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Abstract. For every polynomial map f = (f i  . . . . .  fk): ~ " ~  Rk, we consider the 
number of connected components of its zero set, B(Zf), and two natural "measures of 
the complexity of f ,"  that is the triple (n, k, d), d being equal to max(degree of f~), and 
the k-tuple (A 1 . . . .  , Ak), A i being the Newton polyhedron of f~, respectively. Our aim 
is to bound B ( Z f )  by recursive functions of these measures of complexity. In 
particular, with respect to (n, k, d) we shall improve the well-known Milnor-Thom's 
bound #a(n)= d(2d-  1) " - l .  Considered as a polynomial in d, 12a(n ) has leading 
coefficient equal to 2 n- 1. We obtain a bound depending on n, d, and k such that if n is 
sufficiently larger than k, then it improves /~a(n) for every d. In particular, it is 
asymptotically equal to �89 + 1)n k- ld", if k is fixed and n tends to infinity. The two 
bounds are obtained by a similar technique involving a slight modification of 
Milnor-Thom's argument, Smith's theory, and information about the sum of Betti 
numbers of complex complete intersections. 

1. Introduction 

Consider  any po lynomia l  m a p  f = ( f l  . . . . .  fk): ~ " ~  ~k. Given any sui table 
"measure  of the complex i ty"  of f, it is of p r imary  interest  (also in view of  
appl ica t ions)  to ob ta in  explicit  bounds  for the number  B(Z f )  of connected  
componen t s  of the zero set of f,  Z f  = {x e R"I f ( x )  = 0}. A basic result of this k ind 
is the wel l -known M i l n o r - T h o m ' s  b o u n d  in terms of the triple (n, k, d), where 

d = max{degree  of fi ,  i = 1 . . . . .  k}. 

Actual ly  M i l n o r - T h o m ' s  b o u n d  

I.~d(tl) = d(2d - 1)"- l 
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depends only on (n, d). Another measure of complexity is the so-called additive 
complexity. Milnor-Thom's  argument applies with minor changes to this case, 
producing recursive bounds (see [R1] or [BR] for details). 

A further example of the natural measure of complexity is given by the k-tuple of 
the Newton polyhedra (see the definition later) of f~ . . . . .  fk: in some sense they 
involve the triple (n, k, d) in a "structured way." 

The aim of this paper is to construct, in a recursive way, two bounds for B(ZI) in 
terms of (n, k, d) and of the Newton polyhedra, respectively (actually the second 
bound will be a function of the mixed volumes of a finite family of polyhedra 
constructed by beginning from the Newton polyhedra). In some cases the first 
bound improves the one by Milnor and Thom, in a sense made precise later. These 
bounds are constructed by a similar technique based on a very simple ideas, as is 
shown in the following sketch. 

An Outline of the Construction of the Bounds for B(Zf)  

Assume for simplicity that Z~ is compact (the noncompact case can be reduced to a 
question in lower dimensions, so we can work by induction). In Milnor-Thom's 
proofs the problem of bounding B(ZI) is reduced to the problem of bounding the 
number of connected components of the set f-~(OB), where B is a small "generic" 
ball surrounding the origin. Here, in order to get the bound in terms of (n, k,d), we 
replace the ball by a small generic simplex A. The advantage of the simplex is that it 
does not increase the degree. Call a connected component of f -  ~(t3A) pure with 
respect to a fixed face a of A if its range intersects a but none of its subfaces. We 
only need to bound the number of pure components for every face of c3A, hence it is 
enough to bound, for every cr, the number of compact components of S = f -  I(H,), 
where H,  is the affine space spanned by u. By genericity, S is nonsingular. We 
consider the projective closure S' of S in RP" ~ CP", and approximate S' by a 
complex smooth projective complete intersection (Bertini theorem). Then we are 
able to finish by using known formulas for the sum of the Betti numbers of complex 
complete intersections (in terms of n, k, and d) and Smith's theory. To get the 
bound in terms of Newton polyhedra we use the same construction, but replacing 
the simplex by a small generic rectangular parallelepiped (because it is more 
convenient to control the Newton polyhedra) and finally use formulas by Ho- 
vansky for the Euler characteristic of complex complete intersections in terms of 
Newton polyhedra. 

Note that the use of Smith's theory in this kind of question has already been 
suggested at the end of IT]. 

We also use some basic facts about real algebraic and semialgebraic sets. 
Whenever no explicit reference is given, the reader may check [BCR] or [BR]. We 
thank the referees for useful suggestions to the final version of this paper. The paper 
is structured as follows: first we obtain the bound in terms of (n, k, d) and secondly 
we obtain the one for the Newton polyhedra. Finally, we consider some examples 
in order to compare the bounds obtained. 
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2. Bounding B ( Z s )  in T e r m s  o f  (n, k, d) 

Let A(d, n, k) be the set of polynomial  maps  f = (f~ . . . . .  fk): R" ~ R k, such that, 
for every i = 1 . . . . .  k, f~ e ~[X1 . . . . .  X , ]  and the degree off~ is less or equal to d. 
For  every topological  space X, B(X) denotes the number  of connected componen t s  
of X. For  f ~ A(d, n, k), Z I = {x ~ R " l f ( x )  = 0}. Set 

Od(n, k) = sup{B(Z l ) l f  e A(d, n, k)}. 

As we have recalled, Milnor  Thorn 's  results state [M1],  [T]  

Od(n, ,k) <_ #a(n) = d(2d - 1)"- 1. 

