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Abstract. In this note we extend a 2018 result of Bardos and Titi (Arch Ration Mech Anal 228(1):197–207, 2018) to

a new class of functional spaces C0,α
λ (Ω̄). It is shown that weak solutions u satisfy the energy equality provided that

u ∈ L3((0, T ); C0,α
λ (Ω̄)) with α ≥ 1

3
and λ > 0. The result is new for α = 1

3
. Actually, a quite stronger result holds. For

convenience we start by a similar extension of a 1994 result of Constantin and Titi (Commun Math Phys 165:207–209,
1994), in the space periodic case. The proofs follow step by step those of the above authors. For the readers convenience,
and completeness, proofs are presented in a quite complete form.
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1. Introduction

In this note, we are concerned with the Onsager’s conjecture of incompressible Euler equations in a
bounded domain Ω ⊂ R

n with C2 boundary
⎧
⎪⎨

⎪⎩

∂tu + u · ∇u + ∇p = 0, in Ω × (0, T ),
∇ · u = 0, in Ω × (0, T ),
u(x, t) · n(x) = 0, on ∂Ω × (0, T ).

(1.1)

where T is a positive constant, and n(x) is the outward unit normal vector field to the boundary ∂Ω.
We say that (u(x, t), p(x, t)) is a weak solution of (1.1) in Ω × (0, T ), if u ∈ L∞(0, T ;L2(Ω)), p ∈

L1
loc(Ω × (0, T )), ∇ · u = 0 in Ω × (0, T ), u · n = 0 on ∂Ω × (0, T ) and, moreover,

〈u, ∂tψ〉x + 〈u ⊗ u : ∇ψ〉x + 〈p,∇ · ψ〉x = 0, in L1(0, T ), (1.2)

for all vector field ψ(x, t) ∈ D(Ω × (0, T )). We have used the notation 〈·, ·〉x in [1], which stands for the
distributional duality with respect to the spatial variable x.

Onsager’s conjecture for solutions to the Euler equations may be stated as follows: Conservation
of energy holds if the weak solution u ∈ L3((0, T );C0,α(Ω̄)), with α > 1

3 ; Dissipative solutions u ∈
L3((0, T );C0,α(Ω̄)) should exist for α < 1

3 . See [12]. This conjecture has been intensively studied by
many mathematicians for the last two decades. In the absence of a physical boundary (namely the case
of whole space R

n or the case of periodic boundary conditions in the torus T
n), Eyink in [8] proved

that Onsager’s conjecture holds if α > 1
2 . Later, a complete proof was established by Constantin and

Titi in [7], for α > 1
3 , under slightly weaker regularity assumptions on the solution. In [6] Cheskidov,

Constantin, Friedlander, and Shvydkoy proved energy equality in the space periodic case for solutions
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   27 Page 2 of 10 H. BEIRÃO da Veiga and J. Yang JMFM

u ∈ L3([0, T ];B
1
3
3,c(N)), where B

1
3
3,c(N) is a Besov type space for which B

1
3
3,p ⊂ B

1
3
3,c(N) ⊂ B

1
3
3,∞, for

1 ≤ p < ∞, see reference [6] for details. See also the end of this section.
Recently, Bardos and Titi [1] considered the Onsager’s conjecture in bounded domains under the non-

slip boundary condition. They proved energy conservation if u ∈ L3((0, T );C0,α(Ω̄)), for α > 1
3 . Later

on, Bardos, Titi and Wiedemann [3] relax this assumption, requiring only interior Hölder regularity and
continuity of the normal component of the energy flux near the boundary. See also [11]. The result
obtained in [3] is particularly significant from the physical point of view. A very interesting extension
of Onsager’s conjecture to a class of conservation laws that possess generalized entropy is shown in by
Bardos et al. in Ref. [2].

