Arv-44

Offprint from ** Archive for Rational Mechanics and Analysis”,
Volume 104, Number 4, 1988, pp. 367-382
®© Springer-Verlag 1988
Printed in Germany

Kato’s Perturbation Theory and Well-Posedness
for the Euler Equations in Bounded Domains

H. BEIRAO DA VEIGA

Communicated by T. BREZIS

1. Introduction

As pointed out by KaTo & Lax in reference [12] “the continuous dependence
in ‘strong’ topology of the solution on the data is the most difficult part in a
theory dealing with nonlinear equations of evolution. As far as we know, [8]
is the only place where continuous dependence (in the strong sense) has been
proved for the Euler equation in a bounded domain™. Below I provide a2 new and
simple proof of the above property (well-posedness) for the Euler equations in a
bounded domain £, in Sobolev spaces W" == W™(£)) (sec Theorem 5.3).
I prove this result by using KATO’S perturbation theory [10]. This requires, in
particular, the construction of “Kato’s operator S*. The existence of such an
operator is not a trivial matter when dealing with the Euler equations in domains
with boundary. Let me quote again from the introduction of [12]. “The general
theory developed in [11] by one of the authors for quasi-linear equations is un-
fortunately not applicable, since it is difficult to find the operator S with the
required properties in the case of a bounded domain”. In the sequel I succed in
proving (by introducing a suitable device) that KATOs general perturbation theory
does apply to the above problem.

Tt is worth noting that the method developed here applies to other interesting
problems. We consider the Euler equations just to fix the ideas; an application
to non-homogeneous fluids is given in reference [4].

This paper is organized as follows. In Section 2 some notations are fixed.
In Section 3 the stationary equation (3.4) is studied. In Section 4 we establish
the main result; namely the perturbation Theorem 4.2. In Section 5 an applica-
tion of Theorem 4.2 to the study of the well-posedness of the Euler equations (5.1)
is given.

2. Notations

Let 2 be an open bounded subset of RY, n = 2, that lies (locally) on one side
of its boundary I', a C* manifold. Denote by » the unit outward normal to I




368 H. BEIRAO DA VEIGA

For h(x) = {h ()}, r=1,...,R,5s=1,..., 8, where /, are real functions
defined on £2, define

R S '
| D'h(x){? = lét g}l ; | D*h,(x) |2, 2.0

where / is a nonnegative integer, & = (&, ...,«,) is a multiindex, and |&| =
oy + ... + o, Set |h|=|D%j|, |Dh|=|D'h|. If for each pair r, s of indices
h,.C X, where X is a function space, we simply write A€ X,

For u={u,...,uy), W = Wiy .oos Wyt v = (04, ..., 0,), define

N ]
wew= 2 uw, |uff=u-u, @-VYu= 2 v;Du. (2.2)
j=1 i=1
We will use the abbreviated notations

D,—hzé-;i, fh=ﬂfh(x)dx, (,wy= [u-w.

In general, if X and ¥ are Banach spaces, Z(X, Y) denotes the Banach space of
all bounded linear maps from X into ¥. We set Z(X) = L(X, X). We denote
by L7 the Banach space L*({2), and by | |, its canonical norm (see below). The real
nuymber pé€ ]1, +oof, and the domain £2 are fixed once and for all. For con-
venience these symbols will be dropped even from some standard notations.
According to this convention, W* denotes the Sobolev space W*#(2) and | ||,
denotes the canonical norm | ||, , defined below.

0
Define W', 121, as the closure of C(£2) in W/, and set
0 0
Wh = Wkn W= wee(yn w'r ().

For convenience set W — W=,

The above notation will also be used to denote function spaces whose ele-
ments are vector fields or matrices. For instance, both L* and L¥x ... xL?
(N times) will be denoted by the same symbol L?, and the corresponding norms by
the same symbol | |,. Finally, for A = ()€ W*, k=0, define

k.
| D'k, = ([ | D) dx)'®, [l = EolDM’"

T will denote a fixed positive real number, and I= [—T,T]. Standard
notations will be used for functional spaces consisting of functions defined on
with values in a Banach space. In particular, the canonical norm in the Banach
space L°(I; W*) is denoted by | |14

The symbol ¢ henceforth denotes any positive constant. The symbol
(82, n, N, p, k) means that ¢ depends af most on the variables inside brackets. In
this context the symbol # always denotes the dimension of R”* (the symbol » will
be used also to enumerate sequences of functions).
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3. The stationary case

Let @ = (ay) be a NXN matrix, N =1, and v = (v, ..., v,) be a vector
field, both defined on £}. We assume that

v:v=0 on [l 3.1
that
v,ac W’"_? where m > 1 + (n/p), (3.2)

and we define the differential operator
#u=(v-V)u+ au, (3.3)

acting on vector fields u = (uy, ..., #y) defined in £2. By definition & acts in
the distributional sense. For each pair of integers (/, k) such that 0 <7/= 1
< k < 2, we define an operator 4F by sctting

Df={uc Wi (v-V)uc Wi}, Asfgdwf'

Tt is immediate to verify that each A% is a closed operator in #F, and is preclosed
in L. Sometimes the symbol / will be dropped when /= 0.

