r_{1}, \ldots, r_{t}$ be the vertices of $\Gamma$ belonging to $\Gamma_{1}$; for each $i=1, \ldots, t$, choose in the wedge of circles with center in $\left(r_{i}, 1\right) \in \tilde{\Gamma}$ that one containing the two points $\left(P_{i j}, 1\right)$ such that $P_{i j} \in \Gamma_{1}$; we thus get $t$ circles $S_{1}, \ldots, S_{t}$.

Consider now the manifold $M_{i-1}^{(1)}$ and identify $\partial M_{t-1}^{(1)}$ with $\Gamma_{1} \cup S_{1} \cup \ldots \cup S_{t}$; choose a family $\left\{\gamma_{i}\right\}$ of circles in general position embedded in $M_{t-1}^{(1)}$ as in 2.1 and 2.2, where $\Gamma_{1}$ is now the circle playing the role of $S_{1}$ in 2.2. Choose then $t$ paths $\alpha_{1}, \ldots, \alpha_{t}$ as in 2.2 , such that the endpoints of $\alpha_{i}$ are $\left(r_{i}, 0\right) \in \Gamma_{1}$ and $\left(r_{1}, 1\right) \in S_{i}$; let $N_{i}$ be a tubular neighbourhood of $\alpha_{i}$ in $M_{t-1}^{(1)}$ such that

$$
N_{i} \cap \Gamma_{1}=\left(U_{i} \times\{0\}\right) \cap \Gamma_{1} \quad \text { and } \quad N_{i} \cap S_{j}=\left(U_{i} \times\{1\}\right) \cap S_{j}
$$

We can then attach $M_{i-1}^{(1)}$ to $\widetilde{P}$ by identifying $N_{i}$ with $\left(U_{i} \cap \Gamma_{1}\right) \times[0,1]$ in the natural way (in particular, $\alpha_{i}$ is identified with $\left.\left\{r_{i}\right\} \times[0,1]\right)$.

Do this for each circle $\Gamma_{1}, \ldots, \Gamma_{\mathrm{s}}$ and call $\hat{P}$ the resulting space; $\hat{P}$ is a good stratified space, with boundary $\tilde{\Gamma}$ :

$$
\widehat{P}=\tilde{P} \bigcup_{\left\{N_{t}\right\}}\left(M^{(1)} \cup \ldots \cup M^{(s)}\right)=\overline{P \backslash N_{0} \bigcup} \bigcup_{\dot{N}_{0}}(\underbrace{M^{(1)} \cup \ldots \cup}_{\left\{\alpha_{i}\right\}} M^{(s)})
$$

We denote by $C_{i}$ the wedge of $n_{2 i}$ circles; let $P^{\prime}$ be the quotient of the disjoint union $\hat{P} \coprod\left(\left(O_{1} \cup \ldots \cup C_{k}\right) \times[0,1]\right)$ by the identification of $C_{i} \times\{0\}$ with the wedge of $n_{2 i-1}=n_{2 i}$ circles with center in $\left(r_{2 i-1}, 1\right) \in \tilde{\Gamma}$ and $O_{i} \times\{1\}$ with the wedge of $n_{2 i}$ circles with center in $\left(r_{2 i}, 1\right) \in \tilde{\Gamma}$, for each $i=1, \ldots, k$.
$P^{\prime}$, with the natural stratification, is a good stratified space and
where the equivalence relation $\sim$ is defined by

$$
\left(r_{2 i}, 0\right) \sim r_{2 i-1} \in \dot{N}_{01} \quad \text { and } \quad\left(r_{2 i}, 1\right) \sim r_{2 i} \in \dot{N}_{01}
$$

Thus $\Sigma_{0} P^{\prime}=\emptyset$ and condition $(B)$ is empty with respect to $P^{\prime}$; moreover, for each $x \in \Sigma P^{\prime} \backslash\left(\Sigma P \cap \Sigma P^{\prime}\right), \operatorname{lk}\left(x, P^{\prime}\right)=S^{0} *\left\{2 n_{i}\right.$ points $\}$ for some $i$ : therefore $P^{\prime}$ satisfies condition $(A)$.

Observe finally that, if $\Sigma_{0} P$ consists of more than one point, we can make the same construction on disjoint neighbourhoods of the points belonging to $\Sigma_{0} P$. Therefore we have constructed a space $P^{\prime}$ satisfying property 1) of 2.3.
2.5 Step 2: construction of $f^{\prime}$. - We always assume, for the sake of simplicity, $\Sigma_{0} P=\left\{x_{0}\right\}$.
$P^{\prime}=\overline{P \backslash N_{0}} \cup \widetilde{\dot{N}_{0}} ; \widetilde{Q_{1}}=\widetilde{Q}_{1} \llbracket \widetilde{Q}_{2} / \sim ; \widetilde{Q}_{1}=\left(M^{(1)} \cup \ldots \cup M^{(s)}\right) / \sim ; \widetilde{Q}_{2}=\left(C_{1} \cup \ldots \cup C_{k}\right) \times[0,1]$,
where $\sim$ denotes the identifications previously described.
$N_{0}$ is a cone with vertex $x_{0}$ on $\dot{N}_{0}$; thus, in order to define a map $f^{\prime}: P^{\prime} \rightarrow P$ satisfiying properties 2) and 3) of theorem 2.3, it is enough to find a family $\mathscr{F}=\bigcup_{r} F_{r}$, satisfying properties $a), b), c), d)$ of 2 ) and such that $\widetilde{Q} \bigcup_{r} F_{r}$ is a collar on $\dot{N}_{0}={ }^{r} \partial \widetilde{Q}$.

First of all, for each $i=1, \ldots, s$, we choose a family of circles $\left\{\gamma_{h}^{(i)}\right\}$ embedded in the manifold $M^{(i)}$, as in the remark 2.2 with respect to $\Gamma_{i}$. Note that, for each $i=1, \ldots, s$, there are $t_{i}$ paths $\alpha_{1}^{(i)}, \ldots, \alpha_{t_{i}}^{(i)}$ in $M^{(i)}$ (the ones where we make the identifications to get $\left.\widetilde{Q}_{1}\right)$, such that the endpoints of $\alpha_{j}^{(i)}$ are the two points $\left(r_{j}, 0\right) \in \Gamma_{i}$ and $\left(r_{j}, 1\right) \in S_{j}^{(i)}$; as we saw, we can choose the circles $\left\{\gamma_{h}^{(i)}\right\}$ so that one and only one (which we call $\gamma_{j}^{(i)}$ ) meets the path $\alpha_{j}^{(i)}$ transversally.

Let us fix then a point $x_{j} \in \alpha_{j}^{(i)}$, for example $x_{i}=\left(r_{j}, \frac{1}{2}\right)$, and choose $\gamma_{j}^{(i)}$ so that $x_{j} \in \gamma_{j}^{(i)}$. Note also that $\gamma_{j}^{(i)}$ is the only circle of the family $\left\{\gamma_{l}^{(i)}\right\}$ which is contained in the closures of the two connected components of $M^{(i)} \backslash\left\{\gamma_{i}^{(i)}\right\}$ meeting $S_{j}^{(i)}$ and $\Gamma_{i}$ respectively.

Therefore, if we choose the families $\left\{\gamma_{h}^{(i)}\right\}$ as described, after the identifications we shall get a family $\mathscr{F}^{\prime}=\left\{\mathcal{F}_{s}^{\prime}\right\}$ satisfying properties $a$ ), b), c), d), and such that $\tilde{Q}_{1} \backslash \mathcal{F}^{\prime}$ is a collar on $\dot{N}_{0} \cup \tilde{\Gamma}$.

Let us now attach to $\tilde{Q}_{1}$ a «handle» $C_{p} \times[0,1]$; if $C_{p}$ is $a$ wedge of $n_{2 p}=0$ circles, that is the single point $r_{2 p}$, it is enough to add to the family $\mathcal{F}^{\prime}$ the point ( $r_{2 p}, \frac{1}{2}$ ).

Suppose then $n_{2 p}>0$ and let $S$ be a circle belonging to the wedge $C_{p}$ : we shall describe how to make some modifications to the family $\mathscr{F}^{\prime}$ in order to get a family satisfying the same properties with respect to the space $\widetilde{Q}_{1} \cup(S \times[0,1])$.
$S \times\{0\}$ is identified with a circle $\mathcal{S}_{j}^{(p)} C \partial M^{(p)}$ and $S \times\{1\}$ is identified with a circle $S_{h}^{(\alpha)} \subset \partial M^{(q)}$ (maybe $p=q$ ).

As we saw, we can associate to $S_{j}^{(p)}$ (resp. $S_{h}^{(\alpha)}$ ) a well-defined circle $\gamma_{j}^{(p)}$ (resp. $\gamma_{h}^{(\alpha)}$; we shall use the simpler notation $S^{\prime}=S_{j}^{(p)}, S^{\prime \prime}=S_{h}^{(\alpha)}, \gamma^{\prime}=\gamma_{j}^{(p)}, \gamma^{\prime}=\gamma_{h}^{(\alpha)}$. Let $V^{\prime}$ (resp. $V^{(p)}$ ) be the connected component of $M^{(p)} \backslash \cup \gamma_{s}^{(p)}$ which meets $S^{\prime}$ (resp. $\Gamma_{p}$ ); $V^{\prime \prime}$ and $V^{(a)}$ are defined similarly.

There exists a projection $p^{\prime}: M^{(p)} \rightarrow \bigcup_{s} \gamma_{s}^{(p)}\left(\right.$ resp. $\left.p^{\prime \prime}: \mathcal{M}^{(q)} \rightarrow \bigcup_{t} \gamma_{t}^{(q)}\right)$ such that $V^{\prime}$
is the mapping cylinder of $\dot{p}^{\prime}=\left.p^{\prime}\right|_{S^{\prime}}$ and $\gamma^{\prime} \subset p^{\prime}\left(V^{\prime}\right)$; moreover, as $\gamma^{\prime} \subset \overline{V^{(p)}}$ and $V^{(y)} \neq V^{\prime}$, there exists an are $\beta^{\prime} \subset \gamma^{\prime}$, with endpoints $x_{1}^{\prime}$ and $x_{2}^{\prime}$, such that $x_{j}^{\prime} \in \beta^{\prime}$, $p^{\prime-1}\left(\beta^{\prime}\right)$ is homeomorphic to a disk and $\dot{p}^{\prime-1}\left(\beta^{\prime}\right)$ is an are $\sigma^{\prime} \subset S^{\prime}$ with endpoints $y_{1}^{\prime}$ and $y_{2}^{\prime}$; in a similar way we choose $\beta^{\prime \prime}$, with endpoints $x_{1}^{\prime \prime}$ and $x_{2}^{\prime \prime}$, and $\sigma^{\prime \prime}$, with endpoints $y_{1}^{\prime \prime}$ and $y_{2}^{\prime \prime}$. Choose now two ares $\varrho_{1}$ and $\varrho_{2}$ in $S \times[0,1]$ such that: i) $S \times$ $\times[0,1] \backslash\left(\varrho_{1} \cup \varrho_{2}\right)$ is the disjoint union of two disks $D_{1}$ and $D_{2}$; ii) $\partial D_{1}=\sigma^{\prime} \cup \varrho_{1} \cup$ $\cup\left(S^{\prime \prime} \backslash \sigma^{\prime \prime}\right) \cup \varrho_{2} ;$ iii) $\partial D_{2}=\sigma^{\prime \prime} \cup \varrho_{1} \cup\left(S^{\prime} \backslash \sigma^{\prime}\right) \cup \varrho_{2} ;$ iv $)\left(r_{2 p}, \frac{1}{2}\right) \in \varrho_{1}$.