A. Remarks on On(n, k) 

1. Actually, the above inequality is a corollary of a s t ronger  fact: I~d(n) gives a 
bound for the sum of all Betti numbers  of Z I ,  over  an arbi t rary field of 
coefficients--for  instance Z/2Z. (The definition of Betti numbers  needs the machin-  
ery of algebraic topology which we cannot  include here. We refer to any well- 
established text of (elementary) algebraic topology for this definition. Suffice it to 
say that  every such Betti number  is the dimension of a suitable finite-dimensional 
vector space on the field of coefficients, associated to Z I by a geometric-algebraic 
construction,  and tha t - - th i s  is impor tan t  to the aim of this p a p e r - - t h e  first Betti 
number  is exactly the number  of connected components  of Z I .)  On  the other  hand, 
for several applicat ions (for example,  producing lower bounds  in complexity 
theory, as in [B1], or comput ing  the number  of polytope types, as in [GP] ) ,  it is the 
number  of connected components  which has actually been used. 

2. /~d(n) is a polynomial  function of d of degree n, with leading coefficient 2"-  1 ; 

thus it is exponential in n. Note  that  

On(n, k)>(d/2)". 

To see this, it is enough to consider P = Yl<_j<_n((Xj - t )  . . .  ( ( X j  - d ) )  2 and take 
f l  . . . . .  f~ = P. Thus n is the best degree we can reasonably expect for any 
bound polynomial  in d. Roughly speaking, we are going to obtain a bound  
polynomial  in d of degree n, with leading coefficient which is polynomial in n, when 
k is fixed. 

3. Note  that  /~d(n) does not  depend on k. This a consequence of the trivial 
remark that  t~d(n , k) <_ 02d(n,  1), obta ined by taking F = f 2  + ...  + fk  2 and notic- 
ing that  Z I = Z v. The proof  in I-M1] actually bounds  B(Zv) by/~d(n). We want  to 
distinguish the roles of  n and k and obtain  a bound  such that  if n is sufficiently 
larger than k, then it improves  pd(n) for every d. One of the referees suggested to us 
that, with a fairly slight modificat ion of Milnor  and Thorn 's  methods,  we obtain the 
bound 

Od(n, k) _< d tk+"-l) 
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(We sketch how to arrive at it: The proof  in [M1]  ends by bounding the number  of 
nondegenerate solutions of the system 

l<<.i<<.k l<j<_n 

~g/~xj = O, j = 1 . . . . .  n, 

where e and t are suitable constants. We consider an equivalent system involving 
new variables Yi: 

f l  = Yl, i =  1 . . . . .  k, 

(~i Ofl/OXs) + 2e2xs=O'  S = 2  . . . . .  n, 

Using Bezout 's  theorem in order to bound  the nondegenerate solutions of  the last 
system, we obtain 2d ~"+k- 1) and, hence, arguing as in [M1] ,  the bound d ~"+k- 1~ for 
the number  of  connected components.)  

It is easy to see that for every (d, k) there exists n o = no(d, k) such that if n > n o, 
then d ~"+k- 1) improves /aa(n)--for instance it should work if n >_ k l o g ( d ) - ;  a 
similar fact holds with respect to the bound  we obtain. On  the other hand, it gives 
the best degree in d only for k = 1. In this case we get 

On(n, 1) <_ d". 

But we can see that for every n there exists d,  such that  ifd > d., then our bound for 
Oa(n, 1) is better than d". 

In [W]  we could find 

On(n, 1) < 2d" 

obtained by a method rather different with respect to Milnor  and T h o m  and 
having some analogy with the one used in this paper. 

4. For  On(2, 1) we know the sharp bound  (d 2 - d + 2)/2 (see [BR]). 
5. Note  that  Oa(n, k) is trivially a nondecreasing function of k. In  fact, if 

( f l  . . . . .  fk) ~ A(d, n, k), then ( f l  . . . . .  fk, fk)  e A(d, n, k + 1) and they have the same 
zero set. 

We remark that  On(n, n) is the "wors t "  case. That  is 

Proposition 2.1. For every k > n, Oa(n, k) = (I)d(?l , n ) .  

Proof. It is enough to show that  for every f ~ A(d, n, k), k > n, there exists 
# ~ A(d, n, k - 1) such that  B(Zs)  < B(Zg). Set E = f(R").  E is a semialgebraic set 
in R k of dimension r < n < k. Consider  a straight line through the origin of R k in 
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general position with respect to E. This means the following: we may  stratify E by a 
finite number  of analytic semialgebraic submanifolds M i (not necessarily closed) of 
~k such that  E is the disjoint union of the M~'s-called the strata of the 
s t ra t i f ica t ion--and the stratification is " g o o d "  if it is a Whitney stratification. (This 
notion is a little technical and we cannot  review it completely. We refer, for 
example,  to [ G W D L ]  or to [BCR]  for the exact definition. It  suffices to recall the 
main propert ies (a) if Mi is a s t ratum, then its closure in ~k is union of strata;  (b) if 
Mj r M~ is in the closure of Mi, then dim M r < dim M~; (c) (this is roughly the 
Whitney condit ion) if M~ and Mj  are as in (b), x e M r, y e M~, let us denote TM~y as 
the tangent space to M~ at y; y is identified with the origin of TM~r, and t(x, y) is the 
straight line passing through x and y. Then if y is "c lose"  to x, t(x, y) is "a lmos t  
conta ined"  in TMir. This condit ion is very useful in transversali ty arguments  like 
the one below, for the following reason: if x, M~, M r are as in (c) and a manifold N 
is transverse to Mj  at x, then there exists a ne ighborhood U of x in ~k such that  N is 
transverse to U ~ Mi. ) 

If 0 ~ E, the L is in general posit ion if it is t ransverse to every M~. If 0 e E and if 
Mo is the s t ra tum containing 0, then L is in general posi t ion if it is transverse both  
to M 0 - {0) and to every M~, i r 0, and L c~ (TMoo)  = {0}. In the first case, 
s tandard transversali ty a rguments  show that  the subset of ~P~-~ (which is the 
space of lines through the origin of ~k) of lines in general posi t ion with respect to E 
is an open dense (semialgebraic) subset (see, for instance, [ G W D L ] ) .  