Since W3 D2, it follows that D? is dense in W2, On the other hand, the
vectors Vu; and # have the same direction, if u€ Wi, Hence, v-Vu; =0 on I
¥j=1,...,N. Tt follows that W} C D}. Hence D} is dense in W7. Similarly,
D! is dense in W1, and D! is dense in W}

A denotes the closure of 4% in L?, and D denotes the domain of 4. Clearly
D is dense in LP. Moreover, D {uc L”: uc L*}.

The results stated in this section are particular cases of results proved in the
preceding paper [2], [3]. However, for the sake of completeness, I give here the
corresponding proofs. In the sequel, Sobolev’s embedding theorems and Holder’s
inequality will be freely used.

Let 4 be a real number, and consider the equation

A+ @-Vyutau=7. 3.4

In this section our main concern is to prove the following result.

Theorem 3.1. Let the conditions (3.1), (3.2) be satisfied, and denote by Z any
one of the function spaces W¥, 0 < 1<k =2, 1< 1. Then, if {A]> 0, where
by definition

0= c(2,n, N, p,m) (|t + al.) (3.5)

and ¢ is a suitable positive constant, equation (3.4) has a unique solution u¢ Z for
each fc Z. Moreover,

I
ol = = g 1/lz- (3.6)

The f{ollowing is an elementary but important auxiliary result.
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Lemma 3.2, Let pe[l,-f oo, w=(wy,...,wy)C C', andset A — (0 + | w2,
where 0> 0. Then

—2
A, 6

>, (D) » DAAP~2p) = A2~ | Dw ? -+
=1
and

g Dw) - Di(/lpg2w) = A4 {{(P — 1) waz + 8] ;lez

(3.8)
# = |Iwk Do = 3 - o]
In particular, for each pc i, 4 ool
—[Aw- A2 =0 Vwe w3, (3.9)

Proof. Proof of the identities (3.7) and (3.8) is effected by direct computation.

If w belongs to C*(£2) and vanishes on I, equation (3.9) follows by an integration
by parts, and by using (3.7) (if p > 2) or (3.8) (if p =< 2). Finally, if we w3,
we use the density of {w¢ CH2):w=0 on I'} in W2

Lemma3.3. Let w=(w,, ..., wy) € C*. Then
A"*ZD,-w-w:(I/p)D,-A", i=1,...,n. (3.1

In particular, if ve CH(2) satisfies (3.1), one has
1
f{(u-V)w]-A‘“’zw:H-}-J—f(divv)/l”, Ywe W, (3.1

The proof is left to the reader.

Lemma 3.4. Assume that ve CHQ) verifies (3.1), that ac C(2), and that
SEL?. Let uc W' be a solution of equation (3.4). Then, for |A|> f = elp, N)
(Izlic: + llalico), one has (|A] — 6) [, Z|fl,- In particular, the above solution u
(if it exists) is unigue.

The proof is classical and well known. Multiply both sides of (3.4) by
(O + [u)? 2y, integrate over 2, and pass to the Limit as & —> 0%,

Theorem 3.5, Under the assumptions of Theorem 3.1 , the equation (3.4) has a
unique solution uc W3 for each fc W3, Moreover,

i
il S 5 Ve wh,
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where, by definition, |ul;=|u,| -+ |dul, Note that, in W3, the norms ||,
and | |5 are equivalent. In particular

(2, n, N, p)
|| — 0

Furthermore, Theorem 3.1 holds for Z = L”.

aellz = Ifl: ¥ fewi. (3.12)

Proof. Let ¢ > 0 if A>> 0, ¢ < 0 if A < 0, and consider the elliptic Dirichlet
problem

—eAu, + A+ (- Vu, +au,=f in 2,
(us)h“jo'

In order to fix the ideas, assume that A > 0. For a sufficiently large 4, the above
problem has a unique solution < W4$. Moreover (a crucial point!) (3.13) and
{3.1) yield

(3.13)

(du)e|r = 0. (3.14)