Consider the circle

$$
\gamma=\overline{\left(\gamma^{\prime} \backslash \beta^{\prime}\right)} \bigcup_{x_{1}^{\prime}, x_{2}^{\prime}} p^{\prime-1}\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\} \bigcup_{y_{1}^{\prime}, y_{2}^{\prime}}\left(\varrho_{1} \cup \varrho_{2}\right) \bigcup_{y_{1}^{\prime \prime}, y_{2}^{\prime \prime}} p^{\prime \prime-1}\left\{x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right\} \bigcup_{x_{1}^{\prime \prime}, x_{2}^{\prime \prime}} \overline{\left(\gamma^{\prime \prime} \backslash \beta^{\prime \prime}\right)}
$$

and the family of circles $\widetilde{\mathfrak{F}}^{\prime}=\mathscr{F}^{\prime} \backslash\left\{\gamma^{\prime}, \gamma^{\prime \prime}\right\} \cup\{\gamma\}$ (see fig. 2).


Figure 2

This family satisfies the required properties with respect to the space $\widetilde{Q}_{1} \cup(S \times$ $\times[0,1])$; observe that the only connected components of $\widetilde{Q}_{1} \cup(S \times[0,1])-\widetilde{\mathscr{F}^{\prime}}$ which are not connected components of $\widetilde{Q}_{1} \backslash \mathcal{F}^{\prime}$ are the union of $V^{(x)}$ (resp. $\nabla^{(\alpha)}$ ) and three disks:

$$
p^{\prime-1}\left(\beta^{\prime}\right) \quad\left(\text { resp. } p^{\prime \prime}-1\left(\beta^{\prime \prime}\right)\right)
$$

$D_{1}\left(\right.$ resp. $\left.D_{2}\right)$ and

$$
p^{\prime \prime-1}\left(p^{\prime \prime}\left(S^{\prime \prime} \backslash \sigma^{\prime \prime}\right)\right) \quad\left(\text { resp. } p^{\prime-1} p^{\prime}\left(S^{\prime} \backslash \sigma^{\prime}\right)\right)
$$

such that

$$
\begin{aligned}
& V^{(p)} \cap p^{\prime-1}\left(\beta^{\prime}\right)=\beta^{\prime}, \quad\left[V^{(p)} \bigcup_{\beta^{\prime}} p^{\prime-1}\left(\beta^{\prime}\right)\right] \cap D_{1}=\sigma^{\prime} \\
& {\left[V^{(p)} \bigcup_{\beta^{\prime}} p^{\prime-1}\left(\beta^{\prime}\right) \bigcup_{\sigma^{\prime}} D_{1}\right] \cap p^{\prime \prime 1}\left(p^{\prime \prime}\left(S^{\prime \prime} \backslash \sigma^{\prime \prime}\right)\right)=S^{\prime \prime} \backslash \sigma^{\prime \prime}}
\end{aligned}
$$

and similarly for $V^{(\alpha)}$; thus the resulting connected component is homeomorphic to $V^{(p)}$ (resp. $V^{(\alpha)}$ ). The same holds if $p=q$, as the intersections of $V^{(p)}=V^{(q)}$ with the first two disks are two disjoint arcs $\beta^{\prime} \subset \gamma^{\prime}$ and $\beta^{\prime \prime} \subset \gamma^{\prime \prime} \neq \gamma^{\prime}$.

Note finally that the only properties of the family $\mathscr{F}^{\prime \prime}$ which we used are:

1) $\mathcal{F}^{\prime}$ satisfies the required conditions with respect to $\tilde{Q}_{1}$;
2) to any circle $S_{j}^{(i)} \subset \tilde{\Gamma}=\partial \tilde{Q}_{1} \backslash \dot{N}_{0}$ we can associate a circle $\gamma_{j}^{(i)} \in \mathcal{F}^{\prime}$ with the described properties.

As these two properties hold for the new family $\widetilde{\mathfrak{F}}^{\prime}$ with respect to the space $\tilde{Q}_{1} \cup S \times[0,1]$, we can repeat the same construction until there are no handles left. We shall get at the end the required family $\mathcal{F}=\left\{F_{r}\right\}$ : note that the property iv) of the arcs $\varrho_{i}$ ensures that $\mathcal{F}$ satisfies condition $c$ ).

As before, we can remove the first assumption $\Sigma_{0} P=\left\{x_{0}\right\}$ by working in disjoint neighbourhoods of the points belonging to $\Sigma_{0} P$, so that we have proved the existence of a map $f^{\prime}: P^{\prime} \rightarrow P$ satisfying conditions 2) and 3) of the theorem 2.3.
2.6 Step 3: construction of $P^{\prime \prime}$ and $f^{\prime \prime}$. - Consider the stratified space $P^{\prime}$, satisfying ( $A$ ) and $(B)$ and such that $\Sigma_{0} P^{\prime}=\emptyset ; \Sigma P^{\prime}$ is the disjoint union of a finite number of circles $S_{1}, \ldots, S_{r}$ and a finite number of points $x_{1}, \ldots, x_{s}$. Without loss of generality we can assume $\Sigma P^{\prime}=\Sigma_{1} P^{\prime}$ (as $\Sigma P^{\prime} \backslash \Sigma_{1} P^{\prime}$ consists of connected components of $P^{\prime}$ ).

Let $\left(N^{\prime}, p^{\prime}\right)$ be the regular neighbourhood of $\Sigma P^{\prime}$ in $P^{\prime}, N_{i}^{\prime}=p^{\prime-1}\left(x_{i}\right)$,

$$
\dot{N}_{i}^{\prime}=\dot{p}^{\prime-1}\left(x_{i}\right) \quad(\text { for each } i=1, \ldots, s), \quad N_{j}=p^{\prime-1}\left(S_{j}\right)
$$

and

$$
\dot{N}_{j}=\dot{p}^{\prime-1}\left(S_{j}\right) \quad(\text { for each } j=1, \ldots, r)
$$

$\dot{N}_{i}^{\prime}$ and $\dot{N}_{j}$ are both disjoint unions of circles embedded in $P^{\wedge} \Sigma P^{\prime}$; note that
we could obviously get a space $P^{\prime \prime}$ as required by putting $P^{\prime \prime}=\overline{P^{\prime} \backslash N^{\prime}} \bigcup_{\dot{X}^{\prime}}$ (disjoint union of a finite number of disks); however, we shall give a different construction of $P^{\prime \prime}$, which makes clear the existence of the map $f^{\prime \prime}: P^{\prime \prime} \rightarrow P^{\prime}$.

As $P^{\prime}$ satisfies condition (A), if $\dot{N}_{j}=S_{j_{i}} \cup \ldots \cup S_{i_{m}}$, there are exactly an even number of indices $k$ such that the map $\dot{p}^{\prime} \mid: S_{j_{k}} \rightarrow S_{j}$ has odd degree; as $\Sigma_{0} P^{\prime}=\mathfrak{\emptyset}$, we can also assume that, if $\dot{p}^{\prime} \mid: S_{j_{k}} \rightarrow S_{j}$ has degree $n$, then it is in fact an $n$-covering.

These remarks show that it is enough to prove the theorem in the three following particular cases:
a) $\Sigma P^{\prime}=x$;
b) $\Sigma P^{\prime}=S, \dot{p}^{\prime-1}(\mathcal{S})=\dot{N}^{\prime}=S_{1}$ and $\dot{p}^{\prime} \mid: S_{1} \rightarrow \mathbb{S}$ is a $2 m$-covering;
c) $\Sigma P^{\prime}=S, \dot{p}^{\prime-1}(S)=\dot{N}^{\prime}=S_{1} \cup S_{2}, \dot{p}^{\prime} \mid: S_{1} \rightarrow S$ is a $2 m+1$-covering and $\dot{p}^{\prime} \mid$ : $S_{2} \rightarrow S$ is a $2 n+1$-covering.

Case a): let $\dot{N}^{\prime}=\dot{p}^{\prime-1}(x)=S_{1} \cup \ldots \cup S_{k}\left(k \geqslant 2\right.$, as $P^{\prime}$ is good).
Consider the manifold $M_{k-2}$ described in 2.1, and the family $\left\{\gamma_{i}\right\}$ of circles embedded in $M_{k-2}$ in general position; there is a natural map $\varphi: M_{k-2} \rightarrow N^{\prime}$ such that $\varphi^{-1}(x)=\bigcup_{i} \gamma_{i}$ and $\varphi_{1}: \partial M_{k-2} \rightarrow \dot{N}^{\prime}=S_{1} \cup \ldots \cup S_{k}$ is a homeomorphism, according to the mapping cylinder structure of $M_{k-2}$ and the cone structure of $N^{\prime}$.

Put then $P^{\prime \prime}=\overline{P^{\prime} \backslash \bar{N}^{\prime}} \bigcup_{\dot{j}^{\prime}} M_{k-2}$ and $f^{\prime \prime}: P^{\prime \prime} \rightarrow P^{\prime}$ defined by extending $\varphi$ with the identity on $\overline{P^{\prime} \backslash N^{\prime}}$. It is clear that $P^{\prime \prime}$ is a manifold and $f^{\prime \prime}$ satisfies conditions 5), 6) and 8); condition 7) is empty.

Case b): let $M$ be a Moebius band and $\gamma \subset M$ a circle such that $M$ is the mapping cylinder of a 2 -covering $\pi: \partial M \rightarrow \gamma$.
Put $P^{n}=\overline{P^{\wedge} N^{\prime}} \cup M$, identifying $\dot{N}^{\prime}=S_{1}$ with $\partial M$.
There exists a map $\varphi: \gamma \rightarrow S$ (which is an $m$-covering) such that $\varphi \circ \pi: \partial M \rightarrow S$ is the same map as $\dot{p}^{\prime} \mid: S_{1} \rightarrow S$, up to the given identification. As

$$
M=\partial M \times[0,1] /(x, 1) \sim\left(x^{\prime}, 1\right) \text { iff } \pi(x)=\pi\left(x^{\prime}\right)
$$

and

$$
N^{\prime}=S_{1} \times[0,1] / \quad(y, 1) \sim\left(y^{\prime}, 1\right) \text { iff } \dot{p}^{\prime}(y)=\dot{p}^{\prime}\left(y^{\prime}\right),
$$

we can define $f^{\prime \prime}: M \rightarrow N^{\prime}$ by extending the given identification between $\partial M$ and $S$, according to the mapping cylinder structures.

It is clear that $P^{\prime \prime}$ is a manifold and $f^{\prime \prime}$ satisfies conditions 5), 6) and 8) $\left(f^{\prime \prime-1}\left(\Sigma P^{\prime}\right)=\right.$ $=\gamma$ ). As for property 7), let $F_{i} \in \mathcal{F}$; if $F_{i}$ is a circle, there is nothing to check, because $F_{i} \cap N^{\prime}=\emptyset$, so that $f^{\prime \prime-1}\left(F_{i}\right) \cap \gamma=F_{i} \cap \gamma=\emptyset$. If $F_{i}$ is a wedge of $m$ circles, with center $x \in S, f^{\prime \prime-1}(x)=\left\{x_{1}, \ldots, x_{m}\right\} \in \gamma$ and, if $U=F_{i} \cap N^{\prime}=$ cone with vertex $x$ on $2 m$ points, $f^{\prime \prime 1}(U)$ consists of $m$ arcs embedded in $M$, meeting $\gamma$ trans-
 position.