A little more  care is necessary when 0 ~ E in order  to get the transversali ty 
conditions. Assume that  M o is contained in the closure of M~. Consider  F~ c M~ x 
~Pg-  ~ defined by (p, L) e Fi i fp  e M~ and L is the line through 0 and p. Both F~ and 
its closure F'~ are semialgebraic sets of dimension m~ < k. If 7t~ and rc 2 are the 
projections of F'~ on E and ~pk -~ ,  respectively, then n2(n~-1(0)) is a semialgebraic 
set of dimension < m~. Using this fact it is easy to conclude that  also in this case the 
lines in general posi t ion make  a dense set. Note  that  if L is in general position, 
then 0 is isolated in L c~ E. Let L be such a line; we assume that  it is defined by 
k -  1 equat ions of  degree 1: hj(y  I . . . . .  Yk) = O,j  = 1 . . . . .  k -  1. Then g = ( h o f ) ,  
h = (h a . . . . .  hk- 1), belongs to A(d, n, k - 1) and z o = z:  w f -  I(L n (E - {0}) (it 
is a disjoint union). Hence B(Zg) > B(Z: ) .  [] 

Remark  2.2. It is easy to deduce f rom the above proof  that  there exists a generic 
k n plane H through the origin of Ek, defined by n equat ions of degree 1: h 1 . . . . .  
h, = 0, such that  g = (h o f )  E A(d, n, n) and Zg = Z :  u {Pl . . . . .  p,} where the pi's 
are isolated points corresponding to the transverse intersection of H with the s t ra ta  
of dimension n of  E. 

It is also clear that  we have actually proved a more  precise fact; let us denote by 
Bett iv(Z:)  the sum of the Betti numbers  of  Z :  over  the field F, and Bettir(d, n, k) = 
sup{Bett i r (Z:)]  f ~ A(d, n, k)}. Then we have 

Proposition 2.3. For every k > n, Bettir(d, n, k) = Bettir(d, n, n). 

Remark  2.4. For  the crucial case A(d, n, n) we do not know any example  with 
B(Z: )  bigger than d". 
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B. Recursive Definition o f  a Bound for  Oa(n, k) 

In this section we give the recursive definition of an upper bound for Od(n, k) 
depending on the triple (d, n,k). Later we show some property of the bound 
obtained, noticing, in particular, how it improves Milnor-Thom's  bound. 

Let us first introduce some further notation. For  every topological space X, 
Be(X) denotes the number of compact connected components of X. Then set 

c~(n, k) = sup{Br �9 A(d, n, k)}. 

For n _> k, C(d, n, k) denotes the set of smooth complex complete intersections in 
CP" defined by k real homogeneous polynomials of degree at most d. Set 

O"k(d) = sup{B(Y n ~P")[ Y �9 C(d, n, k)}. 

It is well known (see, for instance, [F] and JR2]) that the topology of Y �9 C(d, n, k) 
depends only on dl . . . . .  dk, n, k (if Y = {gl . . . . .  gk = 0} and the degree ofgi is 
equal to di). 

In particular, if Betti(Y) denotes the sum of the Betti numbers of Y over Z/27/, 
then 

Betti(Y) = H~(d 1 . . . . .  dk), 

where the last term is recursively defined as follows: 

~Z~,(d 1 . . . . .  dr) if ( n  - k )  is even, 
H~(dl . . . . .  dk) = (2(n -- k + 1) - z ~ ( d  1 . . . . .  dt) i f ( n  - k )  is odd, 

~'n+l if k=0,  
Z"k(dl . . . . .  dk) = ( d i d  2 . . . .  dk if k = n, 

[z~(dl,.. dk) d "- i , kZk-~(dl . . . .  dk-1) (dk-- 1)Z~-l(dl,. ,dk) if O < k < n .  

Note that if dl < d for every i, then 

H~k(dl . . . . .  dk) <= H~(d), 

where H~,(d) = H~,(d . . . .  , d). 
Our bound is actually defined by the following proposihon. 

Proposition 2.5. Let n > k, then: 
1 n (a) 07,(d) <_ ~Hk(d), 

(b) Ca(n, k) _< r k) + 2r - 1, k), 

(c) r ~ ( k  +j 1)O~+~_j(d)" 
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Assuming the above proposi t ion we can define our  bound  for ~d(n, k) as follows: 

if k _> n set 2(d, n, k) = #a(n) (Mi lnor -Thom) ,  
if k < n we apply (n - k) times the proposi t ion obtaining 2(d, n, k) such that, 

obviously,  ~d(n, k) <_ 2(d, n, k). 

That  is, 

).(d, n, k) = �89 Z 
l<_j<k 

x (H~+ 

k + 1) 

J 

, -  1 9 . - k - l u k +  I _j(d)) + 2"-k#n(k). l-J(d) + 2Hk+l- j (d )  + "'" + - "'k+ 

It is clear that 2(d, n, k) is an upper  bound for cl)d(n, k). Before proving Proposi t ion  
2.5, we note some propert ies of this bound,  showing, in particular,  how it improves  
pd(n) or d "+k 1. 

Proposit ion 2.6. We have 

2(d, n, k) = Qi(d, n) + 2Qz(d, n) + ... + 2 " - k - l Q , _ k ( d  , n) + 2"-k#a(k), 

where Qi is a polynomial in d of  degree n - i + 1; the leading coefficient o f  Q~ is a 
polynomial Pi ~ Q[n]  of  degree k - 1 and leading coefficient (k + 1)/2 and the other 
terms are polynomials in n of  degree h = max{k - 1, 1}. 