Concerning the second part of Onsager’s conjecture, in a series of papers, Isett [9], Buckmaster et al.
[5], see references therein, by using the convex integration machinery, proved the existence of dissipative
energy weak solutions for any α < 1

3 . Furthermore, Isett [10] constructed energy non-conserving solutions
under the assumption

|u(x + y, t) − u(x, t)| ≤ C|y|
1
3−B

√
log log |y|−1

log |y|−1

for some constants C and B and for all (x, t) and all |y| ≤ 10−2.
In this note we will study Onsager’s conjecture in a new class of functional spaces, Hölog spaces, which

have been considered by the first author in [4]. To state our main result, we first introduce the definition
of Hölog spaces.

Definition 1.1. For each 0 ≤ α < 1 and each λ ∈ R, set

C0,α
λ (Ω̄) = {f ∈ C(Ω̄) : [f ]C0,α

λ (Ω̄) < ∞},

where

[f ]C0,α
λ (Ω̄) = sup

x,y∈Ω̄,0<|x−y|<1

|f(x) − f(y)|
(
log 1

|x−y|
)−λ

|x − y|α
. (1.3)

A norm is introduced in C0,α
λ (Ω̄) by setting ‖f‖C0,α

λ (Ω̄) ≡ [f ]C0,α
λ (Ω̄) + ‖f‖C(Ω̄).

Now we can state our main theorem.

Theorem 1.2. Assume that

u ∈ L3((0, T );C0,α
λ (Ω̄)), (1.4)

with α ≥ 1
3 and λ > 0. Then the weak solution of (1.1) satisfies the energy conservation:

‖u(·, t2)‖L2(Ω) = ‖u(·, t1)‖L2(Ω), for any t1, t2 ∈ (0, T ). (1.5)

Clearly, for α > 1
3 the above results follow immediately from the relation C0,α

λ (Ω̄) ⊂ C0,α(Ω̄). The
new results are obtained for α = 1

3 .
As still remarked in the abstract, the proof of the above result is a step by step adaptation of that

in Ref. [1]. So we are aware that the merit of the results goes in a greater part to the above authors.
However the new results are significantly stronger then the previous ones, in particular in the form stated
in the following theorem.

Theorem 1.3. Theorem 1.2 still holds if one replace in (1.3) the function
(

log 1
|x−y|

)−λ

by ω(|x − y|),
where ω(s) is a positive and non-decreasing function for s > 0, and lims→0 ω(s) = ω(0) = 0.

The reason that led us to put in light the C
0, 13
λ (Ω̄) case instead of the stronger case considered in

Theorem 1.3 is due to the effort employed by us to try to prove the first case, before realizing that the
way followed in Ref. [1] could be applied successfully.
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Let’s end this section by a comparison between the distinct results. Concerning Theorem 1.2, the gap
between the set consisting of all Hölder spaces C0,α(Ω̄), with α > 1

3 , and a fixed Hölog space C
0, 13
λ (Ω̄)

is wide. In fact, the union of all the above Hölder spaces is contained in the single space C
0, 13
2λ (Ω̄), which

is away from C
0, 13
λ (Ω̄). Nevertheless, in comparison to the result stated in Theorem 1.3, also the spaces

C
0, 13
λ (Ω̄) are far from C0, 13 (Ω̄) . In fact, roughly speaking, we may say that there is few “free space”

between the set of spaces considered in this last theorem, and C0, 13 (Ω̄). Recall also the sharp result,
still referred above, obtained for the space periodic case in Ref. [6]. Concerning this point, let’s consider

the relation between B
1
3
3,c(N) and Hölog spaces C

0, 13
λ (Ω̄) . The Besov space B

1
3
3,∞ can be characterized as

follows, see Proposition 8′ in [14]:

B
1
3
3,∞ =:

{

f ∈ L3 : ‖f‖3 + sup
|y|>0

‖f(x + y) + f(x − y) − 2f(x)‖3

|y| 1
3

< ∞
}

.

Hence one has C
0, 13
λ ⊂ B

1
3
3,∞, for any λ > 0. From Shvydkoy [13], c(N) stands to indicate

1
|y|

∫

Tn

|f(x − y) − f(x)|3dx → 0, as |y| → 0,

which implies that C
0, 13
λ ⊂ B

1
3
3,c(N). Hence, in the case of period domain, our C

0, 13
λ result is covered by

that of Cheskidov, Constantin, Friedlander, and Shvydkoy’s.