Case $c$ ): if $m=n$, put $V=S \times[0,1], \gamma=S \times\left\{\frac{1}{2}\right\}$ and do the same construction as in the previous case.
Suppose now $m<n$. Let $V$ be the union of a manifold $M_{1}$ (as described in 2.1) and a Moebius band $M$, where $\partial M$ is identified with

$$
S_{3}^{\prime} \subset \partial M_{1}=S_{1}^{\prime} \cup S_{2}^{\prime} \cup S_{3}^{\prime}
$$

Put $P^{\prime}=\overline{P^{\prime} N^{\prime}} \cup V$, where the union is made by an identification of $\dot{N}^{\prime}=$ $=S_{1} \cup S_{2}$ and $\partial V=S_{1}^{\prime} \cup S_{2}^{\prime}$.

In order to define $f^{\prime \prime}$, consider the circles $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}$ embedded in $M_{1}$ (as in the remark 2.2) and let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be the ares of $\gamma_{4}$ such that, if $\pi: M_{1} \rightarrow \gamma_{4} \cup \gamma_{1} \cup \gamma_{2} \cup \gamma_{3}$ is the retraction,

$$
\pi\left(S_{1}^{\prime}\right)=\gamma_{3} \alpha_{2} \gamma_{1} \alpha_{2}^{-1}, \quad \pi\left(S_{2}^{\prime}\right)=\gamma_{3} \alpha_{1} \gamma_{2} \alpha_{1}^{-1}, \quad \pi\left(S_{3}^{\prime}\right)=\gamma_{2} \alpha_{3} \gamma_{1} \alpha_{3}^{-1}
$$

Change now $\gamma_{2}$ into a new circle $\gamma_{2}^{\prime}$ as follows: let $\beta \subset \gamma_{2}$ be an are, with endpoints $x_{1}$ and $x_{2}$, such that $\beta \cap \gamma_{4}=\emptyset ; \sigma=\pi^{-1}(\beta) \cap \partial M$ is an are with endpoints $y_{1}$ and $y_{2}$.

Let $\varrho \subset M$ be a path with endponts $y_{1}$ and $y_{2}$ such that $M \backslash \varrho$ is connected. Define

$$
\gamma_{2}^{\prime}=\overline{\gamma_{2} \backslash \beta} \bigcup_{x_{1}, x_{2}}\left(\pi^{-1}\left\{x_{1} x_{2}\right\} \cap V_{M}\right) \bigcup_{\gamma_{1}, \gamma_{2}} \varrho
$$

where $V_{M}$ is the connected component of $M_{1} \backslash\left\{\gamma_{i}\right\}$ such that $\partial M \subset V_{M}$ (see fig. 3).


Figure 3

Then $V$ is a regular neighbourhood of $\gamma_{1} \cup \gamma_{2}^{\prime} \cup \gamma_{3} \cup \gamma_{4}$ and, if $q: V \rightarrow \gamma_{1} \cup \gamma_{2}^{\prime} \cup$ $\cup \gamma_{3} \cup \gamma_{4}$ is the retraction such that $V$ is the mapping cylinder of $\dot{q}=\left.q\right|_{a V}$, then

$$
q\left(S_{1}^{\prime}\right)=\gamma_{3} \alpha_{2} \gamma_{1} \alpha_{2}^{-1} \quad \text { and } \quad q\left(S_{2}^{\prime}\right)=\gamma_{3} \alpha_{1} \gamma_{2}^{\prime} \alpha_{3} \gamma_{1} \alpha_{3}^{-1} \gamma_{2}^{\prime} \alpha_{1}^{-1}
$$

Define now $\varphi: \gamma_{1} \cup \gamma_{2}^{\prime} \cup \gamma_{3} \cup \gamma_{4} \rightarrow S$ such that

$$
\begin{array}{ll}
\left.\varphi\right|_{\gamma_{1} \cup \gamma_{4}} & \text { is the constant map on a point } x_{0} \in \mathcal{S}, \\
\left.\varphi\right|_{\gamma_{z}} & \text { is a }(2 m+1) \text {-covering, } \\
\left.\varphi\right|_{\gamma_{2}^{\prime}} ^{\prime} & \text { is a }(n-m) \text {-covering. }
\end{array}
$$

It follows that the map $\varphi \circ q: \partial V \rightarrow S$ is specially homotopic to a $(2 m+1)$ covering when restricted to $\mathbb{S}_{1}^{\prime}$, while it is specially homotopic to a ( $2 n+1$ )-covering when restricted to $S_{2}^{\prime}$. Therefore, one can assume that $\varphi \circ q$ is the same map as $\dot{p}^{\prime}: S_{1} \cup S_{2} \rightarrow S$, up to the given identification between $S_{1} \cup S_{2}$ and $S_{1}^{\prime} \cup S_{2}^{\prime}$, and we can define $f^{\prime \prime}: P^{\prime \prime} \rightarrow P^{\prime}$ as in the previous case.

As before, properties 5), 6) and 8) are obvious from the constructions; property 7) is proved similarly to the previous case: the only difference is that we must take care to choose the point $x_{0} \in S$ such that $f^{\prime \prime-1}\left(x_{0}\right)=\gamma_{1} \cup \gamma_{4}$ so that it is not the center of a wedge of circles $F_{i} \in \mathcal{F}$.

It is clear how the general case follows from these three particular cases, so that theorem 2.3 is now completely proved.

### 2.7 Remarks and examples.

1) It is easy to check that, if $P$ is a good stratified space which has an ( $A-B$ ) special resolution of singularities, in the sense of theorem 2.3 , then $P$ satisfies conditions ( $A$ ) and ( $B$ ).
2) $(A)$ is equivalent to the following condition:
$(K)$ : the (smooth unoriented) bordism class $[\dot{p}: \dot{N} \rightarrow \Sigma P]$ is zero which is a necessary and sufficient condition to the existence of a blow-up $f: \tilde{P} \rightarrow P$ of $\Sigma P$ in $P$ (in the sense of Kato [5]).
3) ( $K$ ) does not imply the existence of an $(A-B)$ special resolution: for example, let $\left(S^{1} \vee S^{1}\right)_{i}, i=1,2,3$, be three copies of $S^{1} \vee S^{1}$ and $x_{i}$ be the center of the wedge $\left(S^{1} \vee S^{1}\right)_{i}$. Put

$$
\begin{aligned}
K_{i}=S\left(S^{1} \vee S^{1}\right)_{i}=\left(S^{1} \vee S^{1}\right)_{i} \times[0,1] /(x, 0) & \sim\left(x_{i}, 0\right) \\
& \text { for each } x \\
(x, 1) & \sim\left(x_{i}, 1\right) \\
& \text { for each } x
\end{aligned}
$$

and

$$
\begin{aligned}
P=K_{1} \cup K_{2} \cup K_{3} /\left(x_{1}^{\prime}, 0\right) & \sim\left(x_{1}, 1\right)
\end{aligned} \sim\left(x_{2}, 0\right), ~\left(x_{2}, 1\right) \sim\left(x_{3}, 0\right) \sim\left(x_{3}, 1\right) .
$$

with the natural good stratification.
$P$ satisfies ( $K$ ) and does not satisfy ( $B$ ).
4) The stratified space $P$ of the last example does not even satisfy the following condition:
$\left(K^{\prime}\right):$ the (smooth unoriented) bordism class $\left[\dot{p}_{01}: \dot{N}_{01} \rightarrow \Sigma_{0} P\right]$ is zero which is a necessary and sufficient condition to the existence of a blow-up of $\Sigma_{0} P$ in $\Sigma P$. In fact, $\left(K^{\prime}\right)$ is strictly weaker than $(B)$ and not even $(K)$ and ( $K^{\prime}$ ) together imply the existence of an $(A-B)$ special resolution of singularities, as we can see from the following example.
5) Let $K_{1}=S\left(S^{1} \vee S^{1}\right)$ and $K_{2}=S\left(S^{1} \vee S^{1} \vee S^{1}\right)$ and $\left(x_{i}, j\right)$ be defined as in example 3) $(i=1,2 ; j=0,1)$.

Put

$$
P=K_{1} \cup K_{2} /\left(x_{1}, 0\right) \sim\left(x_{2}, 0\right) ; \quad\left(x_{1}, 1\right) \sim\left(x_{2}, 1\right)
$$

with the natural good stratification. $P$ satisfies $(K)$ and $\left(K^{\prime}\right)$ and does not satisfy $(B)$. $P$ does not even satisfy condition ( $E$ ).
6) Let $P=S\left(S^{1} \vee S^{1} \vee S^{1}\right.$, which is a stratified space satisfying ( $E$ ) and not ( $B$ ) (see remark 1.13 b )). $P$ is the example of a space which can't be homeomorphic to a real algebraic affine variety whose algebraic and topological singularities are the same.
7) It is clear enough how the notion of an $(A-B)$ special resolution can be generalized to higher dimensional stratified spaces.

We have seen that conditions $(A)$ and $(B)$ are strictly stronger than condition $(E)$; we want now to give a construction, similar to the $(A-B)$ special resolution, for spaces satisfying only ( $E$ ). More precisely, we want to prove the following theorem, which is the analogue of 2.3 :
2.8 Theorem. - Let $P$ be a good stratified space satisfying $(E)$. Then there exists an $(E)$ special resolution of the singularities of $P$, that is a chain $P^{\prime \prime} \xrightarrow{f^{\prime \prime}} P^{\prime} \xrightarrow{f^{\prime}} P$ such that:

1) $P^{\prime}$ is a good stratified space, satisfying $(E)$ and such that $\Sigma_{0} P^{\prime}=\left\{x_{1}, \ldots, x_{n}\right\}$ and, for each $i=1, \ldots, n, \mathrm{lk}\left(x_{i}, P^{\prime}\right)$ or is a wedge of an odd number of circles, or
is a graph with two vertices $y_{i}$ and $z_{i}, 4 n_{i}$ edges with endpoints $y_{i}$ and $z_{i}$ and a wedge of $2 m_{i}$ circles with center $z_{i}\left(m_{i}>0\right)$;
2) $f^{\prime-1}\left(\Sigma_{0} P\right)=\mathscr{F}=\bigcup_{r} F_{r}$, where $\mathscr{F}$ satisfies conditions $a$ ), b) and $d$ ) of theorem 2.3,2) and the following
$\left.e^{\prime}\right)$ if $F_{r}$ is a wedge of $m_{r}$ circles with center $x_{r}$, then or $x_{r} \in \Sigma_{0} P^{\prime}$, or $x_{r} \in \Sigma_{1} P^{\prime}$ and $\mathrm{lk}\left(x_{r}, P^{\prime}\right)=S^{0} *\left(2 m_{r}\right.$ points); $x_{r}=F_{r} \cap \Sigma P^{\prime}$;
3) as in 2.3 ;
4) as in 2.3 ;
5) we can define a (not good) stratification of $P^{\prime}$ by adding some 1-dimensional strata so that, if $\tilde{\Sigma} P^{\prime}=\Sigma P^{\prime} \cup\{$ new strata $\}$, then $f^{\prime \prime-1}\left(\widetilde{\Sigma} P^{\prime}\right)=\mathcal{F}^{\prime}=\bigcup_{k} F_{k}^{\prime}$ is a family of circles in general position embedded in $P^{\prime \prime}$;
6) as in 2.3 , putting $\widetilde{\Sigma} P^{\prime}$ instead of $\Sigma P^{\prime}$;
7) as in 2.3 ;
8) let $f=f^{\prime} \circ f^{\prime \prime}$; then $f \mid: P^{\prime \prime}\left(\mathscr{F}^{\prime} \cup \mathcal{F}^{\prime}\right) \rightarrow P \backslash \Sigma P$ is an isomorphism; for each $F_{i}^{\prime \prime} \in \mathscr{F}^{\prime \prime},\left.f\right|_{F_{i}^{\prime \prime}}$ is the constant map; for each $F_{j}^{\prime} \in \mathscr{F}^{\prime},\left.f^{\prime \prime}\right|_{F_{j}^{\prime}}$ or is the constant map. or it is an $n$-covering of a circle of $\widetilde{\Sigma} P^{\prime}$, or it is a double covering, branched in two points, of an are of $\tilde{\Sigma} P^{\prime}$.