Hence Au,¢ Wi Set A = (8 1 [Au,[)?, where &> 0. Equations (3.9) and
{3.11} imply
— [ A(Au) - A7 Ay, = 0,
(3.15)

f[('u -y Au] - AP Au, = m—;—f(div v) A7,

for each & > 0. Equation (3.15), together with the identity Al(v - V)u] = (v* V)
Au+ 2Vp: V2 4+ (Av - V)u yields

|
fA [ Vyu] AP "2 Au, = — 7 f (div v} A7 (3.16)

+2f (Vo: V) c AP Aug - [I(Av V) ] - 4772 Ay,

"
where Vo:V2u = Y, (D) (D, D). By applying the operator A to both sides
i1
of equations (3.13),, by taking the scalar product in R” with A? —2 fly,, byintegrat-
ing in £2, by taking into account (3.15); and (3.16), it follows that

1
A [ Au P AP2 ——?f(div ) AP < [ (2| Vo: V2| + [(dv - V) u,|

+ |4 (au)| + (AFD |Au, 4772

Since 0 < |Au,| A7 > < AP71, the Lebesgue’s dominated convergence theorem
applies, as 6 — 0+, Hence, the last inequality holds if /1 is replaced by {Au, |-
In particular (A — 6,) |4u,{, =< |4f], for a suitable value of the constant ¢ in
definition (3.5). Consequently, ¢ Au, — 0 inL” as ¢ — 0, and (on the other hand)
there is a subsequence u, weakly convergent in W3 to a limit u. It follows that »
is a solution of (3.4). Clearly, (1 — 0)(du|, + |ui,) = |4f1, + |f], (use also
Lemma 3.4).
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The last assertion of the theorem is proved as follows. Let f€ L7, and let
f.¢ W? be a sequence such that f, — f in L”. Let u,€ W1 be the solution of the
equation AZu, = f,. By Lemma3.4, (I} — 0)|u,|, = |f,|,; moreover
(A] — O) |t = thn|p = [fu — fin o Hencew, isa Cauchy sequence in L?, and the
limit  satisfies the estimate (|4 — ) {u}, =< |f],- Since 4 is the closure of A?
in L?, one has du=Ff []

Proposition 3.6. Assume that the conditions (3.1), (3.2) hold, and let fc W,
for k=0,1, or 2. Assume that uc WEL is q solution of (3.4). Then
4] | DFul, < e vl + lalhd el + | D¥f|,, for a suitable positive constant
¢ = e(f2,n, N, p, m). In particular, if |4]> 0, one has
1
<
ol = = 7 11l (3.17)

Finally, Theorem 3.1 holds for Z = Wi.

The proof of the a priori estimate (3.17) is quite immediate {and well known),
See, for instance, 2] Proposition 3.1, or [3] Lemma 3.7 (however, the a priori
estimate is quite far from providing an existence theorem. In this regard, sec [3]
Remark 2.4).

The last assertion of the proposition is proved as follows. Let f¢€ W1, and let
f.e W2, f,—f in Wi.Let u, € W} bethe solution of the equation iu, + (v - Vu,
-+ au, = f, (denoted here by (3.4),). The estimate (3.17) (for k = 1) shows that
ledls = (JA] — 61 ||f}le» and also that u, is a Cauchy sequence in W1. By passing
to the limit in equation (3.4),, as n—>oo, we show that i is the solution of (3.4).

Theorem 3.7, Theorem 3.1 holds for 7 = W' and for Z=W? if in equation
(3.6) the constant 1 is replaced by a suitable constant ¢ = c(£2, n, N, p, m).

Proof. Let B be an open ball such that 0C B, andlet Emap functions defined
on O into functions defined on B, in such a way that (Ew),=w (ie. Eis a ex-

tension map). Assume that E€ F(W*, HD/"(B)), either for k=10,1,2 and for
k = m. Set for convenience 1 — Ew. Let f¢ W2, and let @€ Wi(B) be the

solution of the equation A + (- V) é + ait = f in B, whose existence is guaran-
teed by Theorem 3.5. Clearly, u = i) is a solution of (3.4) in £2. By Lemma 34,
this solution is unique. Moreover, the estimate (3.12) holds in 02 for u, since it
holds in B for #. A similar proof can be given for W', by using the existence theo-
rem in Wi(B). O

In order to complete the proof of Theorem 3.1, it only remains to show that
in the statement of Theorem 3.7 the constant ¢ can be taken equal to 1. Let f¢ W
and let f,¢ W?, f,—f in W' as n—~> oo, Let u,C W? be the solution of
problem Au, + (v V) u, + au, = f,, whose existence is guaranteed by Theorem 3.7.
By Proposition 3.6 the pair u,, f, satisfies the estimate (3.17) for the value k£ = 1.
In particular, u, is 2 Cauchy sequence in W', and the limit is the desired solution
of problem (3.4).
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Let us now prove the result for W2, Let fc W2, and let u€ W? be the solu-
tion of (3.4), provided by Theorem 3.7. One has, for each i=1,..., 1,

ADu4 -V Du+ abDu=Djf— (Dp - Viu— (Dia)u.

