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On the closability of di↵erential operators
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Abstract. We discuss the closability of directional derivative operators with respect
to a general Radon measure µ on Rd; our main theorem completely characterizes the
vectorfields for which the corresponding operator is closable from the space of Lipschitz
functions Lip(Rd) to Lp(µ), for 1  p  1. We also discuss the closability of the same
operators from Lq(µ) to Lp(µ), and give necessary and su�cient conditions for closability,
but we do not have an exact characterization.
As a corollary we obtain that classical di↵erential operators such as gradient, divergence and
Jacobian determinant are closable from Lq(µ) to Lp(µ) only if µ is absolutely continuous
with respect to the Lebesgue measure.
We finally consider the closability of a certain class of multilinear di↵erential operators;
these results are then rephrased in terms of metric currents.
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1. Introduction

One way of defining the Sobolev spaces W 1,p
0 (⌦) for an open set ⌦ in Rd is taking

the completion of the space C1
c (⌦) of functions of class C

1 with compact support on
⌦ with respect to the Sobolev norm k · kW 1,p .

This construction can be made more precise as follows: we consider the graph
of the gradient operator r : C1

c (⌦) ! C0
c (⌦;Rd) as a subset of the product space

Lp(⌦) ⇥ Lp(⌦;Rd), take its closure �, and show that � is still a graph, that is,
for every u 2 Lp(⌦) there exists at most one v 2 Lp(⌦;Rd) such that (u, v) 2 �.
We then consider the operator whose graph is �: the domain is the Sobolev space
W 1,p

0 (⌦) and the operator is the gradient for Sobolev functions.1

Note that the essential ingredient in this construction is that the closure of the
graph of the gradient is still a graph. The extension of this construction to more
general operators leads to the following abstract definition:

Closable operators. Given X,Y topological spaces, D subset of X, and a map
T : D ! Y , we denote by � the closure of the graph {(x, T (x)) : x 2 D} in X ⇥ Y ,
and we say that T is closable (from X to Y ) if � is also a graph, that is, for every
x 2 X there exists at most one y 2 Y such that (x, y) 2 �.

In this paper, we study the closability of certain first-order di↵erential operators,
and we focus in particular on directional derivative operators of the form (??). The

1 Moreover the norm of every (u, v) 2 � as element of Lp(⌦)⇥ Lp(⌦;Rd) agrees with kukW1,p .
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spaces X and Y are always spaces of functions on Rd, taken from those listed in
Paragraph ??.

Last but not least, we always intend continuity, closure and closability in the
sequential sense. However, in many instances the sequential notions can be re-
placed by the topological ones for simple reasons (for example because the spaces
are metrizable, or because we are dealing with a non-closability result).

1.1. Functions spaces. Through this paper µ is a Radon measure on Rd and the
space Y is one of the following:

• Lp(µ) with 1  p  1, endowed with the strong topology;

• Lp
w(µ), which denotes the space Lp(µ) endowed with the weak topology if

p < 1, and with the weak* topology (as dual of L1(µ)) if p = 1.

The space X is one of the following:

• Lip(Rd), namely the space of Lipschitz functions on Rd endowed with the fol-
lowing notion of convergence: un ! u in Lip(Rd) if un ! u uniformly and the
Lipschitz constants Lip(un) are uniformly bounded.2

• Lq(µ) or Lq
w(µ) with 1  q  1.

Finally the set D is always C1
c (Rd).

1.2. Directional derivative operators. Let v be a Borel vector field on Rd; we
denote by Tv the directional derivative operator on C1

c (Rd) associated to v, that is,

Tvu :=
@u

@v
for every u 2 C1

c (Rd). (1.1)

The next theorem is our main result. The statement involves the notion of de-
composability bundle V (µ, ·) of a measure µ; the precise definition is given in Para-
graph ??, but for a first reading it su�ces to know that V (µ, x) is a linear subspace
of Rd for every x 2 Rd.

1.3. Theorem. Let v and Tv be as above and assume that v 2 Lp(µ) for some
1  p  1.

(i) If v(x) 2 V (µ, x) for µ-a.e. x, then every u 2 Lip(Rd) is di↵erentiable at µ-
a.e. x 2 Rd in the direction v(x), and the linear operator eTv : Lip(Rd) ! Lp

w(µ)
defined by

eTvu(x) :=
@u

@v
(x) for µ-a.e. x 2 Rd (1.2)

is a continuous extension of Tv.
It follows that Tv is closable from Lip(Rd) to Lp

w(µ).