As for 2.3, we shall prove this theorem in three steps.
2.9 Step 1: construction of $P^{\prime}$. - Let us always suppose, for the sake of simplicity, $\Sigma_{0} P=\left\{x_{0}\right\}$.

We can first make the same construction as in 2.4 , until we get the stratified
 $\tilde{\Gamma}=C_{n_{1}} \cup \ldots \cup O_{n_{r}}$, where $O_{n_{i}}$ is the wedge of $n_{i}$ circles. It is no longer true that the $n_{i}$ 's are equal in pairs; however, as $P$ satisfies $(E)$ (so that $\chi(\tilde{\Gamma})=\chi(\Gamma)=$ $=\chi\left(\mathrm{lk}^{\left.\left(x_{0}, P\right)\right)}\right.$ is even $)$, there are exactly an even number of indices $i$ such that $n_{i}$ is even. Make then the following constructions:

1) if there exist $n_{i}$ and $n_{j}$ such that $n_{i}=n_{j}=k$, we attach to $\hat{P}$ the «handle" $C_{k} \times[0,1]$, identifying $C_{k} \times\{0\}$ with $O_{n_{i}}$ and $C_{k} \times\{1\}$ with $C_{n_{j}}$ (as in 2.4). Do this until there are no pairs of equal $n_{i}$ 's left;
2) if $n_{i}$ is odd, consider the space $B_{n_{i}}=D^{2} / \sim$, where $\sim$ is the equivalence relation which identifies $n_{i}$ distinct points of $\partial D^{2}$ to a single point (which we call the vertex of $B_{n_{i}}$ ). Then attach $B_{n_{i}}$ to $\hat{P}$, identifying $\dot{B}_{n_{i}}$ with $O_{n_{i}}$;
3) if $n_{i}$ is even, then there exists another wedge $O_{n_{j}}$ left, with $n_{j}$ even; let $n_{i}=2 h, n_{j}=2 k$ and $k>h$.

Consider the space

$$
T_{n_{i}, n_{j}}=\left(C_{2 h} \times[0,1]\right) \cup\left(C_{2(k-n)} \times\left[0, \frac{1}{2}\right]\right) \cup B_{2(k-n)} / \sim
$$

where $\sim$ is the equivalence relation which identifies $\dot{B}_{2(k-n)}$ with $C_{2(k-n)} \times\left\{\frac{1}{2}\right\}$ and $\{x\} \times\left[0, \frac{1}{2}\right]$ with $\{y\} \times\left[0, \frac{1}{2}\right]$ (where $x$ is the center of $O_{2 k}$ and $y$ is the center of $O_{2(k-k)}$ ). We can then attach $T_{n_{i}, n_{j}}$ to $\hat{P}$, identifying its boundary with $O_{n_{i}} \cup O_{n_{j}}$.

After all these constructions, we shall get a stratified space $P^{\prime}$ which satisfies condition 1) of 2.8 ; to see this, note that $\Sigma_{0} P^{\prime}$ consists exactly of the vertices $z_{h}$ of the spaces $B_{h}$ : in the case 2 ), $\mathrm{lk}\left(z_{h}, P^{\prime}\right)$ is the wedge of an odd number of circles, while, in the case 3 ), it is a graph of the required kind.
2.10 Step 2: construction of $f^{\prime}$.

We have to find a family $\mathcal{F}=\left\{F_{r}\right\}$ in $\widetilde{Q}$ which satisfies properties $\left.\left.a\right), b\right), c^{\prime}$ ), $d$ ) and such that $\widetilde{Q} \backslash \bigcup_{r} F_{r}$ is a collar on $\dot{N}_{0}$.

We first consider the families $\left\{\gamma_{h}^{(i)}\right\}$ in $M^{i)}$ and the family $\mathscr{F}^{\prime}$ obtained from these by the given identifications; proceed then as in 2.5 whenever we add a handle $S \times[0,1]$ with $S \subset \tilde{\Gamma}$ and $S \times[0,1] \subset C_{k} \times[0,1]$ or $S \times[0,1] \subset T_{n_{i}, n_{j}}$.

We thus get a family $\mathfrak{F}^{*}=\left\{F_{r}^{*}\right\}$ satisfying conditions $a$ ), b), c), d) and such that $Q^{\wedge} \backslash I_{r}^{*}$ is a collar of $\partial Q^{\prime}$, where

$$
Q^{\prime}=\widetilde{Q} \backslash\left(\bigcup B_{n_{i}}\right) \backslash\left(\bigcup B_{n_{i}, n_{j}}\right) \quad \text { and } \quad B_{n_{i}, n_{j}}=\left(O_{n_{j}-n_{i}} \times\left[0, \frac{1}{2}\right]\right) \cup B_{n_{j}-n_{i}} / \sim \subset T_{n_{i}, n_{j}}
$$

As we have done in 2.5 with respect to the handles, we shall give now a standard way to change the family $\mathscr{F}^{*}$, whenever we add a space $B_{n_{i}}$ (or $B_{n_{i}, n_{j}}$, which will be the same).

Let $B_{n}=D / z_{1} \sim \ldots \sim z_{n}$ with $z_{1}, \ldots, z_{n} \in \partial D\left(n\right.$ is odd if $B_{n}=B_{n_{i}}$ and it is even if $\left.B_{n_{i}, n_{j}}=B_{n} \cup \dot{B}_{n} \times\left[0, \frac{1}{2}\right]\right)$.

Let $S_{1}, \ldots, S_{n}$ be the circles of $\tilde{\Gamma}$ belonging to the wedge which is identified with $C_{n}=\dot{B}_{n}$ and $\gamma_{1}, \ldots, \gamma_{n}$ be the circles associated to $S_{1}, \ldots, S_{n}$ as in 2.5. Note that $\gamma_{i} \in \mathcal{F}^{*}$, as these circles have never been changed by the previous modifications.

Let $\pi_{j}$ be the retraction $\pi_{j}: V_{j} \rightarrow \bigcup_{h} \gamma_{h}^{\left(p_{j}\right)}$, where $S_{j} \subset \partial M^{\left(p_{j}\right)}$. and $V_{j}$ is the connected component of $M^{\left(p_{j}\right)} \backslash \bigcup_{h} \gamma_{h}^{\left(p_{j}\right)}$ containing $S_{j}$.

Choose, as in 2.5 , an arc $\beta_{j} \subset \gamma_{j}$ (for each $j=1, \ldots, n$ ) intersecting $\Sigma P$ and such that $\pi_{j}^{-1}\left(\beta_{j}\right)$ is homeomorphic to a disk.

Let $\sigma_{j}=\dot{\pi}^{-1}\left(\beta_{j}\right) \subset S_{j}$ and $\tau_{j}=\overline{S_{j} \backslash \sigma_{j}}$.

We make now the following modifications of the family $\mathfrak{F}^{*}$ :
A) take off the circles $\gamma_{1}, \ldots, \gamma_{n}$;
$B$ ) add $s$ circles $\tilde{\gamma}_{1}, \ldots, \tilde{\gamma}_{s}, s=[n / 2]-1$; for each $k \leqslant s, \tilde{\gamma}_{k}$ is the quotient of an arc in $D$ with endpoints $z_{1}$ and $z_{2 k+1}$ and $\tilde{\gamma}_{j} \cap \tilde{\gamma}_{k}=\left\{\right.$ vertex of $\left.B_{n}\right\}$ if $j \neq k$;
C) add $s+1$ circles $\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{s+1}$ obtained by "connecting" two or three of


Figure 4


Figure 5
the circles $\gamma_{i}$ 's. More precisely, $\hat{\gamma}_{1}$ is obtained by «connecting " $\gamma_{1}$ and $\gamma_{2}, \hat{\gamma}_{2}$ by "connecting» $\gamma_{3}$ and $\gamma_{4}$ and finally $\hat{\gamma}_{s+1}$ is obtained by «connecting» $\gamma_{n}, \gamma_{n-1}$ (and $\gamma_{n-2}$, if $n$ is odd) (see fig. 4). The connecting operation is made as in 2.5: for example, in order to construct $\hat{\gamma}_{1}$, we choose two arcs in the connected component of $D \backslash\left(\bigcup \tilde{\gamma}_{i}\right)$ containing $S_{1} \cup S_{2}$ so as to divide it in (four) disks such that, if the boundary of one of these disks contains $\tau_{1}$, then its intersection with $\tau_{2}$ is empty (see fig. 5). We can make a similar construction in the case of three circles, as we can see in fig. 6.


Figure 6

Note that, if $z$ is the vertex of $B_{n}$, then $z \in \hat{\gamma}_{k}$, for each $k=1, \ldots, s+1$, as one of the arcs chosen in $D$ necessarily contains $z_{i}$ for some $i$. After all the operations just described, we shall get a new family $\mathscr{F}^{*}$; with the same kind of arguments as in 2.5 , one can easily prove that the family $\widetilde{\mathcal{F}}^{*}$ satisfies the required conditions with respect to the space $Q^{\prime} \cup B_{n}$.

Moreover, we didn't change the $\gamma_{i}^{\prime}$ s associated to the circles of $\tilde{\Gamma}$ different from $S_{1}, \ldots, S_{n}$; this ensures that we can repeat the construction until there are no more $B_{n}$ or $B_{n_{i}, n_{j}}$ left. We thus get the required family $\tilde{F}=\left\{F_{r}\right\}$ in $\tilde{Q}$ and, as a consequence, the map $f^{\prime}: P^{\prime} \rightarrow P$ satisfying properties 2) and 3) of 2.8 .