This is again a system of the type (3.4) on the #¥ variables D; (the right-hand side
of the above equation is treated here as a datum), whose (unique) solution belongs
to W1, Hence, from the result just proved for the case WY, it readily follows that

(Mi — ) (| D?ul, + ?follp) = Eszlp + !Dflp
+ (2, n, N, p, m) (|o]l. + flall) [uilz.

Moreover, (|A| — 8} |u|, = [f],. Hence satisfies u the estimate (3.6) with respect
to the norm || |j2, for a suitable constant ¢ in equation (3.5). [J

Remark. Let A% denote the closure of A¥ in L?. Argning as at the end of the
proof of Theorem 3.5, we show that A -|- AF is an invertible map from its domain
onto L”, for a sufficiently large 1. Since A% A%, it follows that A — Af.

4. The evolution case

Let us now assume that » an g are defined on I 2, that ¢ satisfies condition
(3.1) for each #< 7, and that

v, € L W"YN C(I; w™™Y,  where m > 1 -+ (nfp). @.1)

In particular, v and @ are well defined as elements of W™ for each 7€ 1. Here

we will use definitions and notations introduced in Section 3 for the stationary

case. Tha meaning of symbols like f(¢), u(t), 45(¢), D¥(¢), and so on, is obvious,
Let us now consider the evolution equation

Du+ SA)u=[ft), 1€l (4.2)
0 = ug.

By “the evolution equation (4.2) in W§” we mean the above equation for 45(¢)
instead of o#(f). Furthermore, we denote by Uf(t, s) the corresponding evolution
operator in the Banach space W4. One has the following result.

Theorem 4.1. Assume that (3.1) and (4.1) holds. Let (I, k) be a pair of integers
such that 0=1=<1<k<2, and set X =LF, Y= W% Then the evolution
operator UK, 5), 1, s€ I, exists and has the properties described in the Theorem 5.2
of reference 19]. Remarks 5.3 and 5.4 (in [9]) also apply.

Proof. The main hypothesis required on Theorem 5.2 of reference [9] is the
(1, )-stability of the families of operators {45(¢)},e;, which was proved in Theorem
3.1. The other hypotheses required on the above theorem are easily verified, and
we leave it to the reader (see [3] for details). [
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Some remarks. Below we prove (cf., in particular, (4.11)) that the existence and
the perturbation theorem for the evolution operator Uz, 5s) can be directly ob-
tained from the existence and the perturbation theorem for U3(¢, s); consequently,
we need to show existence and perturbation only for UZ. In particular, the existence
Theorem 4.1 is needed only for U%. In this regard it turns out to be more con-
venient to prove the existence of U ? by using Theorem I of {10] instead of the Theo-
rem 5.2 of [9] (as done above), since we have to apply other results of [10] (Theo-
rem VI} in order to establish the perturbation theorem for /2,

Finally, we remark that the above argument requires the proof of the (1, 6)-
stability only for ¥ = W?%, and for X — I”. Theorem 3.5 is sufficient for this
purpose. In particular, the additional results stated in Theorem 3.1 are not
necessary here,

Assume that {v,}, {a,} are two sequences satisfying (3.1) and (4.1), for each
positive integer n. Assume also that

vl and l@.lls,,  are uniformly bounded, (4.3)

and that

v, v, a,~>a, in CI; W, (4.4)
By using the coefficients v,, @, instead of », a, we define in an obvious way operators
Aty and AP"(r), domains DfY(r), and evolution operators Uk@)(y, ).

One has the following result where, as throughout this paper, we assume that
m> 1 (n/p),

Theorem 4.2. Let m = 3. Under the above hypothesis on the coefficients
v, a, v, a,

lim UM, 5) = U3, 5) (4.5)

strongly in Z(W 7Y and uniformly on (&, 5)cIxI. Here I =0 or 1 = 1. Asimilar
result holds in L®, for the evolution operators U(t, s) and U, s),
Proof of Theorem 4.2 (Case ] = 1). Set Y = W2, X =1L and define
S=4, DS =7Y. 4.6)

The linear map 5 is an isomorphism from ¥ onto Y. Define, for each ¢ c X and
for each 7€ 1, the linear operator