As an immediate  corollary we have 

Corollary 2.7. With k fixed, d > 1,2(d, n, k) is asymptotically equal to ) (k  + 1) 
n k -  ldn  a s  n tends to infinity. 

We now have three different upper  bounds  for (I)d(n, k), namely the one above, 
2(d, n, k), the Milnor  bound,  p(d ("t = d(2d - 1)" -1  and the bound d "+k- ~ ( remark 
3 of Section A above). Depending on the values of n, k, and d, one of these bounds  is 
better than the other two. For  instance, for every fixed k, there exists n k big enough 
such that, for every d >_ n > nk, the best bound for @d(n, k) is ).(d, n, k). On the 
contrary,  if k is "b ig"  and n -  k "small ,"  the best bound is p~"), or  d n+k-1, 
depending on the value of d. 

The proof  of  Proposi t ion 2.6 follows immediately from the lemma below about  
H~k( d). 

L e m m a  2.8. Let k be fixed. Then H'~(d) is a polynomial of  degree n in the 
variable d. The leading coefficient of  H~(d) is a monic polynomial in n of  degree h = 
max{ y, k - 1}, and the others coefficients are polynomials in n of  degree h. 

Proof  We write [X1 . . . . .  Xj]s l  . . . . .  st] to mean:  "a  polynomial  in the variable 
X~ . . . .  , Xj of degree < s i with respect to X f '  Then it is enough to show that  

ffk(d) = (--  1)"-k(n k-z  + [n[k -- 23)d" + [d, n l n -  1, max{l ,  k - 1}3, 
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where Z~,(d) = Z~,(d . . . . .  d). We obtain it by an easy double induction on k and n. 
For  k = 1, z~(d) = d. 

z ] ( d ) = d z ~ - l ( d ) - ( d  - 1)Z]-I(d) 

= n d - d ( - 1 ) " - 2 d  " - I  - ( d -  1)[d, n l n  - 2, 1] 

= ( - 1 ) " - l d " +  [d, n l n -  1, 1]. 

For  k > 1, we have 

z ~ ( d )  = d x T , - l ( d )  - (,~ - 1 ) z ~ - ' ( d )  

= d ( -  1)"-a(n k-z + [ n l k  - 3])d "-1 + d [ d ,  n ln  - 2, k -  2] 

- d ( - 1 ) " - 1 - k d " - l ( n  k - x  + [ n l k  - 2]) - (d - 1)[d,n]n - 2, k - 1] 

= ( _ l ) . - k d . ( n k - 1  + [ n l k  --  2]) + [d, n l n -  1, k - 1]. 

The lemma is proved. []  

It remains to prove Proposi t ion 2.5. 

P r o o f  o f  P r o p o s i t i o n  2.5. It is the proof  we have outlined in the introduction.  
(a) As Y E C ( d , n ,  k) is compact  and dim Y > 1, then there are at most h = 

dim(Y n ~ P " ) +  1 nonzero Betti numbers  of Y n ~P", and the first of these 
numbers  coincides with the last one (we are working over the field Z/22~) and is 
equal to the number  of connected components  of Y n ~P". Hence it is clear that 

O~(d) < �89 sup{Betti(Y n RP")I Y ~ C(d, n, k)}. 

On the other  hand, applying Smith's  theory (see [B2] ) - -no te  that  Y is compact  
and Y n ~P"  is the set of fixed points of the involution induced by the complex 
con juga t ion- -we  get 

Betti(Y n RP") < Betti(Y). 

(a) is proved. 
(b) Let  f ~ A(d ,  n, k) and assume that  Z s contains s noncompac t  components  

Z 1 . . . . .  Z~. Let us denote D(0, t ) =  {xel~"l[Ixll  < t}, s(0, t ) =  {llxll = t} .  Z f  is 
"conic  at infinity," that is, there exists t o such that  (~" \D(0 ,  to)) n Z s is homeo-  
morphic  to (Z s n S ( 0 , t o )  ) x [to, + ~ [ ,  via a homeomorph i sm sending 
Z s n S(0, t) onto  (Z s n S(0, to) ) x {t}. For  every integer m, m > t o, for every 
j = 1 . . . . .  s, consider a point  y / ,~e(~"\D(0,  m ) ) n Z j ,  and set x~ = 
Yam/II Y~., II E S(0, 1) = S"-1. Taking subsequences if necessary, we may assume that 
each x~ converges to a point  x~ of S"-  1. It may  happen that  x~ = x~ for i :~ j, hence 
every x~ has a natural  "multiplicity." Let H o be a hyperplane through the origin of 
R" such that  all the limit points are contained in S " - I \ H  o. Then there exists a 
half-sphere S"+- 1 containing at least s /2  of these points (if s is even) or (s + 1)/2 
points (if s is odd). If H is a hyperplane parallel to Ho and sufficiently far from Ho in 
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the direction of S"+- 1 then H intersects at least s/2 noncompac t  components  of Z I ,  
that  is, s/2 <_ B(H c~ Z s )  <_ Oa(n - 1, k). Thus (b) is proved. 

(c) Let Vo be a fixed k-simplex in ~k. It is determined by its vertices Vo = 
V(v o . . . . .  Vk) = {y e Rkly = ~,i tivi, tl > O, ~. t i = 1}. We assume that the origin is 
contained in the interior of V o. The boundary  0V o = {Y e Volthere exists i such 

that ti = O} is a union of "faces" of  dimension k - 1. Clearly, there are J 

faces of dimension j - 1. Our  aim is to bound  O~(n, k) by means of B ~ ( f -  ~(OVo)), 
for every f e A(d, n, k) and providing Vo is "small"  and "generic"  in a sense made 
precise later. 