Note fanally that, if $z$ is the vertex of $B_{n}$, the number of circles $F_{r}$ such that $z \in F_{r}$ is exactly $s+(s+1)$, that is $n-1$ if $n$ is even and $n-2$ if $n$ is odd.
2.11 Step 3: consiruction of $P^{\prime \prime}$ and $f^{\prime \prime}$. - Consider now the stratified space $P^{\prime}$; as $P^{\prime}$ satisfies property 1) of 2.8 , its singularities may be of the following three kinds:
a) circles or isolated points in $\Sigma P^{\prime}$, which do not intersect $\Sigma_{0} P^{\prime}$;
b) ares whose endpoints are two points $x_{1}, x_{2} \in \Sigma_{0} P^{\prime}$, such that $\mathrm{lk}\left(x_{1}, P^{\prime}\right)=$ $=\mathrm{lk}\left(x_{2}, P^{\prime}\right)=$ wedge of an odd number of circles;
c) circles intersecting $\Sigma_{0} P^{\prime}$ in points whose links are graphs with two vertices of the kind described in 1).

The case a) is dealt with exactly as in 2.6.
b) assume $\Sigma P^{\prime}=\alpha$, where $\alpha$ is an arc with endpoints $x_{1}$ and $x_{2}$ and $\mathrm{lk}\left(x_{1}, P^{\prime}\right)=$ $=1 \mathrm{k}\left(x_{2}, P^{\prime}\right)=$ wedge of $(2 n+1)$ circles.

Let $\left(N^{\prime}, p^{\prime}\right)$ be a regular neighbourhood of $\Sigma P^{\prime}$ in $P^{\prime} ; N_{i}^{\prime}(i=1,2)$ a regular neighbourhood of $x_{i}$ in $P^{\prime} ; y_{1} \in \dot{N}^{\prime} \cap \dot{N}_{1}^{\prime}=\{(4 n+2)$ points $\}$ and $\alpha^{\prime}$ be the unique are of $\dot{N} \backslash\left(\dot{N}^{\prime} \cap\left(N_{1}^{\prime} \cup N_{2}^{\prime}\right)\right)$ containing $y_{1}$.

Let $y_{2}$ be the other endpoint of $\alpha^{\prime}, y_{2} \in \dot{N}^{\prime} \cap \dot{N}_{2}^{\prime}$ and $\tilde{\alpha}$ be the are with endpoints $x_{1}$ and $x_{2}$ obtained by extending $\alpha^{\prime}$ according to the cone structures of $N_{1}^{\prime}$ and $N_{2}^{\prime}$.

Put $\tilde{\Sigma} P^{\prime}=\{\alpha \cup \tilde{\alpha}\}$ and let $(\tilde{N}, \tilde{p})$ be a regular neighbourhood of $\tilde{\Sigma} P^{\prime}$ in $P^{\prime}$ (remark: we shall define $\tilde{\Sigma} P$ as $f^{\prime}\left(\dot{\widetilde{\Sigma}} P^{\prime}\right)$ ). $\dot{\tilde{N}}$ is the disjoint union of a finite number of circles $S_{1}, \ldots, S_{k}$.

Notation: let us fix an orientation of $S$ and $\widetilde{\Sigma} P^{\prime} ;$ by $S=\alpha_{i_{1}}^{ \pm 1} \ldots \alpha_{i_{n}}^{ \pm 1}$ we shall mean that we can divide $S$ into $k$ arcs such that the map $\tilde{\tilde{p}} \mid: S \rightarrow \widetilde{\Sigma} P^{\prime}$, when restricted to the $j$-th arc, is an homeomorphism with the arc $\alpha_{i_{1}} \subset \tilde{\Sigma} P^{\prime}$, conserving (resp. inverting) the orientation if the exponent is 1 (resp. -1 ).

By construction we have then, up to a permutation of the circles $S_{j}$,

$$
\begin{aligned}
& S_{1}=\alpha \tilde{\alpha}, \quad S_{2}=\alpha \tilde{\alpha}\left(\alpha \alpha^{-1}\right)^{h_{2}} \\
& S_{i}=\left(\alpha \alpha^{-1}\right)^{h_{i}}, \quad \text { for each } i=3, \ldots, k
\end{aligned}
$$

and $h_{2}+h_{3}+\ldots+h_{k}=((4 n+2)-2) / 2=2 n$.

For each $i=1, \ldots, k$, consider a manifold $M^{(i)}=M_{j}^{(i)}$, where

$$
\begin{array}{lll}
j=0, & \text { if } & i=1 \\
j=1, & \text { or } i>2 \text { and } h_{i} \text { is even; } \\
j=2, & i=2 & \text { and } h_{2} \text { is even or if } i>2 \text { and } h_{i} \text { is odd; } \\
j=2 & \text { and } h_{2} \text { is odd. }
\end{array}
$$

Let $\partial M_{i}^{(i)}=S_{i}^{\prime} \cup S_{1}^{(i)} \cup \ldots \cup S_{i+1}^{(i)}$ and identify $S_{i}^{\prime}$ with $S_{i}^{\prime}$; let $\widetilde{\mathcal{F}}=\left\{\gamma_{l}^{(i)}\right\}$ be the family of circles in general position in $M_{i}^{(i)}$ constructed as in 2.2 with respect to $S_{i}^{\prime}$; $\tilde{V}=\bigcup_{i} M_{j}^{(i)}$ and $\tilde{q}: \tilde{V} \rightarrow \widetilde{\mathscr{F}}$ be the retraction such that $\tilde{V}$ is the mapping cylinder of $\dot{\vec{q}}=\left.\tilde{q}\right|_{\vec{a} v}$.

It is clear then that, following 2.6 , we can define a map $\tilde{\varphi}: \widetilde{\mathfrak{F}} \rightarrow \widetilde{\Sigma} P^{\prime}$ such that:
a) $\tilde{\varphi} \circ \dot{\tilde{q}}\left|\left.\right|_{s_{i}^{\prime}} \text { is specially homotopic to } \tilde{p}\right|_{s_{i}}$, up to the given identification;
b) $\left.\tilde{\varphi} \circ \dot{\tilde{q}}\right|_{S_{1}^{(i)}}= \begin{cases}\left(\alpha \alpha^{-1}\right)^{h_{i}} & \text { if } h_{i} \text { is even, } i \geqslant 2 \\ \left(\alpha \alpha^{-1}\right)^{h_{i}-1} & \text { if } h_{i} \text { is odd, } i \geqslant 2 ;\end{cases}$
c) $\left.\tilde{\varphi} \circ \dot{\tilde{q}}\right|_{s_{\mathrm{a}}^{(i)}}=\alpha \alpha^{-1}$ if $h_{i}$ is odd, $i \geqslant 2$;
d) $\left.\tilde{\varphi} \circ \dot{\bar{q}}\right|_{S_{1}^{(1)}}=\left.\tilde{\varphi} \circ \dot{\bar{q}}\right|_{S_{2}^{(2)}}=\alpha \tilde{\alpha}$, where $r=2$ if $h_{2}$ is even and $r=3$ if $h_{2}$ is odd.

Note that, as $h_{2}+\ldots+h_{k}$ is even, the number "of circles $S_{j}^{(i)}$ such that $\left.\tilde{\varphi} \circ \dot{\bar{q}}\right|_{S_{j}^{(i)}}=$ $=\alpha \alpha^{-1}$ is even.

We shall outline now the modifications to make on $\tilde{V}, \tilde{\mathscr{F}}, \tilde{\varphi}$ to get a manifold $V$, a family $\mathscr{F}^{\prime}$ of circles in general position in $V$ and a map $\varphi: \mathfrak{F}^{\prime} \rightarrow \widetilde{\Sigma} P^{\prime}$ satisfying the required properties:

1) if $\left.\tilde{\varphi} \circ \dot{\tilde{q}}\right|_{S_{j}^{(i)}}=\left(\alpha \alpha^{-1}\right)^{2 s}$, add a Moebius band $M$ to $V$, identifying its boundary with $S^{i j)}$; change then the circle $\tilde{\gamma} \in \mathscr{F}$ «associated» to $\mathcal{S}_{j}^{(2)}$ to get a new circle $\gamma$ as in 2.6 , case $b$, and define $\left.\varphi\right|_{\gamma}=\left(\alpha \alpha^{-1}\right)^{s}$;
2) if $\left.\tilde{\varphi} \circ \dot{\bar{q}}\right|_{s_{j}^{(i)}}=\left.\tilde{\varphi} \circ \dot{\tilde{q}}\right|_{s_{m}^{(l)}} ^{(i)}=\alpha \alpha^{-1}$, add a cylinder $S \times[0,1]$ to $\tilde{V}$ identifying its boundary with $S_{j}^{(i)} \cup S_{m}^{(l)}$; take off then the two circles «associated» to $S_{j}^{(i)}$ and $S_{m}^{(l)}$, add a new circle $\gamma$ as in 2.5 and define $\left.\varphi\right|_{\gamma}=\alpha \alpha^{-1}$;
3) do the same as in 2) for $S_{1}^{(i)}$ and $S_{2}^{(r)}$, putting $\left.\varphi\right|_{y}=\alpha \tilde{\alpha}$.

We thus get a manifold $V$ with $\partial V=S_{1}^{\prime} \cup \ldots \cup S_{k}^{\prime}$, a family $\mathcal{F}^{\prime}$ of circles in general position and a map $\varphi: \mathcal{F}^{\prime} \rightarrow \widetilde{\Sigma} P^{\prime}$ such that, if $q: V \rightarrow \mathcal{F}^{\prime}$ is the usual retraction, then $\varphi \circ \dot{q} \mid s_{i}^{\prime}$ is specially homotopic to $\left.\dot{\tilde{p}}\right|_{S_{i}}$, up to the given identification (see fig. 7).

Put $P^{\prime \prime}=\overline{P^{\prime} \backslash \tilde{N}} \cup V$ and define $f^{\prime \prime}: P^{\prime \prime} \rightarrow P^{\prime}$ according to the mapping cylinder structures, as in 2.6. It is clear that $P^{\tilde{N}}$ and $f^{\prime \prime}$ satisfy properties 4), 5), 6) and 8) of 2.8 .


Figure 7

As for property 7), let us consider a wedge of circles $F \in \mathcal{F}$ with center in $x_{1} \in \Sigma_{0} P^{\prime}: f^{\prime \prime-1}\left(x_{1}\right)$ is the disjoint union of a finite number of points belonging to the circles $\gamma_{1}, \ldots, \gamma_{k-1}, \gamma_{k}^{\prime}$ and of a finite number of the circles $\gamma_{j}(j \neq 1, \ldots, k-1)$.

Let $U=F \cap \tilde{N} ; \dot{U}$ consists of an even number of points belonging to $\mathbb{S}_{1}^{\prime}, \ldots, \mathbb{S}_{k}^{\prime}$ : It is clear then that (eventually changing $V$ or $\varphi$, and with the same kind of arguments as those up to now used), we can achieve that $f^{\prime \prime-1}(\mathscr{F}) \cup\left\{\gamma_{i}\right\}$ is a family of circles in general position.
c) assume now $\Sigma P^{\prime}=S$, and $S \cap \Sigma_{0} P^{\prime}=\left\{x_{1}, \ldots, x_{m}\right\}$.

Let $\alpha_{i}(i<m)$ be the arc of $\mathbb{S}$ with endpoints $x_{i}$ and $x_{i+1}$ and $\alpha_{m}$ the arc with endpoints $x_{m}$ and $x_{1}$; let $n_{i}$ be such that $y_{i} \in \alpha_{i} \Rightarrow \operatorname{lk}\left(y_{i}, P^{\prime}\right)=S^{0} *\left\{4 n_{i}\right.$ points $\}$ (note that $n_{i} \neq n_{i+1}$ ).