2. Theorem 1.2 for the Period Domain T
n

Before proving Theorem 1.2 we consider a simpler situation, the period domain case. This helps us to
understand the proof of the general bounded domain case. In this case, as in [7], taking in (1.2) ψ = (uε)ε,
one can get

1
2

d

dt

∫

Tn

|uε|2dx +
∫

Tn

(u ⊗ u)ε : ∇uεdx = 0,

which shows that

‖uε(t2)‖2 − ‖uε(t1)‖2 = −2
∫ t2

t1

∫

Tn

(u ⊗ u)ε : ∇uεdx, (2.1)

where, as [7], we introduce a nonnegative radially symmetric C∞(Rn) mollifier, φ(x), with support in
|x| ≤ 1 and

∫

Rn φ(x)dx = 1, and for any 0 < ε < 1 we define φε = 1
εn φ(x

ε ) and set uε = u ∗ φε.
Now, we estimate the term on the right side in (2.1). Firstly, it is well known that, see [7],

(u ⊗ u)ε(x) − (uε ⊗ uε)(x) =
∫

Tn

(δyu ⊗ δyu)(x)φε(y)dy − (u − uε)(x) ⊗ (u − uε)(x),

where

(δyu)(x) = u(x − y) − u(x).

Secondly, one has, for almost all t ∈ (0, T ),

|u(x − y) − u(x)| ≤
(

log
1
|y|

)−λ

|y|α‖u‖C0,α
λ

, for any 0 < |y| < 1, (2.2)

which gives

|u(x) − uε(x)| =
∣
∣
∣
∣

∫

Tn

(u(x) − u(x − y))φε(y)dy

∣
∣
∣
∣ ≤

(

log
1
ε

)−λ

εα‖u‖C0,α
λ

. (2.3)
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Furthermore, one has

|∇uε(x)| =
∣
∣
∣
∣

∫

Tn

∇φε(z) · u(x − z)dz

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Tn

∇φε(z) · (u(x − z) − u(x))dz

∣
∣
∣
∣

≤C

(

log
1
ε

)−λ

εα‖u‖C0,α
λ

∫

Tn

|∇φε(z)|dz

≤C

(

log
1
ε

)−λ

εα−1‖u‖C0,α
λ

,

(2.4)

and
∣
∣
∣
∣

∫

Tn

(δyu ⊗ δyu)(x)φε(y)dy

∣
∣
∣
∣ ≤ C

[(

log
1
ε

)−λ

εα‖u‖C0,α
λ

]2 ∫

Tn

φε(y)dy,

= C

[(

log
1
ε

)−λ

εα‖u‖C0,α
λ

]2

.

(2.5)

Note that the estimates (2.3)–(2.4) are point-wise. In this sense they are stronger than the related
estimates (6)–(8) in [7].

Finally, noting that
∫

Tn

uε ⊗ uε : ∇uεdx =
∫

Tn

uε · ∇1
2
|uε|2dx =

∫

Tn

1
2
|uε|2∇ · uεdx = 0,

one can deduce from (2.3)–(2.5) that
∣
∣
∣
∣

∫ t2

t1

∫

Tn

(u ⊗ u)ε : ∇uεdxdt

∣
∣
∣
∣

≤
∫ t2

t1

∫

Tn

(∣
∣
∣
∣

∫

(δyu ⊗ δyu)(x)φε(y)dy

∣
∣
∣
∣ + |u − uε|2

)

|∇uε(x)|dxdt

≤ C

∫ t2

t1

[(

log
1
ε

)−λ

εα‖u‖C0,α
λ

]2 (

log
1
ε

)−λ

εα−1 ‖u‖C0,α
λ

dt

= C

(

log
1
ε

)−3λ

ε3α−1

∫ t2

t1

‖u‖3
C0,α

λ

dt.

From this estimate, letting ε → 0 in (2.1), we obtain the Theorem 1.2, for the periodic domain case, since
α ≥ 1

3 and λ > 0.