Let us define a function L = Lvo: Rk __, N as follows. For  every t e R, t > O, let Vt 
be the image of Vo by the map y ~ ty. For  every y e R k, y # O, there exists a unique 
t > 0 such that y e ~?V,. Set 

L(0)  = 0, 

L(y) = t (defined as above). 

It is easy to see that L is a continuous,  positive semialgebraic function such that: 

(i) {L = 0} = {0}; 
(ii) OVo = {L = t}, and, for t > 0, 0V, = {L = t}. 

For  every f E A(d, n, k), define fro = (Lvo ~  it is a positive cont inuous semi- 
algebraic function and its zero set coincides with Z I.  

Definition 2.9. If ~ > 0 is small enough, then every (k + 1)-tuple (w o . . . . .  wk), 
w i e ~k such that II wi - vl[I < t, determines a k-simplex V = V(w o . . . . .  Wk) contain- 
ing the origin in its interior. We call the set of  such simplexes the t-neighbourhood of 
Vo; for every t it is denoted by W(Vo,  e); for every simplex V ~ W(Vo,  t) we can 
consider the similar functions Lv and fv. 

The following lemma is evident. 

Lemma2.10. For every subset K o f  ~", for  every e > 0, set K~ = 
{x e ~"[dist(x, K) _< e}; d is t ( . , . )  means the Euclidean distance. Let  f ~ A(d, n, k) 
and let Z 1 . . . . .  Z s be the compact components o f  Z f .  Then there exists e o > O, such 
that, for every i = 1 . . . . .  s, for  0 < t _< go: 

(i) Zi~ is compact and connected. 
(ii) Z~ c~ ( Z f  - Zi)~ = ~ .  

Lemma 2.11. Let Vo, f be as above. Let  e o be as in Lemma 2.10. Then there exist 
t > 0, 6 > 0 such that, for  every V e W(Vo, t) (e is small enough), {fv <- 6} c~ Z~o is 
the union of  certain compact connected components o f  {fv < 6}, for  i = 1 . . . .  , s. 

Proof  The argument  is quite s tandard (see Lemma 1 of IT],  I-D], and [BR]). Set 
Z c to be the union of the Zi 's  and U to be the union of  the Z~o . U is a compact  
semialgebraic subset of ~". Fix e as in Definition 2.9: For  every V e W(V o, a) let us 
consider the restriction to U of  the two functions dist(., Z c) and fv. They are 
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positive cont inuous semialgebraic functions with the same zero set equal to Z r By 
the Lojasiewicz inequality we know that there exists a positive interger m and a 
positive constant  b such that 

Jr(x) > b dist(x, Zr " for x E U. 

Choose 0 < 6' < min(b, ~). Then, for every x e {dist(., Z c) = 6'}, fv(x) > 6 '"+~. If 
we take 6 < 6 '"+ 1, then every component  of {fv < 6} containing a component  of 
Z ~ is contained in Z,~, = U. In order to finish the proof, it is enough to remark that 
by the proof  of the Lojaswiewicz inequality (see for example, [BCR])  we can take 
the same m for every V ~ W(Vo, ~) and that b is a cont inuous function of e. [ ]  

Corollary 2.12. Let F,Fv, e o, ~, 6 be as in the above lemma. Then, for every 
V ~ W(V o, e), W ( { f  v = 6}) = W ( f -  ~(0Va)). 

Let V be as before. For  every face tr of d imens ionj  of V, let us consider the a l ine  
subspace H ,  of ~k spanned by a. Let us denote by C the critical values set of the 
map f It is known that C is a semialgebraic set in ~k of dimension < k. This follows 
by the semialgebraic version of the Morse -Sard  lemma which is actually much 
more  easily proved. Fix a Whitney stratification of C made by a finite union of 
analytic, semialgebraic submanifolds of ~k. C = ~M~,  i = 1 . . . . .  h. 

Definition 2.13. We say that V is in 9eneral position with respect to f if, for every 
face tr of V, H ,  is transverse to every stratum Mi of the stratification of C. 

The following lemma is a consequence of s tandard transversality arguments. 

Lemma 2.14. The set of V's in W(Vo, e) in general position with respect to f is an 
open dense subset. 

Then, using the last lemma and Corol lary 2.12, it is clear that, in order to bound 
�9 ,](n, k) and finish the p roof  of Proposi t ion 2.5, it is enough to bound  W ( f -  l(cW)) 
for any V in general position with respect to f F rom now on V is assumed in 
general position. For  i = 0, 1 . . . . .  k - 1, V~ denotes the ith skeleton of V. 

Definition 2.15. For  every /-dimensional face cr = Vi, we say that a compact  
connected componen t  T of f -  l(a) is pure if T c~ f -  I(VI_ 1) = ~ .  

Let hi be the number  of  connected components  of f -  t(Vi) which are compact  
and pure for some a, face of dimension i. 

Lemma 2.16. BC(f-l(OV)) < ~O<=j<-_k-1 hi. 

Proof By induct ion on i, that  is, for i = 0 . . . . .  k - 1, 

Be(f-I(Vi)) <- ~., hj. 
O<j<i 
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Evidently B e ( f - l ( V 0 )  ) = h 0. The number  of compac t  components  Y of f - I ( V I )  
such that F c~ f - l ( V i _ l ) r  is clearly smaller than B r  , and so 
Br - a(Vi)) _<_ Br - I(V,_, )) + h i. []  

Lemma2.17 .  For every i = O . . . . .  k -  1 

hi < (k  + 1"~0" 
= i +  l J  , + l - , + , ) ( d ) .  