Bty =(Av-Vu-+ 2 -:i:‘[ (D) (DDpdy + (Aa) u + 21:2: (D (D), 4.7

where w = S-'¢. I wish to prove that the hypotheses of Theorem VI [10] are
satisfied. For convenience I will refer to the equations in KAT0's paper [10] by
adding the symbol “-K” to the reference numbers in [16]. The hypotheses (i')-K
holds, since A" and A4 are {1, 6}-stable, and 0 is independent of u. Let us prove that
(#i"")-K holds. By using Sobolev’s embedding theorems, one shows that

B llx < e[l e@)l + [at){],). (4.8)
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Furthermore, the function 7-> B(¢) is strongly measurable, since the map 7—
f B(f) ¥ is measurable for each ¢ € IF, ¥e LY, p~' -+ g ' = 1. Equation (4.8),
shows that ||| B"(*) ||| is upper integrable on /, and the integral is uniformly bounded

with respect to n. Clearly S= 0. Let us prove that
SA() St = A(t) + Bt} for a.a. 1€l (4.9)

If @€ L?, it follows that u = S~' g€ W2. Hence the vectors Vi, j=1,..., N,
belong to W' and are orthogonal to 7. Then, by (3.1), one has (v Vyu=20
on I". Consequently, for each fixed 1€ I, A(t)S™ ¢ € Wi, ¥ @€ L”. Inparticular,
u=S'lpe WiND} and A(t) S~ pc Wi=D(S) if pc W' It readily follows
that

SA) S o= A e + Blg Ve W (4.10)

Hence (4.10) holds for all @€ D?. Note that Df forms a core of A4(t). Equation
(4.9) follows now from (4.10) exactly as (8.5) follows from (8.6) in reference [9].

Conditions (ii))}-K, (11.1)-K, and (11.2)-K are trivially satisfied; recall that
W=t ¢ C°. Letusprove (11.4)-K. Fix a positive constant ¢ such that m —e > 2*
and m — &> 1 + (n/p). By using Sobolev’s well known embedding theorems it
readily follows that

IHBM(I) - B(t}i“X g C(Hl)n(t) - U(t)ﬂ,,,,s + Han(t) - a('t)”m—ﬁ)‘

Since f0,(t)||,, is uniformly bounded with respect to n, since the embedding
W Wme is compact, and since o) {f) in w¥—1 it follows that
v,(t)— o(t) in W™ . Finally, the condition (11.5)-K is a consequence of (4.8),
and (4.3). O

Proof of Theorem 4.2, (Case I — 0). Let B denote a fixed open ball such that

Q¢ B, and denote by R the operator defined by Rw = wl|o. Assume for con-
venience that J'¢ ™, and fix a linear continuous map E from WX into

W(B), for each 1—0,1,...,m, such that (Ew)q = u. Let 43(t), 1€ I, be the
family of operators defined by replacing in the definition of AXt) the domain 2
by B and the coefficients v and a by Ev and Ea. Let U %1, 5) be the evolution operator
in W3(B), generated by the family 43. In an obvious way, we define A¥(r) and

U3¢, ).
Now let @€ W2(2). By the definition of evolution operator, the function

w(t) = UXt, 5) Ep belongs to C(I; Wi(B)), and is the solution of the problem
Dw+ ((Ey - VYw+ (Egyw=0 in I,
wis) = Ep.
Hence Rw(t) = [RUXt, 5) E]g belongs to C(I; W2(£2)); moreover **
D{Rw) + (v- V) (Rw) + a(Rw) =0 in I,
(Rw) (s) = ¢.

* This is the only point where the assumption m =3 is used.
** Since R commutes with differentiation, and Rf{uw) = (Ru) (Re), ¥ u, v
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This shows that the evolution operator generated by the family 4°(¢) in the space
W2(£2) is given by
U(t, 5) = RUi(t, 5) E. (4.11)

Similarly, U, 5) = RU®(1, 5) E. By the first part of Theorem 4.2 it follows
that
tim T3, 9) = Ut 9

strongly in W2(B), uniformly in #, s. Hence,

lim U1, 5) = UXt, s)

"y o0

strongly in W), uniformly in ¢, 5. []