(ii) Conversely, if µ({x : v(x) 62 V (µ, x)}) > 0 then Tv is nowhere continuous as
an operator from C1

c (Rd) (endowed with Lip-convergence) to Lp
w(µ). More

precisely, for every u 2 C1
c (Rd) and every " > 0 there exist a sequence (un) in

C1
c (Rd) and w 2 Lp(µ) with w 6= Tvu such that
• un ! u uniformly;

• Lip(un)  Lip(u) + " for every n;

2 Equivalently, un ! u uniformly and run ! ru in L1
w (Rd). Therefore this notion of conver-

gence is induced by a topology.
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• Tvun ! w in Lp(µ) if p < 1, and in L1
w (µ) if p = 1.

It follows that Tv is not closable from Lip(Rd) to Lp
w(µ), and not even from

Lip(Rd) to Lp(µ) if p < 1.

1.4. Remarks. (i) Since the space Lp
w(µ) embeds continuously in Lp(µ), the con-

clusion that Tv is closable in Theorem ??(i) holds all the more so if we replace Lp
w(µ)

by Lp(µ), but clearly eTv is not continuous from Lip(Rd) in Lp(µ).

(ii) The non-closability part of Theorem ??(ii) holds even if replace Lip(Rd) by
Lq(µ) with 1  q  1 (or Lq

w(µ)); this assertion is immediate when µ is a finite
measure, because the fact that un ! u uniformly implies that un ! u in Lq(µ); if
µ is only locally finite one should use that the sequence (un) can be chosen so that
the functions un � u have uniformly bounded supports.

We now turn our attention to the closability of classical di↵erential operators such
as gradient, divergence and Jacobian determinant.3 Let indeed T be any of these
three operators: it is well known that T can be extended using a distributional
definition to a continuous operator eT from Lip(Rd) in L1

w (L d),4 and this implies
that T is closable from Lip(Rd) to L1

w (L d).
It is natural to ask what happens if we replace the Lebesgue measure L d by

a general Radon measure µ. The complete answer is contained in the following
corollary of Theorem ??:

1.5. Corollary. Let T be any of the following operators on C1
c (Rd): gradient, di-

vergence, Jacobian determinant, and let 1  p  1.

(i) If µ is absolutely continuous with respect to the Lebesgue measure (µ ⌧ L d)
then T is closable from Lip(Rd) to Lp

w(µ) and then also to Lp(µ).

(ii) If µ is not absolutely continuous with respect to the Lebesgue measure then T
is not closable from Lip(Rd) to Lp

w(µ), and not even to Lp(µ) if p < +1.

The next corollary answers a question posed by M. Fukushima about the clos-
ability of the gradient (see [?, Section 2.6] and [?]):

1.6. Corollary. Let T be as in Corollary ?? and take 1  p < 1 and 1  q  1.
Then T is closable from Lq(µ) to Lp(µ) only if µ ⌧ L d.

Structure of this paper. In Section ?? we collect some definition and preliminary
results that are widely used through the rest of the paper, while Section ?? is devoted
to the proofs of the results stated above.

As pointed out in Remark ??(ii), Theorem ??(ii) gives a necessary condition for
the closability of the directional derivative operator Tv in (??) from Lp(µ) to Lp(µ),
but this condition is not su�cient (cf. Remark ??(iii)). In Section ??, and more
specifically in Theorem ??, we give a su�cient condition for the closability of Tv;
we do not know if this condition is also necessary.

3 The Jacobian determinant of u 2 C1
c (Rd;Rd) is Ju := det(ru).

4 Here L d is the Lebesgue measure, and, depending on which T we consider, Lip(Rd) and
L1

w (L d) may denote spaces of Rd-valued functions.
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In Section ?? we discuss the closability of a general class of alternating k-linear
di↵erential operators akin to the Jacobian determinant. In Theorem ?? we give
necessary and su�cient conditions for closability from Lip(Rd) to L1

w (µ); we do
not know if these conditions match (unlike those in Theorem ??). In the second
part of Section ?? we reformulate these results in terms of metric currents in Rd;
among other things we obtain a reformulation of the Flat Chain Conjecture (see [?,
Section 11]) both in terms of the k-tangent bundle of the measure associated to a
metric current and in terms of closability/continuity of a suitably defined alternating
k-linear di↵erential operator (Theorem ??).