3. Preliminary Results

When we consider a bounded domain, due to the boundary effect, one can not take (uε)ε as test function.
To overcome this difficulty, Bardos and Titi [1] introduced a distance function: For any x ∈ Ω̄ one defines
d(x) = inf

y∈∂Ω
|x− y|, and set Ωh = {x ∈ Ω : d(x) < h}. As in [1], since ∂Ω is a C2 compact manifold, there

exists h0(Ω) > 0 with the following properties:

• For any x ∈ Ωh0 , the function x �→ d(x) belongs to C1(Ωh0);
• for any x ∈ Ωh0 , there exists a unique point σ(x) ∈ ∂Ω such that

d(x) = |x − σ(x)|, ∇d(x) = −n(σ(x)). (3.1)
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Now, let 0 ≤ η(s) ≤ 1 be a C∞(R) nondecreasing function such that η(s) = 0, for s ∈ (−∞, 1
2 ], and

η(s) = 1, for s ∈ [1,∞). Then θh(x) = η(d(x)
h ) is a C1(Ω) function, compactly supported in Ω. Denote by

the same symbol θh its extension by zero outside Ω. Similarly, for any w ∈ L∞(Ω), the extension θhw by
zero outside Ω is well defined over all Rn, and will be also denoted by θhw.

It is natural to take θh ((θhu)ε)ε as a text function. Contrarily to the period domain case, now ∇·ψ �= 0.
Hence we will need to estimate the pressure in a suitable way. Actually, due to C0,α

λ (Ω̄) ⊂ C0,α(Ω̄), we
can get the following result from Proposition 1.2 in [1].

Proposition 3.1. Under the assumption of Theorem 1.2 the pair (u, p) satisfies the following regularity
properties:

u ⊗ u ∈ L3((0, T );L2(Ω)), p ∈ L
3
2 ((0, T );C0,α(Ω̄)),

and

∂tu = −∇ · (u ⊗ u) − ∇p ∈ L
3
2 ((0, T );H−1(Ω)).

Furthermore, one has
∫ T

0

‖p‖ 3
2
C0,α(Ω̄)

dt ≤ C

∫ T

0

‖u‖3
C0,α(Ω̄)dt ≤ C

∫ T

0

‖u‖3
C0,α

λ (Ω̄)
dt. (3.2)

Remark 3.1. In [1], although the authors assume α > 1
3 , it follows from the proof of their proposition 1.2

that the result holds for any α > 0, especially for α = 1
3 .

Remark 3.2. According to Proposition 4.3 below, since

∫ T

0

‖p‖L∞‖u‖C0,α
λ

dt ≤
(∫ T

0

‖p‖L∞dt

) 2
3

(∫ T

0

‖u‖3
C0,α

λ

dt

) 1
3

,

to obtain Theorem 1.2, we merely need to have the estimate
∫ T

0
‖p‖ 3

2
L∞dt ≤ C

∫ T

0
‖u‖3

C0,α
λ

dt. Hence, the

estimate (3.2) is enough to obtain our theorem.

Compared with the periodic domain case, since the test function include the function θh, we need
some estimates for θh.

Lemma 3.2. Let h ∈ (0,min{h0, 1}). For any vector field w ∈ C0,α
λ (Ω̄), with w · n = 0 on ∂Ω, there exists

a constant C independent of h such that

|w(x) · ∇θh(x)| ≤ C‖w‖C0,α
λ (Ω̄)

(

log
1
h

)−λ

hα−1, (3.3)

and
∫

Rn

|w(x) · ∇θh(x)|dx ≤ C‖w‖C0,α
λ (Ω̄)

(

log
1
h

)−λ

hα. (3.4)

Proof. The proof is completely similar to that of Lemma 1.3 in [1]. For completeness, and for the readers
convenience, we give here the proof. When x ∈ (Ωh)c, since ∇θh(x) = 0, one has w(x) · ∇θh(x) = 0.
When x ∈ Ωh, it follows from (3.1) that

∇θh(x) = − 1
h

η′
(

d(x)
h

)

n(σ(x)).
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Noting that w(σ(x)) · n(σ(x)) = 0, one can get

|w(x) · ∇θh(x)| =
1
h

η′
(

d(x)
h

)

|(w(x) − w(σ(x))) · n(σ(x))|

≤C

h
‖w‖C0,α

λ

(

log
1

|x − σ(x)|
)−λ

|x − σ(x)|α

≤C‖w‖C0,α
λ

(

log
1
h

)−λ

hα−1.