Proof Consider  a ~ Vi, dim a = i. As before consider H~. The pure components  
in f - l ( a )  are, in particular,  compac t  componen t s  of S = f - I ( H , ) .  If H~ is defined 
by the equat ions of degree 1, r~(y I . . . . .  Yk) . . . . .  rk-i(Yl . . . . .  Yk) = 0, then they 
are compact  componen t s  of S =  {r f = 0 } ,  r = ( r ~  . . . . .  r k ~). Note  that  
r f  ~ A(d, n, k - i). Since V is in general position, S is a nonsingular  algebraic set in 
N" of codimension n - i. Let us consider the projective closure S' of S in NP". By a 
weak applicat ion of the Bertini theorem [ G W D L ]  there is a complex complete  
intersection Y ~ C(d, n, k) such that  the equat ions of Y c~ NP" are close to the 
equations of S'. Then every compact  componen t  of S is approx imated  by one 
componen t  of Y c~ NP". The l emma is now proved simply noting that  there are 

(ki + i ) faces ~  dimensi~ i in [] 

This conclude the p roof  of Proposi t ion 2.5. [] 

C. Remarks and Complements 

1. It could seem a little redundant  to bound  only the number  of connected 
components  in terms of the sum of all Betti numbers  (as in the p roof  of (a) of 
Proposi t ion 2.5). But it is not so redundant :  actually it may  happen  that  Y c~ NP" is 
a union of spheres, in such a case 

2B(Y  c~ ~P")  = Betti(Y c~ RP"). 

2. With slight modificat ions to the method  used above, we can obtain  other  
bounds in terms of (d, n, k) which are asymptot ical ly  worse than 2(d, n, k) (for k 
fixed and n tending to infinity), but presumably  better  for some intermediary values 
of n (in the spirit of remark 3 of  Section A). For  example,  it is clear from the p roof  of 
(b) of Proposi t ion  2.5, that  

On(n, k) ~ O,](n, k) + O~(n, k + 1). 

Then we can bound  the last term by applying (c) of  proposi t ion  2.5 twice. 
Another  variat ion is the following. 
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Lemma 2.18. For every positive integer i, there exist a k-simplex V i and a 
(k - 1)-face F i o f V  i such that: 

(a) dist(O, dV i) < l/i; 
(b) V i is in general position with respect to f ;  
(c) # { j l f - t ( f ' ) c ~ Z ~ o  # ~ }  ~ s/2. 

(We have used the notations introduced during the proof of Proposition 2.5.) 

Proof The proof of (a) and (b) is essentially done in the previous discussion. In 
order to prove (c), we work as in the proof of(b) of Proposition 2.5 but at the origin 
instead of at infinity. 

For every j = 1 . . . . .  s, f(Z~o ) is a connected semialgebraic set in ~k of dimen- 
sion > 1 and containing the origin. By the "curve selection lemma" (see [M2] 
or [BCR]) there exists a germ at the origin of R k of an analytic arc 7; ~ f(Z~o). 
Then we can choose a hyperplane H intersecting at least half of the rays tangent to 
all 7/s at the origin. If Hi is parallel to H and sufficiently close to 0, then Hi n 7i ~ 
{IIYlt < 1/i} ~ ~ for at least s/2 of the 7/s. It is now easy to conclude the 
proof of the lemma. [] 

Using the last lemma we obtain the following version of Proposition 2.5. 

Proposition 2.5' 

(b') d#a(n, k) < @~d(n, k) + 2~d(n -- 1, k). 
(c') (1),](n, k) < 2~1 __<;~k (J)(1)~+ 1 -s(d) �9 

Using Proposition (2.5.)' it is clear how to define recursively another bound for 
On(n, k). 

3. The bound obtained in the previous section (i.e., 2(d, n, k)) could also be used 
to improve known bounds for the number of connected components of further 
semialgebraic sets. For example, using the method of Warren I-W, Theorem 2] we 
get, for every f ~ A(d, n, k), 

B(~" - Z : )  < ~ 2JCk, j2(d, n,j), 
O<j<n 

where Ck, j is the usual binomial coefficient, except that Ck.j = 0 for k < j. 
This concludes our discussion about the bound for B(ZT) in terms of the 

"measure of complexity" of f given by (d, n, k). 

3. Bounding B(Z.e) Using Newton Polyhedra 

We need some preliminary definitions. Let f E C[X1 , . . . ,  X,], f = ~ cqX q, q = 
( q l  . . . . .  q . ) e  t~", and X q = yqlyq2 q• -- 1 -- 2 "'" X . .  The support of f is the set of q such that 
cq ~ O. It can be considered as a finite subset of the standard lattice 7/" contained in 
R". The Newton polyhedron of f, denoted A s, is the convex hull in R" of the union 
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of its support and {0}. If C~ and C2 are convex integral polyhedra in ~" (i.e., with 
vertices in the lattice 7/"), then 

C1 + C2  : =  {ql + q2; ql ~ C1, q2 6 C2} 

is also a convex integral polyhedron. 
Let C a . . . . .  C. be convex (integral) polyhedra in ~"; we define the mixed volume 

of C 1 . . . . .  C, by the formula 

V(Ca . . . . .  C,) 

= l / n ! [  ( -11"-1  1~,~, ~ V " ( C ' ) + ( - l ) " - 2  

+ . . .  + V,(C~ + . . .  + C.)], 

Z V.(C~ + C j) 
a <-i<j<-n 

where V,(C) denotes the volume of any convex polyhedron C in ~", normalized by 
requiring that the parallelepiped of the lattice has volume equal to 1. With this 
definition, we have V(C . . . . .  C) = I/,(C), for any convex polyhedron C in •". 