1.7. Concluding remarks. (i) Theorem ?? has been used in [?] to give a new
proof of the chain rule for BV functions first proved in [?]; this new proof can be
adapted to finite dimensional RCD spaces.

(ii) Through this paper, we consider for simplicity functional spaces defined on the
domain Rd. However, all results are essentially local in nature, thus the domain Rd

can be easily replaced by any open subset of Rd, and even by more general domains.

(iii) Regarding Corollary ??, it is well known that the assumption µ ⌧ L d alone
does not imply the closability of the gradient operator from Lq(µ) to Lp(µ), not even
in dimension d = 1. For example, let µ be the restriction of the Lebesgue measure
L 1 to a totally disconnected compact subset of R; then it is easy to prove that the
derivative is not closable from Lq(µ) to Lp(µ) for any 1  p, q  1.

A precise characterization of the (absolutely continuous) measures µ on R such
that the derivative is closable from L2(µ) to L2(µ) has been given in [?, Theorem 2.2]
(see also [?, Theorem 3.1.6]).

(iv) Theorem ?? can be easily extended to more general first order di↵erential
operators than just directional derivatives, thus obtaining a statement that includes
Corollaries ?? and ?? as particular cases (see Remark ??).

However, it seems that second order di↵erential operators are not easily included
in our analysis. For instance, one would guess that the Laplace operator (defined on
C2
c (Rd)) should be closable from Lp(µ) to Lq(µ) only if µ is absolutely continuous

with respect to L d, but such statement does not seem to follow from any of the
results in this paper (at least, not easily).

(v) At the core of the proof of Theorem ??(ii), and of the “only if” part of
Corollaries ?? and ??, are the so-called “width functions”, which are taken from
[?, Lemma 4.12]. This notion was introduced by David Preiss while studying the
di↵erentiability of Lipschitz functions (cf. [?], [?], and references therein); he also
used it to give a first (unpublished) proof of Corollary ??(ii) in dimension d = 2.

(vi) Given a Radon measure µ on Rd, in [?, Section 3] the authors define for µ-
a.e. x 2 Rd a tangent space Tµ(x) in such a way that the corresponding tangential
gradient operator is closable from Lip(Rd) to L1

w (µ). Theorem ??(ii) shows that
Tµ(x) ⇢ V (µ, x) for µ-a.e. x, and with some additional work one can prove that
equality holds. This remark gives a way to compute Tµ e↵ectively; moreover, thanks
to [?, Theorem 1.1], every function u 2 Lip(Rd), is di↵erentiable in the directions in
Tµ(x) for µ-a.e. x.

(vii) Given a Radon measure µ on Rd and 1  p  1, in [?, Section 2] the authors
define for µ-a.e. x 2 Rd a tangent space T p

µ(x) in such a way that the corresponding

On the closability of differential operators 5

tangential gradient operator is closable from Lp(µ) to Lp(µ). Using Theorem ??(ii)
one can prove that T p

µ(x) ⇢ V (µ, x) for µ-a.e. x. However, this inclusion may be
strict (cf. the example in remark (iii) above).
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2. Notation and preliminary results

Through this paper, sets and functions are always Borel; measures are Borel
and positive (unless stated otherwise) and, with the notable exception of Hausdor↵
measures, they are also locally bounded (that is, Radon). If µ is a real- or vector-
valued measure, |µ| denotes the variation of µ.

In the next paragraph we recall the basic notation about currents in the Euclidean
setting. For more details about currents see for instance [?], [?].

2.1. Classical currents. A k-dimensional current T in Rd is a continuous linear
functional on the space Dk(Rd) of smooth k-forms on Rd with compact support.
The boundary of T is the (k � 1)-current @T defined by h@T ; !i := hT ; d!i for
every ! 2 Dk�1(Rd).

The mass of T , denoted by M(T ), is the supremum of hT ; !i over all ! 2 Dk(Rd)
such that |!|  1 everywhere. A current T is called normal if both T and @T have
finite mass.