5. Well-posedness for the Euler equations

We start by making some remarks. The persistence property (see [13]) for the
Cauchy problem Dp + A(t)v = f(r), v(0) =0, (in the function space x)
means that the solution » belongs to C(I; X) if v,€ X, f€ E(l; X), for some
function space E. Well-posedness means that the map (vo, /. )~>v is continuous
from XxE(I;X) into C(I; X). For the Euler equations in a bounded domain
(in case f=0) the well-posedness was first proved by EBiN & MARSDEN [38],
for X = W*? and for X = C%, by using techniques of Riemannian geometry
on infinite dimensional manifolds. We refer also to EBiN [6], for the proof when
X = C**, In reference [1] I prove, for n = 2, the well-posedness in the Banach
space X ={uc C({H:rotuc C(£2)}, in the general case E(I;X)= L'({; X).
Note that the X-norm of the solution, namely || o(t)]|x = lrot o)l + 1) leace
is time-invariant when f=0. Karo & Lai [12] prove well-posedness when
X = H"(D), E(I, X)= C(I; X)*. For well-posedness when {2 = R”", see KATO
& Ponce [13] and references given therein. All the above results are local in time,
when »n = 3. ' :

Reference [8] was followed by a series of papers in which the main goal was
not to give more general results but to furnish simpler proofs. BOURGUIGNON &
Brezis [5] prove existence and the persistence property in Sobolev spaces W,
when fe C(I; W*t17), by reducing the problem to an ordinary differential equa-
tion on a Banach space. TemaMm [14] proves the existence of a local sohation
v€ L2(I*; Wmr), if wo€ WP and fe€ LXNI; w™#). Under these assumptions
on the data, and by using a completely different method, I proved in [3] the
existence of a solution » € C(I*; W™?). Below, I wish to prove well-posedness for
this solution. Our departure point will be the existence theorem for local solutions
v € L®(I*; W™) which is assumed as well-know here; see [14], [3]. We need not
assume that »€ C(I*; W™) since this will follow from the arguments developed
below. However, by using the existence theorem proved in reference {3], the
reader can replace L™ by C.

* Professor T. KaTo informs me that he believes that Kato & Lars method also
applies if p + 2.
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Before going on, I wish cite an interesting result obtained recently by Epi.
He shows [7] that the free boundary problem for the Euler equations is not (in
general) well-posed.

Henceforth it is assumed that the reader is familiar with the Euler equations
describing the motion of an inviscid, incompressible fluid in a bounded domain
2 C R, namely

D+ (@-VYo=—Va+f inIx4,
u_divvx{) in Ix 02,
;J‘l»'=0 on I'x {2,

v(0) = o,

where v,(x) and (¢, x) are given. We assume that div o, = 0 in £2, that v, -» =0
on [, and that v, &€ W™ and fC LMI; W™), where m > 1 + (nfp), and m = 3.
Here, pe]l, + co[. Let 7% ¢ 10, I'] be a positive integer such that the problem
(5.1) has a (unique) local solution v& L=(I*; ™). The proof of this local exist-
ence theorem (see [14], {3]) also furnishes a lower bound for T*, depending only
on the norms of the daia v, and f (see, for instance, [3] Theorem 6.1). Assume
now that the one has a sequence of data vf, f, satisfying the hypothesis required
above for the data v,, f, and such that
lim of=wp, in W™, lim f,=f in L'(Z; w™). (5.2)
n—+-+4 o0 n—+oo
Let v, € L™(I*; W™ be the solution of the equation (5.1), which is obtained
from equation (5.1) by replacing v, =, f, vo by v,, @, [, v respectively. For conven-
ience I denote by I* an arbitrary common time-interval of existence for both the
solution v and the solutions v, with large values of #. It is also assumed that the
norms of the solutions v, in the space L™(I*; W™) are uniformly bounded. Note
that such an interval I'* exists. In fact, from (5.2), it follows that ||o§),, = M,
and that |f {|g.wm = My, where the constants M, M, arc independent of n.
From Theorem 6.1 in reference [3] (we may also use reference [14]) it follows that
there are positive constants ¢, ¢/, depending only on £, r (= dim B"), p, m, such
that the solutions v, v, exist in the interval I* = {—T%,T%] for 7%= o(M +-M;)?,
and belong to C(I*; ™). Moreover [[v, [, = (M + M;).
One has the following result.

(5.1

Lemma 5.1, Under the above hypothesis, the solution v of problem (5.1) and the
solutions v, of problems (5.1), belong to C(I*; W™). Moreover

lim v, =0 in CU*; WY, (5.3)

H—~ o0

Proof. From equation (5.1) it readily follows, by using a well known device,
that Vaz = Val® 4 Va®, where ' :