This gives (3.3). Integrating (3.3) over R
n, combining with the facts that the support of ∇θh is a subset

of Ωh, and |Ωh| ≤ Ch, one obtains (3.4). �

4. Proof of Theorem 1.2

In this section, we focus on the proof of Theorem 1.2. First, we set h ∈ (0,min{h0, 1}) and ε ∈ (0, h
4 ).

As in [1], we take in (1.2) ψ = θh ((θhu)ε)ε as test function. Note that, due to Proposition 3.1, ψ ∈
W 1,3((0, T );H1

0 (Ω). So it can be used as test vector field function. So one shows that

〈u, ∂t

(
θh ((θhu)ε)ε)〉x + 〈u ⊗ u : ∇ (

θh ((θhu)ε)ε)〉x

+ 〈p,∇ · (
θh ((θhu)ε)ε)〉x = 0, in L1(0, T ).

(4.1)

Next, as in [1], we establish three propositions to estimate the three terms on the left side of (4.1),
denoted here by J1, J2, and J3 respectively.

For J1, by arguing as in [1] Proposition 2.1, one proves the following statement.

Proposition 4.1. For any (t1, t2) ∈ (0, T ), one has

lim
h→0

∫ t2

t1

J1dt =
1
2
‖u(t2)‖2

L2(Ω) − 1
2
‖u(t1)‖2

L2(Ω).

Next, we control J2.

Proposition 4.2. The following estimate holds.

|J2| = |〈u ⊗ u : ∇ (θh ((θhu)ε)ε)〉x| ≤ C

(

log
1
h

)−λ

hα‖u‖C0,α
λ (Ω)‖u‖2

L∞

+ C

(

log
1
ε

)−λ

εα−1‖u‖C0,α
λ

((

log
1
ε

)−λ

εα‖u‖C0,α
λ

+
ε

h
‖u‖L∞

)2

.

Proof. We first write J2 as

J2 = 〈u ⊗ u : ∇θh ⊗ ((θhu)ε)ε〉x + 〈u ⊗ u : θh∇ ((θhu)ε)ε〉x =: J21 + J22.

For J21, by Lemma 3.2, one can get

|J21| = |〈u ⊗ u : ∇θh ⊗ ((θhu)ε)ε〉x|

=
∣
∣
∣
∣

∫

Ωh

(u · ∇θh) (u · ((θhu)ε)ε)dx

∣
∣
∣
∣

≤ C

(

log
1
h

)−λ

hα‖u‖C0,α
λ

‖u‖2
L∞ .
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For J22, one has

J22 = 〈u ⊗ u : θh∇ ((θhu)ε)ε〉x|
= |〈u ⊗ θhu : ∇ ((θhu)ε)ε〉x|
= 〈(u ⊗ θhu)ε : ∇(θhu)ε〉x

= 〈((u ⊗ θhu)ε − (uε ⊗ (θhu)ε)) : ∇(θhu)ε〉x,

where we have used that
∫

Rn
x

uε ⊗ (θhu)ε : ∇(θhu)εdx =
∫

uε · ∇1
2
|(θhu)ε|2dx =

∫
1
2
|(θhu)ε|2∇ · uεdx = 0.