= . . . . . . .  X~k, If F is a monomial of degree n in the k variables X 1 . . . . .  Xk, F X ,  X 2 
we set 

F ( C  1 . . . . .  Ck )  = n ! V ( C  a . . . . .  C 1 . . . . .  C k . . . . .  Ck), 

where C~ is taken n~-times. If F is an analytic function defined near 0 in the variable 
X 1 , . . . , X  k we set 

F(C1 . . . . .  Ck) = F . (C1, . . . ,  Ck), 

where F. is the homogeneous component of degree n in the Taylor series of F at 0, 
and the above definition is extended by linearity. 

Let us now consider a polynomial function g = (gl . . . . .  gk): c'n ~ ok" Let us 
denote by A 1 . . . . .  A k the Newton polyhedra of gl . . . . .  gk. We denote by Zg(C) its 
complex zero set. For  every subset I c {1 . . . . .  n}, set R 1 = {x i = 0 for i ~ I} c R". 
Set A [ = ~ i c ~ A i ,  A~ =Ai.  The number [Ii<,_<kA~(l+Ai) -1 is obtained by 
substituting the polyhedra A~ into the analytic function I-[a <-i<=k Xi(1 -4- X~)- a in the 
way we have explained above. 

The result of Hovansky which we use is the following. 

Proposition 3.1 (see the theorem of Section 4 of [H2]). Assume that 91 . . . . .  gk are 
"nondegenerate for the Newton polyhedra" and that every support of these polyno- 
mials contains the origin. Then the Euler characteristic of Zg(C) is given by the 
formula 

I - 1  E(Zg(C)) = ~ I-I A~(1 + Ai) . 
I l<=i<--k 
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Remark 3.2. The notion of"nondegenerate polynomial for the Newton polyhed- 
ron" is a little too technical to be recalled here (see [H1] and [H2]). What is 
important for us is that: 

(a) Ifgx . . . . .  gk (as in the above proposition) are nondegenerate for the Newton 
polyhedron and with supports containing the origin, then Zg(C) is a smooth 
complex complete intersection of complex dimension n - k in C". 

(b) The k-tuples of real polynomials (that is with real coefficients) nondegener- 
ate for the Newton polyhedron are generic and hence dense, for the natural 
topology on the coefficients, in the set of all k-tuples of polynomials with the 
same given Newton polyhedra (see the theorem of paragraph 2 of [H1]). 

In fact, as in Section 2, we are interested in the sum of Betti numbers over Z/2Z of 
Zg(C), Betti(Z0(C)). We deduce it from Remark 3.2 using a further technical 
condition. 

Definition 3.3. We say that g = (g~ . . . . .  gk) satisfies condition ( ,)  if for each 
nonempty K c {1 . . . . .  k} the dimension of the polyhedron ~i~K Ag is at least 
n - k + # (K). Note that ( ,)  is actually a condition on the Newton polyhedra. 

Remark 3.4. If, for example, every Ai has dimension n, then g satisfies 
condition (.). 

Lemma 3.5. If  g satisfies the hypothesis of Proposition 3. l and also condition (*), 
then 

Betti(Z,(C)) = (1 + ( -  1) "-k-x)  + (-1)"-kE(Zo(C)).  

Proof It is an immediate consequence of the following fact: under the hypotheses 
of the lemma we have that the ith Betti number of Zg(C), b~(Zg(C)) = 0 for i r 0, 
n - k. This is easily deduced from Corollary 3.8 of [DH]  by using the construction 
in Section 6.2 of [DH]:  we use the hypersurface with equation 

G(t,x)= ~ tigi(x ) -  1 =0. 
l<=i<=k 

The hypotheses guarantee that G(t, x) is nondegenerate for its Newton polyhedron 
and that the polyhedron is of dimension n + k. [] 

Let us fix k integral polyhedra in the positive quadrant ~ :  A = (A~ . . . . .  A k ) .  

We assume that every A i contains the origin. Let us denote by A(A) the set of 
polynomial maps f = (fx . . . . .  fk): ~n ~ ~k  such that, for every i, Ai is the Newton 
polyhedron of f~. We want to show that, for every f e A(A), B(ZI) can be bounded 
in terms of A. 
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Fix some further notat ions:  

r = sup{B(Zi)l  f e A(A)}, 

r = sup{Bc(Zf)l f ~ A(A)}, 

(A) = sup{B(Zg)lg e A(A) and g regarded as a complex polynomial  
map satisfies the hypotheses of  Lemma 3.5}. 

F o r i ,  1 < i < n ,  set 

7zi(A) = (TzI(A1) . . . . .  /zi(Ak) ). 

where ~ denotes the natural projection onto the plane {x~ = 0}. For  1 < j < k set 

rj(A) = (A 1 . . . . .  A i_  1, AI+  1 . . . . .  Ak).  

For  every J c {1 . . . . .  k}, J = {Jl < -.. -<Js}, s < k, set 

rj(A) = rj~ rj_{j~l(A). 

We are now able to state a proposition, similar to Proposi t ion 2.5, which actually 
contains the recursive definition of an upper bound  for ~(A). 

Proposition 3.6. l f  A satisfies condition (*), then 

\ l , l  <_i<k 

*(A) < *C(A) + 2(1 _<~/< n (I)(T['I(A))) ' 

Or < ~ 2 k- #ls}O(rj(A))" 
j~{1 . . . . .  k} 
J r  . . . . .  k} 

(b) 

(c) 

Proof The proof  is similar to the one of Proposi t ion 2.5. So we only note the main 
changes. 