An® = — 3 (D) (D) in 2, Aa® =div] in 2,
i

A (5.4)

b

ot o -
=3 —uvw; on I =f onl.
w7 0%

31';,




£
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Similarly, one has a family of equations (5.4),. From these equations it follows
that Var, Vo, € L1{I*; W™). Hence, by using equations (5.1) and (5.1),, it follows
that D, Dy,€ L'(I*; W1, and thato, o,€ C(I*; W™ 1). Let us show that

liinr; v, =v in C(I*; Wmh, (5.5
From (5.4), it follows that |{2Vs'cf,”|{p,,,,_ 1 = C, uniformly with respect to n, since
the norms |[v,[;«,, are uniformly bounded*. Similarly {l(v, - V) v,|l,,_s = C.
On the other hand, from (5.4), and (5.4), it follows that Va® - Va@ in
L(I*; W™). Hence, from equation (5.1), one gets (v << )

[28) ~ 0@t = C 2~ 7| 4 [ 1) 4 Va1 ds

+. f I+ Va®) () = (f, + V) () -1 5.

It readily follows that given & > 0 there is a positive integer N(g) and a positive
real number d(e) such thatif » > N(g) and |t — 7| << 8(e) then [6,(t) — 0,(%) |1
<C . Since v, € C(I*; WY, ¥ n=1, it follows that the above property holds
for each n = 1. Counsequently, the v, are equicontinuous on I* with values in
W™=, Since the embedding W” ! ¢ W™ is compact, the theorem of Ascoli and
Arzeld shows that the sequence o, is relatively compact in C(7%*; W™~ 1). Limits
of convergent subsequences of the sequence {v,} are solutions of (5.1). Since the
solution v of (5.1) is unique, the property (5.5) holds.

Remark. 1f we also assume that £, — f in L%(I; W"™ '), g > 1, the proof of
(5.5) is simpler, and the decomposition Va = Val + Va® is unnecessary. In
fact, from the equation satisfied by =, it follows that V=, is uniformly bounded in
Lo ; w™ N, From (5.1), it follows then that D, is uniformly bounded in
Li(I*; W™ 1), Hencethe v, are equicontinuous in C(I*; W" 1) and (5.5) follows
as above.

Now let D” be any space derivative such that 0 = |x| = m — 2. From (5.1)
one has

DD + (v - VY (D) = F*[v] — D°(Va) + D= G*,

(D) (0) = D’vo, 6

where
F o] = (v - V) (D*0) — D*[{v - V) v]
=—(D* - VYo — (D" - VYDv— ... — (Dv- VD" p.
The above right-hand side is written in a quite compact but appropriate

notation. By using Sobolev’s embedding theorems and Hélder’s inequality, one
easily proves that (with obvious notations)

1 FTe] (1) — Flo, ] Oz = c(lo(@ ]l + 1o, [0(8) — 2,0
=C ” U(f) - Un(t)lgm,

* In this section C denotes any positive constant that depends at most on 2, n, p,
m, M, My, T*,




Euler Equations in Bounded Domains 379

since the norms |4,/ ,, are uniformly bounded. On the other hand, since Am =
—X (D) (Dwy) + divf in 2, mfoy = X (dvfdx;) oo, + f v in I, and since
similar equations hold for =,, one easily gets
1DV — @) ()2 = Clo(t) — 0Ol + i) — LDl
Hence
” GN(I) - Gﬁ(")”z é c ” U(t) - Un(t)”m + ¢ ”f(t) *j;z(t) “m . (57)

Moreover, G%, G5 ¢ L1(I*; W2).

For convenience, Uz, 5) will denote henceforth the evolution operator UZ(¢, 5)
generated by the family of operators {42(¢)},e;+ in the Banach space W?*. Here
A2 u=(o(t)- V)u, ie. a=0. Similarly Uz, s) will denote the evolution
operator U2¥)(¢, s) generated by the family of operators {4>*(#)},;+ in the Banach
space W2, Here A2"(t)u = (v,(t)* V) u, i.e. @,=90.From Theorem 4.2 it follows
that U, (t, s} — U(1, s) strongly in Z(W7?), uniformly for (¢, HeI*x1* From
equation {5.6) one gets*

D*u(t) = U, 0) Dvo + [ Ut 5) G(5) ds. (5.8)
1}

Consequently, by subtracting equation (5.8),** from equation (5.8) one easily
verifies that (assume, for convenience, that ¢€ [0, T*])

|| D*o(t) — Do, (0|2 < (UG 0) — Ui 0)) Dol + [ U5 Q)]

|| D06 — D0, -+ Of (U2, $) — U2, 9) G|, ds

+ f 1T D[} [Gs) — G|z s,
where |||-|l| denotes the norm in the Banach space #(W?). By recalling that
N UL, s)|| = ™" < e (by (3.5)), and by using (5.7), it readily follows that
iE.DYD(t) - van(t) !2 I( U(t 0) n(t5 0)) ‘D“vﬁ ”2 + C ” Ug — U'(;“m