By using the identity

(v ⊗ w)ε(x) − (vε ⊗ wε)(x) =
∫

Rn
y

(δyv ⊗ δyw)(x)φε(y)dy − (v − vε)(x) ⊗ (w − wε)(x),

where

(δy)v(x) = v(x − y) − v(x), (δy)w(x) = w(x − y) − w(x),

one can write J22 = J221 + J222 with

J221 =
∫

Rn
x

(∫

Rn
y

(δyu ⊗ δy(θhu))(x)φε(y)dy

)

:

(∫

Rn
z

∇φε(z) ⊗ (θhu)(x − z)dz

)

dx

=
∫

Ω

(∫

Rn
y

(δyu ⊗ δy(θhu))(x)φε(y)dy

)

:

(∫

Rn
z

∇φε(z) ⊗ (θhu)(x − z)dz

)

dx,

and

J222 =
∫

Rn
x

((u − uε) ⊗ ((θhu) − (θhu)ε)) : ∇(θhu)εdx

=
∫

Ω

((u − uε) ⊗ ((θhu) − (θhu)ε)) : ∇(θhu)εdx.

For J221, noting that supp φε ⊂ {y : |y| ≤ ε}, that |δyθh(x)| ≤ C ε
h for all |y| ≤ ε, and that

∫

Rn
z

|∇φε|dz ≤
Cε−1, one shows that

∣
∣
∣
∣
∣

∫

Rn
y

(δyu ⊗ δy(θhu))(x)φε(y)dy

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

Rn
y

(δyu ⊗ (θh(x − y)(δyu)(x) + (δyθh)(x)u(x − y)) φε(y)dy

∣
∣
∣
∣
∣

≤ C

(

log
1
ε

)−λ

εα‖u‖C0,α
λ

∫

Rn
y

((

log
1
ε

)−λ

εα‖u‖C0,α
λ

+
ε

h
‖u‖L∞

)

φε(y)dy

= C

(

log
1
ε

)−λ

εα‖u‖C0,α
λ

((

log
1
ε

)−λ

εα‖u‖C0,α
λ

+
ε

h
‖u‖L∞

)

,
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and
∣
∣
∣
∣
∣

∫

Rn
z

∇φε(z) ⊗ (θhu)(x − z)dz

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

Rn
z

∇φε(z) ⊗ ((θhu)(x − z) − (θhu)(x)) dz

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

Rn
z

∇φε(z) ⊗ (δzθh(x)u(x − z) − θh(x)δzu(x)) dz

∣
∣
∣
∣
∣

≤ C

((

log
1
ε

)−λ

εα‖u‖C0,α
λ

+
ε

h
‖u‖L∞

)∫

Rn
z

|∇φε(z)|dz

≤ Cε−1

((

log
1
ε

)−λ

εα‖u‖C0,α
λ

+
ε

h
‖u‖L∞

)

.

(4.2)

Hence, one has

|J221| ≤ C

(

log
1
ε

)−λ

εα−1‖u‖C0,α
λ

((

log
1
ε

)−λ

εα‖u‖C0,α
λ

+
ε

h
‖u‖L∞

)2

.

For J222, it follows from (4.2) that

|∇(θhu)ε(x)| =

∣
∣
∣
∣
∣

∫

Rn
z

∇φε(z) ⊗ (θhu)(x − z)dz

∣
∣
∣
∣
∣

≤ Cε−1

((

log
1
ε

)−λ

εα‖u‖C0,α
λ

+
ε

h
‖u‖L∞

)

.

(4.3)

On the other hand, for all x ∈ supp θh+ε, one has

|u(x) − uε(x)| =

∣
∣
∣
∣
∣

∫

Rn
y

(u(x) − u(x − y))φε(y)dy

∣
∣
∣
∣
∣
≤

(

log
1
ε

)−λ

εα‖u‖C0,α
λ

, (4.4)

and
|(θhu)(x) − (θhu)ε(x)|

=

∣
∣
∣
∣
∣

∫

Rn
y

((θhu)(x) − (θhu)(x − y))φε(y)dy

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

Rn
y

φε(y) (δyθh(x)u(x − y) − θh(x)δyu(x)) dy

∣
∣
∣
∣
∣

≤ C

((

log
1
ε

)−λ

εα‖u‖C0,α
λ

+
ε

h
‖u‖L∞

)

.