Let $\left(N^{\prime}, p^{\prime}\right)$ be a regular neighbourhood of $\Sigma P^{\prime}$ in $P^{\prime}$ and $\dot{N}^{\prime}=S_{1} \cup \ldots \cup S_{k}$;
We saw that $\mathrm{lk}\left(x_{i}, P^{\prime}\right)$ is a graph with two vertices $y_{i_{-1}}$ and $y_{i}, 4 n_{i-1}$ edges with endpoints $y_{i-1}$ and $y_{i}$ and a wedge of $2\left(n_{i}-n_{i-1}\right)$ circles with center $y_{i}$. This ensures that the map $\dot{p}^{\prime}: S_{1} \cup \ldots \cup S_{k} \rightarrow S$ is described as follows (using the same
notation as before):

$$
S_{i}=S^{h_{i 1}}\left(\alpha_{1}^{\prime} \alpha_{1}^{\prime}-1\right)^{h_{i s}} \ldots\left(\alpha_{s-1}^{\prime}, \alpha_{s-1}^{\prime-1}\right)^{h_{t s}}
$$

$(i=1, \ldots, k)$, where $\alpha_{i}^{\prime}$ denotes a suitable are of $S$ (not necessarily $\alpha_{i}^{\prime}=\alpha_{i}$ ) and, for each $j=1, \ldots, s, h_{1 j}+h_{2 j}+\ldots+h_{k j}$ is an even number (because it is equal to the sum, or the difference, of some of the $4 n_{i}$ 's).

For each $i=1, \ldots, k$, consider a manifold $M_{j}^{(i)}$, where

$$
j=\nexists\left\{r: h_{i r} \neq 0\right\}+\nexists\left\{r: h_{i r} \text { is odd }\right\}-1
$$

and proceed then exactly as in the previous case.
Note only that, if $n_{i}=0$ (as in this case we can't suppose, as in the ( $A-B$ ) case, that $\Sigma P^{\prime}=\Sigma_{1} P^{\prime}$ ) $V$ is the disjoint union of a circle $\widetilde{S}$ and a two-dimensional manifold $V^{\prime}$ and the map $\left.f^{\prime \prime}\right|_{\tilde{S}}$ is a homeomorphism between $\widetilde{S}$ and $S$ (otherwise $f^{\prime \prime}$ wouldn't be an epimorphism).

### 2.12 Remarks and examples.

a) it is clear that in special cases one can give a simpler construction than the general one here described:
b) we finish this paragraph with some figures explaining all the steps of the constructions of 2.3 and 2.8:


Figure 8


Figure 9


Figure 10

## 3. - Polynomial equations.

We first recall some facts (see [2] and [3] for precise definitions). We say that $V$ is an algebraic variety iff

$$
V=\left\{x \in \boldsymbol{R}^{n}: P_{1}(x)=P_{2}(x)=\ldots=P_{k}(x)=0, P_{i} \in \boldsymbol{R}\left[x_{1}, \ldots, x_{n}\right], i=1, \ldots, k\right\}
$$

$I(V) \subset \boldsymbol{R}\left[x_{1}, \ldots, x_{n}\right]$ is the ideal of polynomials vanishing on $V$.
Let $W \subset \boldsymbol{R}^{m}$ be an other algebraic variety; a map $\varphi: V \rightarrow W$ is regular iff it is locally given (in the Zariski topology) by non singular rational functions. It is known that for such a $\varphi$ there exists a regular extension $\Phi: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}$.
$V$ is regular iff for every $x \in V$ there exist $Q_{1}, \ldots, Q_{q} \in I(V)$ such that $q=n-$ $-\operatorname{dim} V$ and $d Q_{1}, \ldots, d Q_{q}$ are linearly indipendent.

Let $M$ be a smooth compact submanifold of $\boldsymbol{R}^{n}, d$ the usual metric on $\boldsymbol{R}^{n}, G_{n, r}$ the Grassmann manifold of $r$-linear spaces in $\boldsymbol{R}^{n}$ and $d^{\prime}$ a metric on $G_{n, r}$ which induces the usual topology. Then, for every $\varepsilon>0$, a submanifold $M^{\prime}$ of $\boldsymbol{R}^{n}$ is an $\varepsilon$-approximation of $M$ in $\boldsymbol{R}^{n}$ iff there exists a diffeomorphism $h: M \rightarrow M^{\prime}$ such that:
(i) $d(x, h(x))<\varepsilon$;
(ii) $d^{\prime}\left(T M_{x}, T M_{h(x)}^{\prime}\right)<\varepsilon$,
where $T M_{x}$ and $T M_{h(x)}^{\prime}$ are the linear tangent varieties to $M$ in $x$ and to $M^{\prime}$ in $h(x)$ respectively. If $\varepsilon$ is small enough, there exists a (small) isotopy $H_{t}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ such that $H_{0}=i d,\left.H_{1}\right|_{M}=h$ and $H_{t}$ is the identity outside a fixed compact neighbourhood $K$ of $M, K \supset M^{\prime}$ (see [2]). The set of differentiable maps between manifolds is endowed with the Whitney topology.

Let $X \subset V$ and $Y$ be topological spaces and $\varphi: X \rightarrow Y$ be a map. We denote by $Q(V, \varphi, Y)$ the quotient space $V \coprod Y / \sim$, where $x \sim y$ iff: (i) $x=y$; (ii) $x, y \in X$ and $\varphi(x)=\varphi(y)$; (iii) $X \ni y=\varphi(x)$.

We can now state the main results of this paper:
3.1 Theorem. - Let $P$ be a good compact two-dimensional stratified space satisfying $(A)$ and $(B)$. Then there exists a homeomorphism $g: P \rightarrow \hat{P}$, where $\hat{P}$ is real algebraic and the real algebraic singularities of $\hat{P}$ are equal to $g(\Sigma P)$.
3.2 Theorem. - Let $P$ be as before, satisfying ( $E$ ) instead of $(A)$ and ( $B$ ). Then there exists a homeomorphism $g: P \rightarrow \hat{P}$, where $\hat{P}$ is real algebraic and the algebraic singularities of $\hat{P}$ are equal to $g(\tilde{\Sigma} P)$ (see $2.8,5)$ ).

Proofs of 3.1 and 3.2. - We can suppose there are no isolated points in $P$ (actually, the theorems hold for $P$ if and only if they hold for $P \backslash$ (isolated points $\}$ ).

Fix an $(A-B)($ or $(E))$ special resolution of the singularities of $P: P^{\prime \prime} \xrightarrow{\prime \prime} P^{\prime} \xrightarrow{f^{\prime}} P$;
we shall always write $\tilde{\Sigma} P, \tilde{\Sigma} P^{\prime}$, meaning that in the first case $\tilde{\Sigma} P=\Sigma P$ and $\tilde{\Sigma} P^{\prime}=\Sigma P^{\prime}$.

Let $\mathcal{F}=\left\{F_{r}\right\}=f^{\prime-1}\left(\Sigma_{0} P\right)$; then $P=f^{\prime}\left(P^{\prime}\right)$ is naturally homeomorphic to $Q\left(P^{\prime}\right.$, $\left.\left.f^{\prime}\right|_{\mathcal{F}}, \Sigma_{0} P\right)$ and $\tilde{\Sigma} P$ to $Q\left(\widetilde{\Sigma} P^{\prime},\left.f^{\prime}\right|_{\mathscr{F} \cap \tilde{\Sigma} P^{\prime}}, \Sigma_{0} P\right)$.
$P^{\prime}$ consists of the disjoint union of one- and two-dimensional manifolds $N=$ $=\left\{N_{1}, \ldots, N_{r}\right\}$ and $M=\left\{M_{1}, \ldots, M_{s}\right\}$ respectively.

$$
f^{\prime \prime-1}\left(\widetilde{\Sigma} P^{\prime}\right)=\left(f^{\prime \prime-1}\left(\widetilde{\Sigma} P^{\prime}\right) \cap M\right) \cup N=\left\{S_{p}\right\} \cup N
$$

where $S=\left\{S_{p}\right\}$ is a finite family of circles in general position in $M$.

$$
f^{\prime \prime-1}(\mathscr{F})=\left(f^{\prime-1}(\mathscr{F}) \cap M\right) \cup\left(f^{\prime-1}(\mathscr{F}) \cap N\right)=\left\{\widetilde{S}_{q}\right\} \cup\left\{q_{j}\right\}
$$

where $\tilde{S}=\left\{\tilde{S}_{q}\right\}$ is a finite family of circles in $M$ such that $S \cup \tilde{S}$ is in general position and $Q=\left\{q_{i}\right\}$ consists of a finite number of points.

There exists a natural relative homeomorphism between

$$
\left(P^{\prime}, \mathscr{F}\right)=\left(f^{\prime \prime}\left(P^{\prime \prime}\right), f^{\prime \prime}(\tilde{S} \cup Q)\right)
$$

and

$$
\left(Q\left(P^{\prime \prime},\left.f^{\prime \prime}\right|_{S \cup N}, \widetilde{\Sigma} P^{\prime}\right), Q\left(\widetilde{S} \cup Q,\left.f^{\prime \prime}\right|_{(S \cup N) \cap(\tilde{S} \cup Q)}, \mathscr{F} \cap \widetilde{\Sigma} P^{\prime}\right)\right)
$$

We can assume that $P^{\prime \prime}, P^{\prime}$ and $P$ are realized in three copies of an $\boldsymbol{R}^{A}$, for a $\operatorname{big} A . \widetilde{\Sigma} P^{\prime}$ consists of a finite number of smooth circles of $R^{A}: \widetilde{\Sigma} P^{\prime}=C=\left\{C_{1}, \ldots, C_{k}\right\}$; $C \cap \mathscr{F}$ is a finite number of points.

Let us approximate every $C_{i}$ with a regular algebraic curve $C_{i}^{\prime}$ such that, if $h_{i}: C_{i} \rightarrow C_{i}^{\prime}$ is the related diffeomorphism, then: $\left.h_{i}\right|_{C_{i} \cap \mathcal{F}}=i d$; there exist isotopies $H_{t}^{i}$ of $\boldsymbol{R}^{A}$ such that $H_{0}^{i}=i d,\left.H_{1}^{i}\right|_{c_{i}}=h_{i}$, and $\left.H_{t}^{i}\right|_{c_{i} \cap \mathcal{F}}=i d$, for each $t$; every $H_{t}^{i}$ has a compact support $K_{i}$ which is a neighbourhood of $C_{i}$ and $K_{i} \cap K_{j}=\emptyset$ if $i \neq j$ (see [3]). Then the $H_{t}^{i}$ s define a global isotopy $H_{t}$ of $\boldsymbol{R}^{\boldsymbol{4}}$.