+ L0 — 00,50 GOl ds + € [ 170 = £l ds

+ Cr HU - UJ‘!H[O,I’].H?’ {59)

for every #¢ [0, 7]. By adding side by side the above inequalities, for every index
« such that 0 =< |x| <X m — 2, one easily gets

HU - Un“[o.f],m g Z i%p H(U(t’ 0) - Un(ts 0)) D“UOH2 + C ”v() - US”m

%

+e Z f sup [[(U(t, ) — U, 8)) G*(s)] | ds + C'Ofr 1) — 7208 )} s,

1e[0,7]

* This shows that v, », € C(I*; W™).
** Replace, in equation (5.8), U, v, vy, £, by U, v,, v}, f,, Tespectively.
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for a sufficiently small positive yalue of T which depends only on 2, n, p, m, M,
M, T*, It readily follows, by using in particular the dominated convergence theo-
rem, that v,—v in C(0,7; Ww™). By applying this result successively to the inter-
vals [jr,(j+ 171N (0, T#], one establishes the uniform convergence of v, tovin
all of [0, 7. O

In the following I assume without loss of generality, that I = ] oo, + ool
One has the following existence result.

Theorem 5.2. Let me&[3, + oo and pcll,+ ool satisfy the condition
m> 1+ (nfp). Let vo€ W™ satisfy the assumptions divo, =0 in 2 and
vo v =0 on I', and let fe LY(I; W™). Assume that there is a solution v€
Lo =75, 1.0 W) of the Euler equations (5.1) in an interval 1-—7,, T2l*. Let
vic W™ and fe LM W™y be sequences of data, such that divih =0 in 2,
v =0 on I, and such that (5.2) holds. Then, for sufficiently large values
of n, the problem (5.1), (i.c., the problem (5.1) with data vG, ) has a selution v, €
C({—7,, T2); W) in all of [zy,7;]. Moreover,

fim p,=v in C([—r, 721 W™,

H+ ol
and
lim Ve, =V in (=%, ml P
If fo~f i C([—T1, T21s W™y [respectively in (-4, 7205 w™), for g€
{1, + o]l then Va, -+ Vo in this same space.

Proof. It is sufficient to present the argument for [0, 7,]. Hence we assume
that I= [0, + ool. By equation (5.8), v must belong to C{[0, 721; W™, Moreover,
by Theorem 5.1 in reference [3], it follows that the solution z can be extended
to an interval larger than [0, 7,[. In particular, v€ C(10, 72]; W™). Set M =
)| 0za1 e 206G let M, be a uniform upper bound for the norms of the functions
£, in the space LY0, 7,3 W) Let ¢ = (2, n, p, k) be the constant that appears

in [3] Theorem 5.1, and set
% = e(l + M+ M)

Let [0, t] be an arbitrary interval such that the solutions v, exist in [0, ¢} and
are uniformly bounded in c(lo, 11; W™, for large values of 7. Theorem 5.1 in
reference [3] guarantees the existence of such intervals.

From Lemma 5.1 above it follows, in particular, that [[o. (Dl =1+ M,
for sufficiently large values of n, Again by Theorem 5.1 in reference [3] the solu-
tions v, can be extended to ail of [£, 7 + 7%], and are uniformly bounded in the
space C(I0, f + ¢*]; W), Since 7% is independent of 1, it readily follows that

* Such a solution exists if the positive yeal numbers 7, and 7, are sufficiently small.
However, in this theorem, 1—7, 72l I8 any arbitrary interval on which such a solu-
tion exists.
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(for sufficiently large values of i} the solutions o, exist in all of [0, 7,] and are
uniformly bounded in the space C{[0, v,]; W"™). The conclusion then follows by
applying the Lemma 5.1 to the sequence of solutions v,

Theorem 5.3. Let vy, | and v be as in Theorem 5.2 Then, for every &> 0,
there is g & = 8(e) > O such that the following statement holds.

Let - up¢ W7 satisfy diviug=0 in £ and uo-v=0 on I', and let gc
L (=7, w.[; W™). If

o — UDHm‘< 3, g — flog—riopwm << 6 (5.10

then the solution u, Va' of the Euler equations (5.1) with data uy, g exists on all
of [—%(, t2]. Moreover u€ C([—7y, 7,13 W), Va' € L\(]—v, wo[; W) and
(contimsous dependence on the data)

= vleq-ryeamm <& 5.10)
”V(J’E —_— n’)HLl(]—TI,Tz[;W’"} < &, '

--fﬁ_-:fhe. above statement, one can replace everywhere L' by L7, g€ |1, + o0], or
by.C.
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