(a) Use again Smith 's  theory, Proposi t ion 3.1, and Lemma 3.5. 
(b) If H is an arbitrary hyperplane in ~", then we have no control  of the Newton  

polyhedra of the polynomials  defining Z I c~ H. So we have to change the argument  
a little. For  every i = 1 . . . . .  n let s~ be the number  of limit points in S"-  1 _ {xl = 0} 
(see the proof  of Proposi t ion 2.5(b)). They are distributed in the two connected 
components  of S"- 1 _ {xi = 0}: s'~ in one component  and s~'in the other. So that we 
can write s~ = s'i + s~' and assume s'~ > s~'. It is clear that 

s'i >- s/2. 
l<~i<_n 
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If HI = {xl = ci}, i = 1 . . . . .  n, are affine hyperplanes with It Cl II big enough and the 
sign of c i suitably chosen, then 

s/2<_ Z s'~< ~, B(Z s h i l l ) .  
l <_i<n l <_i<_n 

To conclude it is enough to remark that Z s c~ H i is defined by k equations in the 
variables X 1 . . . . .  X i-1, X i + l . . . . .  X ,, belonging to A(ni(A)). 

(c) Let us remark first that if A satisfies condition (.), then each ni(A) and r~(A) 
also satisfy this condition. The proof  is essentially the same as in (c) of Proposition 
2.5. We simply replace the small generic simplex with a small generic parallelepiped 
P in ~k with the faces parallel to the coordinate planes, that is P may be defined as 

P =  {Yl ~ Cl} n {Yl >=dl}n ' ' ' n {yk<=Ck}n{Yk>=dk} ,  

c i > 0 ,  d i < 0  for i =  1 . . . . .  k. 

Consider the set of all faces of P of dimension < k. If a is such a face H ,  denotes, as 
usual, the affine plane spanned by a. As for the proof of Proposition 2.5 call C c R k 
the critical value set of any fixed f ~ A(A). Fix a Whitney stratification of C and let 
us say P in general position with respect to f if all H ,  as above are transverse 
to every stratum of the stratification of C. Again the set of P in general position 
is a dense set (in the suitable space of parallelepipeds) and if P is small enough, 
then BC(f- l ( t3P))> BC(Zs) (see the details of the proof of Proposition 2.5). 
Thus in order to bound BC(Zs) it is enough to bound B~(f -l(t3P)) for every 
P in general position with respect to f. For  every i = 0 . . . . .  k - 1, let Pi denote 
the ith-skeleton of P. For every face a of dimension r in c~P there exists 
J~ c {1 . . . . .  k} (J~ :~ {1 . . . . .  k}) such that #{J~} = r and a is parallel to 
R j ~ = { y j = O l j ~ { 1 , . . . , k } - J ~ }  c ~ k .  For  every such subset J of {1 . . . . .  k}, 
there are 2 k- #ts~ corresponding faces of t3P of dimension # {J} such that, for 
each such face a, J = J , .  

For every face tr of dimension r we say that a compact component  Tof  f -  l(a) is 
pure if T n f -  I(P r_ 1) = ~:~. Let hr be the number of connected components of 
f - l ( p , )  which are compact and pure for some face a of dimension r. As in Lemma 
2.16. we deduce that 

B~(f - x(oP) < ~ h~. 
O < r < = k - 1  

This last fact implies that 

Br  ~(cgp)) < ~, Br  ~(H,)). 
a c O P  

Then the proof of (c) will be complete after the following lemma. 
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Lemma 3.7. B C ( f  - I ( H ` ) )  < 0(rj.(A)). 

Proof .  f-x(na) is defined by k -  # {Jo} polynomial equations and the corre- 
sponding set of Newton polyhedra is r j .  To prove the lemma it is enough to 
consider polynomials bl . . . . .  bk-*tJ . /such that: 

(i) They have the same Newton polyhedra rzo(A) and are nondegenerate for the 
Newton polyhedra (see Proposition 3.1 and Remark 3.2). 

(ii) They are close enough to the polynomials defining f - I ( H . )  so that 

B ~ ( f - 1 ( H a )  ) ~ Be(Zb), 

b = (bi). 

The existence of such bi's is assured by Remark 3.2. Moreover, property ( , )  is 
preserved by the operation r j .  Then the lemma is proved. [] 

Thus (c) is also completely proved as well as Proposition 3.6. [] 

As we said this proposition contains the recursive definition of an upper bound 
for O(A) (under the technical condition (.)  which is in fact mild enough; see 
Remark 3.4). We denote such a bound by r(A). 

4. Final Remarks and Examples 

We want to compute and compare the bounds 2(d, n, k) and z(A) in some simple 
examples. 

(A) Let f :  ~2 ~ ~ have a Newton polyhedron of the form 

a > b  

In this case z is 2ab  + 4 and 2 is a 2 - -  a + 4. 
(B) Let, more generally, f :  R" ~ ~ have a simplicial Newton polyhedron with 

vertices 0, (al,  0 . . . . .  0) . . . . .  (0 . . . . .  0, a,). Then 

= 2a 1 a 2 " "  a n + K ,  
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where K means a sum of monomials of smaller degree, and 

2 = a'~ + (monomials of smaller degree) 

assuming al > a2 ~ "'" ~ a.. 
(C) If the Newton polyhedron of f is 

[ 1 o 

then z = 8a. 
(D) If f = ( f l ,  f2): R2 -* R2 has Newton polyhedra A 1, A2: 

AI 

a > b  

a b 

A2 

then 

r = 2 a b  - b 2 + (monomials of smaller degree), 

2 = a 2 + (monomials of smaller degree). 

It is clear from this examples that if the Newton polyhedra have some special form, 
then z is better than 2. 
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