We can construct a special resolution $P^{\prime \prime} \xrightarrow{g^{\prime \prime}} \widetilde{P}^{\prime} \xrightarrow{g^{\prime}} P$ of $P$ such that $\widetilde{P}^{\prime}=H_{1}\left(P^{\prime}\right)$; $\widetilde{\Sigma} \tilde{P}^{\prime}=\theta^{\prime}=\left\{\theta_{i}^{\prime}\right\} ;$

$$
g^{\prime-1}\left(\Sigma_{0} P\right) \cap C^{\prime}=f^{\prime-1}\left(\Sigma_{0} P\right) \cap C ; \quad g^{\prime \prime}=H_{1} \circ f^{\prime \prime} ; \quad g^{\prime}=f^{\prime} \circ H_{1}^{-1}
$$

Let $\tilde{\mathscr{F}}=\left\{\tilde{F_{r}}\right\}=\left\{H_{1}\left(F_{r}\right)\right\}$.
Clearly $\left(\tilde{P}^{\prime}, \tilde{F}\right)=\left(g^{\prime \prime}\left(P^{\prime \prime}\right), g^{\prime \prime}(\tilde{S} \cup Q)\right)$ is homeomorphic to $\left(P^{\prime}, \mathcal{F}\right)$ and to $\left(Q\left(P^{\prime \prime},\left.g^{\prime \prime}\right|_{S \cup N}, \widetilde{\Sigma} \tilde{P}^{\prime}\right), Q\left(\tilde{S} \cup Q,\left.g^{\prime \prime}\right|_{(S \cup N) \cap(S \cup Q)}, \tilde{\mathcal{F}} \cap \tilde{\Sigma} \tilde{P}^{\prime}\right)\right) ; \quad P \quad$ is homeomorphic to $Q\left(\tilde{P}^{\prime}, g^{\prime} \mid \tilde{\mathscr{F}}, \Sigma_{0} P\right)$.
3.3 Remark. - The unoriented smooth bordism of $C^{\prime}, \eta_{*}\left(C^{\prime}\right)$ is generated by algebraic elements $\left(\eta_{j}\left(C^{\prime}\right)=0\right.$ if $j \neq 0,1 ; \eta_{0}\left(C^{\prime}\right)$ is generated by the classes [point $\rightarrow$ $\left.\rightarrow O^{\prime}\right] ; \eta_{1}\left(C^{\prime}\right)$ is generated by the classes $\left.\left[C_{i}^{\prime} \hookrightarrow C^{\prime}\right]\right)$.

If $A$ is big enough, the following facts hold:

1) There exist approximations $h_{M}: M \rightarrow M^{\prime}, h_{N}: N \rightarrow N^{\prime}$ of $M$ and $N$ in $\boldsymbol{R}^{A}$ such that:
(a) $M^{\prime}$ and $N^{\prime}$ are regular algebraic varieties;
(b) for each $p, h_{p}=\left.h_{M}\right|_{S_{p}}: S_{p} \rightarrow Z_{p}$ is an approximation of $S_{p}$ in $\boldsymbol{R}^{A}$, where $Z_{p}$ is regular algebraic and $\left.h_{p}\right|_{s_{p} \cap \tilde{S}}=i d ;\left.h_{p}\right|_{s_{p} \cap\left\{s_{q}, q \neq p\right\}}=i d$. Let $Z=\left\{Z_{p}\right\}$.
(c) For each $q, \tilde{h}_{q}=\left.h_{M}\right|_{S_{q}}: \tilde{S}_{q} \rightarrow \tilde{Z}_{q}$ is an approximation of $\tilde{S}_{q}$ in $\boldsymbol{R}^{A}$, where $\tilde{Z}_{a}$ is regular algebraic and $\left.\tilde{h}_{q}\right|_{\tilde{S}_{q} \cap S}=i d,\left.\tilde{h}_{q}\right|_{\tilde{S}_{r} \cap\{\tilde{S r}, r \neq a\}}=i d$. Let $\tilde{Z}=\left\{\tilde{Z}_{i}\right\}$.
(d) For each $i, k_{i}=\left.h_{N}\right|_{N_{i}}: N_{i} \rightarrow N_{i}^{\prime}$ is an approximation of $N_{i}$ in $\boldsymbol{R}^{A}$, where $N_{i}^{\prime}$ is regular algebraic and $\left.k_{i_{i}}\right|_{N_{i} \cap Q}=i d$.
2) There exists a regular map $\Phi: Z \cup N^{\prime} \rightarrow C^{\prime}$ such that:
(a) for each $p$, if $\varphi_{p}=\left.\Phi\right|_{z_{p}}$, then: (i) $\varphi_{p} \circ h_{p}$ approaches $\left.g^{\prime \prime}\right|_{S_{p}}$; (ii) $\left.\varphi_{p}\right|_{S_{p} \cap \tilde{S}}=g^{\prime \prime} \mid$; $\left.\varphi_{p}\right|_{S_{p} \cap\left\{Z_{q}, Q \neq p\right\}}=g^{\prime \prime} ;$; (iii) $\varphi_{p} \circ h_{p}$ is specially homotopic to $\left.g^{\prime \prime}\right|_{S_{p}} ;$ (iv) if $\left.g^{\prime \prime}\right|_{S_{p}}$ is the constant map, then $\varphi_{p}=\left.g^{\prime \prime}\right|_{S_{p}}$ is the constant map;
(b) for each $i_{\text {, }}$ if $g_{i}=\left.\Phi\right|_{N_{i}^{\prime}}$, then: (i) $g_{i} \circ k_{i}$ approaches $\left.g^{\prime \prime}\right|_{N_{i}}$; (ii) $\left.g_{i}\right|_{N_{i} \cap Q}=g^{\prime \prime}$; (iii) $g_{i} \circ k_{i}$ is specially homotopic to $\left.g^{\prime \prime}\right|_{N_{i}}$.

By means of remark 3.3, all these claims follow almost immediately from theorem 3 and proposition 1 (with its related lemma) of [3] (the same results and the same proofs are again in paragraph e) of [10]).

The only one which is not immediate to prove is the following: if $\left.g^{u}\right|_{S_{p}}: S_{p} \rightarrow C_{j}^{z}$ is a 2 -covering of an arc $A \subset C_{j}^{\prime}$ with $y_{0}$ and $y_{1}$ as endpoints, which is branched on $y_{0}$ and $y_{1}$ in $x_{0}, x_{1} \in S_{p}$, then $\varphi_{p}: Z_{p} \rightarrow C_{s}^{t}$ has the same property (as $x_{0}$ and $x_{1} \in S_{p} \cap$ $\cap\left(\tilde{S} \cup S_{p}\right) \cap\left\{S_{q}, q \neq p\right\}$, they also belong to $Z_{p}$; therefore, the above statement is equivalent to the property 2 (iii) for $\varphi_{p} \circ h_{p}$ ).

We give here a sketch of the proof (using standard arguments: see [2], [3] and [11]).

Let $U_{i}, V_{i}$ be neighbourhoods of $x_{i}$ and $y_{i}$ in $\boldsymbol{R}^{A}(i=0,1)$ such that $U_{0} \cap U_{1}=$ $=V_{0} \cap V_{1}=\emptyset$ and there exist diffeomorphisms $b_{i}: U_{i} \rightarrow B_{i}, d_{i}: V_{i} \rightarrow D_{i}$, where $B_{i}$ and $D_{i}$ are balls in $\boldsymbol{R}^{4}$ with the origin as center and:

$$
\begin{gathered}
b_{i}\left(S_{p} \cap U_{i}\right)=\left\{B_{i} \cap\left\{x_{2}=\ldots=x_{A}=0\right\}\right\} \\
d_{i}\left(C_{i} \cap V_{i}\right)=\left\{D_{i} \cap\left\{x_{2}=\ldots=x_{A}=0\right\}\right\} ; \quad b_{i}\left(x_{i}\right)=0=d_{i}\left(y_{i}\right)
\end{gathered}
$$

We can assume that:
(1) $\left.d_{i} \circ \mathcal{G}^{\prime \prime} \circ b_{i}^{-1}\right|_{b_{i}\left(S_{p} \cap U_{i}\right)}=\left(x_{1}^{2}, 0, \ldots, 0\right)$;
(2) $\left.g^{\prime \prime}\right|_{S_{p}}$ is the restriction to $S_{p}$ of a differentiable map $G=\left(G_{1}, \ldots, G_{A}\right)$ defined on a neighbourhood $W$ of $S_{p}$ in $\boldsymbol{R}^{A}$ such that $d G_{j}\left(x_{i}\right)=0, i=0,1, j=1, \ldots, A$.

By (1), every map near to $\left.g^{\prime \prime}\right|_{S_{p}}$ has only two critical points lying in two fixed disjoint neighbourhoods $W_{i}$ of $x_{i}(i=0,1)$; then it is a 2 -covering of another are $A^{\prime}$ of $C_{j}^{\prime}$, branched at the endpoints.

Let $P=\left(P_{1}, \ldots, P_{4}\right)$ be polynomials of $\boldsymbol{R}\left[x_{1}, \ldots, x_{A}\right]$ such that $P_{j}\left(x_{i}\right)=G_{j}\left(x_{i}\right)$ and $d P_{j}\left(x_{i}\right)=0$, for each $i$ and $j$. Then, by (2), for each $j$, if $H_{j}(x)=G_{j}(x)-P_{j}(x)$, then $H_{j}\left(x_{i}\right)=0$ and $d H_{j}\left(x_{i}\right)=0$.

Fix a compact neighbourhood $K$ of $S_{p}, K \subset W$; there exists a finite open covering $\left\{U_{s}\right\}$ of $K$ and polynomials $Q_{1}, \ldots, Q_{t}$ such that $Q_{r}\left(x_{i}\right)=0, d Q_{r}\left(x_{i}\right)=0$ for each $r$ $H_{j}(x)=\sum_{r=1}^{t} F_{r}^{s}(x) Q_{r}(x), x \in U_{s}$, where every $F_{r}^{s}$ is smooth on $U_{s}$.

Using a partition of unity (as in [11]) and the usual Weierstrass approximation theorem, we can approximate $H=\left(H_{1}, \ldots, H_{A}\right)$ with $\widetilde{P}=\left(\widetilde{P}_{1}, \ldots, \widetilde{P}_{A}\right)$ where every $\tilde{P}_{j}$ is a polynomial and $\widetilde{P}_{j}\left(x_{i}\right)=0, d \tilde{P}_{j}\left(x_{i}\right)=0$, for each $i$ and $j$.

Then $\bar{P}=\left(\tilde{P}_{1}+P_{1}, \ldots, \tilde{P}_{A}+P_{A}\right)$ approaches $G$ and $\bar{P}_{j}\left(x_{i}\right)=G_{j}\left(x_{i}\right), d \bar{P}_{j}\left(x_{i}\right)=0$. Now (see [3], lemma 2) $Z_{p}$ (and $\varphi_{p}$ ) is obtained by generic projection on $\boldsymbol{R}^{A}$ of a regular algebraic copy $\bar{Z}_{p}$ of $S_{p}$ in

$$
\left\{(x, y) \in K \times \boldsymbol{R}^{A}: y=\pi(\bar{P}(x))-\bar{P}(x)\right\}
$$

where $\pi$ is the projection of a tubular neighbourhood of $C_{j}^{\prime}$ in $\boldsymbol{R}^{4} ;\left(x_{i}, 0\right) \in Z_{p}$, $i=0,1 ; \varphi_{p}$ is given by the restriction to $\Gamma_{p}$ of $\bar{P}(x)+y$, which is defined on $K \times \boldsymbol{R}^{4}$.

By means of our choice of $\bar{P}$, it is clear that the only critical points of $\varphi_{p} \circ h_{p}$ are $x_{0}$ and $x_{1}$, which is what we had to prove.