(4.5)

Combining with (4.3)–(4.5), one gets

|J222| ≤ C

(

log
1
ε

)−λ

εα−1‖u‖C0,α
λ

((

log
1
ε

)−λ

εα‖u‖C0,α
λ

+
ε

h
‖u‖L∞

)2

.

Now, collecting the above estimates obtained for J21, J221, and J222, one obtains the desired estimate for
J2. �

Finally, we estimate J3.
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Proposition 4.3. One has

|〈p,∇ · (θh ((θhu)ε)ε)〉x| ≤ C‖p‖L∞‖u‖C0,α
λ

((

log
(

1
h

))−λ

hα +
(

log
(

1
ε

))−λ

εα

)

.

Proof. First, one has

〈p,∇ · (θh ((θhu)ε)ε)〉x =
∫

Ω

p∇ · (θh ((θhu)ε)ε) dx

=
∫

Ω

(pθh)∇ · ((θhu)ε)ε
dx +

∫

Ω

p∇θh · ((θhu)ε)ε
dx

= : J31 + J32.

Concerning J31, from (2.22) and (2.25) in Proposition 2.3 of [1], one obtains

J31 =
∫

Ω

(
p(x)θh(x)

∫

Rn
y

∫

Rn
z

φε(x − y)φε(z − y)u(z) · ∇θh(z)dzdy
)
dx,

by Lemma 3.2, which implies that

|J31| ≤ C‖p‖L∞‖u‖C0,α
λ

(

log
(

1
h

))−λ

hα.

For J32, as in [1], one has

J32 =
∫

Ωh

(

p(x)∇θh(x) ·
∫

Rn
z

∫

Rn
y

θh(x − y + z)u(x − y + z)φε(y)φε(z)dydz

)

dx,

=
∫

Ωh

p(x)

(∫

Rn
z

∫

Rn
y

φε(y)φε(z)θh(x − y + z) (u(x − y + z) − u(x)) · ∇θh(x)dydz

)

dx

+
∫

Ωh

p(x)

(∫

Rn
z

∫

Rn
y

φε(y)φε(z)θh(x − y + z)u(x) · ∇θh(x)dydz

)

dx

=:J321 + J322.

Noting that

|u(x − y + z) − u(x)| ≤ C‖u‖C0,α
λ

(

log
(

1
ε

))−λ

εα,

for the relevant x, y, z for which the integrand in the definition of J321 is not zero, and that∫

Ωh
|∇θh(x)|dx ≤ C, one shows that

|J321| ≤ C‖p‖∞‖u‖C0,α
λ

(

log
(

1
ε

))−λ

εα.

Concerning J322, it follows from Lemma 3.2 that

|J322| ≤
∫

Ωh

|p(x)|
(∫

Rn
z

∫

Rn
y

φε(y)φε(z)|u(x) · ∇θh(x)|dydz

)

dx

≤C‖p‖∞‖u‖C0,α
λ

(

log
(

1
h

))−λ

hα.

Collecting the above estimates, one proves the proposition. �
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Now, it follows from Propositions 4.2, 4.3 and the estimate (3.2) in Proposition 3.1 that
∫ t2

t1

|J2 + J3|dt ≤C

((

log
(

1
h

))−λ

hα +
(

log
(

1
ε

))−λ

εα

)∫ t2

t1

‖u‖3
C0,α

λ

dt

+

((

log
(

1
ε

))−3λ

ε3α−1 +
(

log
(

1
ε

))−λ
εα+1

h2

)∫ t2

t1

‖u‖3
C0,α

λ

dt,

(4.6)

by choosing ε = h
2

1+α and by letting h → 0, since α ≥ 1
3 and λ > 0, one has

∫ t2
t1

|J2 + J3|dt → 0.
Combining this fact with Proposition 4.1 and Eq. (4.1), one proves the Theorem 1.2.

Compliance with ethical standards
Conflict of interest The authors declared that they have no conflicts of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

[1] Bardos, C., Titi, E.S.: Onsager’s conjecture for the incompressible Euler equations in bounded domains. Arch. Ration.
Mech. Anal. 228(1), 197–207 (2018)
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