Let us return now to $M^{\prime}$, satisfying properties 1) and 2); it is not hard to prove that there exists a natural relative homeomorphism $\underline{g}$ between $\left(\tilde{P}^{\prime}, \widetilde{\mathscr{F}}\right)$ and $\left(\hat{P}^{\prime}, \hat{\mathscr{F}}\right)=$ $=\left(Q\left(M^{\prime} \cup N^{\prime}, \Phi, \widetilde{\Sigma} \tilde{P}^{\prime}\right), Q\left(\tilde{Z} \cup Q,\left.\Phi\right|_{\left(Z \cup N^{\prime}\right) \cap(\tilde{Z} \cup Q)}=\left.g^{\prime \prime}\right|_{(S \cup N) \cap(\tilde{S} \cup Q)}, \widetilde{\mathscr{F}} \cap \widetilde{\Sigma}^{\prime} \tilde{P}^{\prime}\right)\right)$ and there exists a homeomorphism between $g^{\prime}\left(\widetilde{P}^{\prime}\right)=P$ and $\hat{P}=Q\left(\hat{P}^{\prime}, g^{\prime} \circ \varrho^{-1} \mid \hat{\mathscr{F}}, \Sigma_{0} P\right)$; therefore, the theorems 3.1 and 3.2 are proved by using twice the following proposition.
3.4 Proposition. - Let $Z, X \subset V \subset \boldsymbol{R}^{n}, T \subset Y \subset \boldsymbol{R}^{m}$ be algebraic varieties and $\varphi: X \rightarrow Y$ a regular map such that $\varphi(Z \cap X) \subset T$. Suppose that $V$ is compact. Then there exist an algebraic variety $W \subset \boldsymbol{R}^{k} \times \boldsymbol{R}^{m}$ and a regular map $\Phi: V \rightarrow W$ such that:

1) $W=\Phi(V) \cup\{0 \times Y\}=\Phi(V) \cup \hat{Y}$;
2) $\Phi(V) \cap \hat{Y}=\Phi(X)$;
3) $\Phi \mid: V \backslash X \rightarrow \Phi(V) \backslash \hat{Y}$ is an algebraic isomorphism;
4) $\left.\Phi\right|_{X}=(0, \varphi)$;
5) $W^{\prime}=\Phi(Z) \cup\{0 \times T\}=\Phi(Z) \cup \hat{T}$ is an algebraic subvariety of $W$.

Proof. - Let $s: S^{n} \backslash p \rightarrow \boldsymbol{R}^{n}$ be the stereographic projection from the north pole
and let $i$ be its inverse. Put $\tilde{V}=i(V), \tilde{Z}=i(Z), \tilde{X}=i(X)$ and $\tilde{\varphi}=\left.\varphi \circ s\right|_{\tilde{x}}$. Let $\Theta: V \rightarrow \boldsymbol{R}^{m}$ be a regular map which extends $\varphi$ and put $\tilde{\Theta}=\left.\Theta \circ s\right|_{\tilde{V}}$.

Choose a set of generators $\psi_{1}, \ldots, \psi_{r}$ of $I(X)$ and let

$$
\begin{gathered}
\tilde{\Psi}=\left.\left(\psi_{1}, \ldots, \psi_{r}\right) \circ s\right|_{\tilde{v}}: \tilde{V} \rightarrow \boldsymbol{R}^{r} \\
\Gamma_{\tilde{V}}=\left\{(x, y, z) \in S^{n} \times \boldsymbol{R}^{r} \times \boldsymbol{R}^{m}: x \in \tilde{V}, y=\tilde{\Psi}(x), z=\tilde{\Theta}(x)\right\}
\end{gathered}
$$

is isomorphic to $\tilde{V}$ and contains the subvarieties $\Gamma_{\tilde{Z}}$ and $\Gamma_{\tilde{X}}$ which are isomorphic to $\tilde{Z}$ and $\tilde{X}$ respectively. Clearly, it is enough to prove the proposition for $\Gamma_{\tilde{y}}, \Gamma_{\tilde{Z}}$, $\Gamma_{\tilde{X}}, \pi \mid \Gamma_{\tilde{x}}$ where $\pi: S^{n} \times \boldsymbol{R}^{r} \times \boldsymbol{R}^{m} \rightarrow \boldsymbol{R}^{m}$ is the natural projection.

Let $\bar{Y}=\{0 \times Y\} \subset \boldsymbol{R}^{r} \times \boldsymbol{R}^{m}, \bar{T}=\{0 \times T\} \subset \bar{Y}$ and $R(y, z), S(y, z)$ be polynomials such that $\bar{Y}=\{R=0\}, \bar{T}=\{S=0\}$.

Let $F: \boldsymbol{R}^{n+1} \times \boldsymbol{R}^{r} \times \boldsymbol{R}^{m} \rightarrow \boldsymbol{R}^{n+1} \times \boldsymbol{R}^{r} \times \boldsymbol{R}^{m}$ be defined by $F(x, y, z)=(R(y, z) x, y, z)$.
Claim: $W=F\left(\Gamma_{\tilde{V}}\right) \cup \hat{Y}, W^{\prime}=F\left(\Gamma_{\dot{Z}}\right) \cup \widehat{T}$ and $\Phi=F \mid r_{\tilde{V}}$ satisfy the required conditions:

1) $\left.F\right|_{\tilde{X}}=(0,0, \varphi): \Gamma_{\tilde{x}} \ni x_{0}=(x, 0, \tilde{\varphi}(x))$; therefore $R(0, \tilde{\varphi}(x))=0$ and $F\left(x_{0}\right)=$ $=(0,0, \tilde{\varphi}(x))$.
2) If $x_{0} \in \Gamma_{\tilde{V}}$ and $\vec{F}\left(x_{0}\right) \in \hat{Y}$, then $x_{0} \in \Gamma_{\tilde{x}}: \tilde{\Psi}\left(x_{0}\right)=0$ implies $x_{0} \in \Gamma_{\tilde{x}}$.
3) From 2) it follows that $\left.\Gamma_{\tilde{V}} \backslash \Gamma_{\tilde{x}}=\Gamma_{\tilde{V}} \backslash(x, y, z): R(y, z)=0\right\}$ and the inverse of the isomorphism $F: \Gamma_{\tilde{V}} \backslash \Gamma_{\tilde{x}} \rightarrow W \widehat{Y}$ is $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \rightarrow\left(x^{\prime} \mid R\left(y^{\prime}, z^{\prime}\right), y^{\prime}, z^{\prime}\right)$.

It is now enough to prove that $W$ is algebraic.
Since $\Gamma_{\tilde{v}} \subset S^{n} \times \boldsymbol{R}^{r} \times \boldsymbol{R}^{m}$, we can suppose that $\Gamma_{\tilde{V}}=\{P(x, y, z)=0\}$ where

$$
P(x, y, z)=\left(|x|^{2}-1\right)^{t}+\sum_{i=1, \ldots, s} P_{i}(x, y, z)
$$

and each $P_{i}$ is an homogeneous polynomial of degree $t_{i}<2 t$ with respect to $x$.
Using the isomorphism of 3 ), it is easy to see that

$$
W \backslash \hat{Y}=\{\tilde{P}=0, R(y, z) \neq 0\}
$$

where

$$
\tilde{P}(x, y, z)=\left(|x|^{2}-R(y, z)^{2}\right)^{t}+\sum_{i} R(y, z)^{2 t-t_{i}} P_{i}(x, y, z)
$$

But, if $\tilde{P}(x, y, z)=0$ and $R(y, z)=0$, then $x=0$ and therefore $W=\{\tilde{P}=0\}$. We can do the same for $W^{\prime}$, using $S(y, z)$, thus proving the proposition.
3.5 Remark. - It is known that a topological space $V$ has an algebraic structure if and only if its one point compactification, $\tilde{V}=V \cup\{\infty\}$, has one; more-
over, for every structure on $V$, it is possible to get $\widetilde{V}$ such that $V$ and $\widetilde{V} \backslash\{\infty\}$ are isomorphic. It follows that the previous proposition is true with the weaker hypothesis that only $X$ is compact (see [1], [3]).

Furthermore, it is easy to prove the following
3.6 Corollary. - A two-dimensional (non compact) stratified space $P$ is homeomorphic to an algebraic variety if and only if it is homeomorphic to $\bar{P} \backslash x \mathrm{lk}(x, \bar{P})$, where $\bar{P}$ is a compact two-dimensional stratified space satisfying ( $E$ ).

Proof. - It follows from theorems 3.1 and 3.2 and remark 3.5 .

### 3.7 Final remarks.

a) The remark 3.3, which is obvious in this case, has been essentially used to apply the results of [3]. In order to generalize these results to higher dimensional spaces, we may need a theorem saying, roughly speaking, that every compact closed smooth manifold $M$ in $\boldsymbol{R}^{N}$ (where $N$ is big enough) can be approximated by a regular algebraic variety $M^{\prime}$ such that $\eta_{*}\left(M^{\prime}\right)$ has algebraic generators.
b) Every compact two-dimensional real analytic space is homeomorphic to an algebraic variety.
c) From the details of the proofs of the theorems 3.1 and 3.2 we can get informations about the irreducible algebraic components of $\hat{P}$ (besides informations about the singularities of $\hat{P}$ ); moreover, this points out that, "up to little modifications», every two-dimensional (compact) stratified space is homeomorphic to an algebraic variety.
d) It seems interesting to study the relations between the topological properties $(A-B)$ and the (coherence of the) analytic structure of $P$.
e) Let $Q$ be an algebraic variety and $\operatorname{Sing} Q$ be the algebraic singularities of $Q$; if $\operatorname{Sing}^{(i)} Q$ is defined inductively by $\operatorname{Sing}^{(i)} Q=\operatorname{Sing} \operatorname{Sing}^{(i-1)} Q$, then the algebraic structure $\hat{P}$ has the property that the index $j$ such that $\operatorname{Sing}^{(j)} \hat{P}=\emptyset$ is the least possible with respect to the topology of $P$.

## REFERENCES

[1] S. Akbulut - H. C. King, The topology of real algebraic sets with isolated singularities, Preprint of the University of Maryland (1978).
[2] R. Benedetit - A. Tognoli, On real algebraic vector bundles, to appear on Bulletin des Sciences Mathématiques.
[3] R. Benedetti - A. Tognoli, Approximation theorems in real algebraic geometry, Sem. Norguet (May 1979).
[4] S. Buoncristiano - M. Dedd, On resolving singularities and relating bordism to homology, to appear on Annali della Scuola Normale Superiore di Pisa.
[5] M. Kato, Topological resolution of singularities, Topology, 12 (1973), pp. 355-372.
[6] J. Mather, Notes on topological stability, Lecture Notes, Harvard University (1970).
[7] D. Sullivan, Combinatorial invariants of analytic spaces, Proc. of Liverpool Singularities Symposium I, Springer Verlag, Berlin (1971).
[8] R. Тном, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc., 175 (1969), pp. 240-284.
[9] R. Thom, Stratified sets and morphisms: local models, Proc. of Liverpool Singularities Symposium I, Springer Verlag, Berlin (1971).
[10] A. Tognoli, Algebraic approximation of manifolds and spaces, Séminaire Bourbaki, 32ème année (1979), No. 548.
[11] A. Tognoli, Algebraic geometry and Nash functions, Institutiones Mathematicae, vol. III, Acad. Press London and New York.


[^0]:    (*) Entrata in Redazione il 2 maggio 1980.
    (**) The authors are members of the G.N.S.A.G.A.