By Riesz theorem a k-current T with finite mass can be viewed as a finite measure
with values in the space k-vectors on Rd, and therefore it can be written in the form
T = ⌧µ where µ is a finite positive measure and ⌧ is a k-vector field in L1(µ). Thus
the action of T on a k-form ! is given by

hT ; !i =
Z

Rd
h⌧(x) ; !(x)i dµ(x) .

Given a Lipschitz path � : [a, b] ! Rd, we denote by [�] the associated current,
namely the 1-dimensional current defined by

⌦
[�] ; !

↵
=

Z b

a

⌦
�0(t) ; !(�(t))

↵
dt .

2.2. Decomposability bundle. Given a measure µ on Rd, its decomposability bun-
dle is a Borel map V (µ, ·) on Rd whose values are linear subspaces of Rd defined as
follows: a vector v 2 Rd belongs to V (µ, x) if and only if there exists a 1-dimensional
normal current N in Rd with @N = 0 such that

lim
r!0

|N � vµ|(B(x, r))

µ(B(x, r))
= 0 . (2.1)
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The decomposability bundle V (µ, x) was introduced in [?], Paragraph 2.6; in Para-
graph 6.1 of the same paper, the authors introduced also an auxiliary bundleN(µ, x),
and then they proved that these two bundles agree [?, Theorem 6.4]. The definition
above is actually that of the auxiliary bundle N(µ, x), which is simpler to state than
the original definition of the decomposability bundle.

In the ensuing sections we will use several results from [?] concerning the decom-
posability bundle. We state here the most relevant ones.

2.3. Theorem (see [?, Theorem 1.1]). Let µ be a measure on Rd. Then the following
statements hold:

(i) Every Lipschitz function f on Rd is di↵erentiable at µ-a.e. x with respect to
the linear subspace V (µ, x), that is, there exists a linear function from V (µ, x)
to R, denoted by dV f(x), such that

f(x+ h) = f(x) + hdV f(x) ; hi+ o(|h|) for h 2 V (µ, x).

(ii) The previous statement is optimal, meaning that there exists a Lipschitz func-
tion f on Rd such that for µ-a.e. x and every v /2 V (µ, x) the derivative of f
at x in the direction v does not exist.

2.4. Theorem. Let µ be a measure on Rd. Then V (µ, x) = Rd for µ-a.e. x 2 Rd if
and only if µ ⌧ L d.

Proof. The “if” implication is contained in [?, Proposition 2.9(iii)]. The hard part
is the “only if” implication, which is a direct consequence of the results in [?] and [?];
for instance, it can be obtained by combining Theorem ?? and [?, Theorem 1.14]. ⇤

3. Proof of Theorem ?? and Corollaries ??, ??

Proof of Theorem ??(i), case p = 1. The operator eTv : Lip(Rd) ! L1
w (µ)

given by formula (??) is well defined thanks to the assumption v(x) 2 V (µ, x)
for µ-a.e. x and Theorem ??(i), and it is obviously an extension of the operator Tv

defined in (??).
It remains to prove that eTv is continuous. By [?, Theorem 6.3] there exists a

normal 1-current N = ṽµ̃ on Rd such that

• @N = 0;

• ṽ 2 L1(µ̃) and ṽ(x) 2 V (µ̃, x) for µ-a.e. x;

• ṽ and µ̃ extend v and µ in the following sense: µ̃ = µ+� with � and µ mutually
singular, and ṽ(x) = v(x) for µ-a.e. x.

Let eTev : Lip(Rd) ! L1
w (µ̃) be the operator defined by formula (??) with v replaced

by ṽ; one easily checks that the continuity of eTv follows from that of eTev.

To prove the continuity of eTev, we note that for every u 2 Lip(Rd) the boundary
of the current uN is given by

@(uN) = � eTev u µ̃ (3.1)
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(use Proposition 5.13 in [?] and the fact that @N = 0) and then
Z

Rd
' eTṽu dµ̃ = �huN ; d'i for every ' 2 D(Rd), (3.2)

where D(Rd) is the space of smooth test functions with compact support on Rd.

Consider now a sequence (un) such that un ! u in Lip(Rd). Since un ! u
uniformly, the currents unN converge to uN with respect to the mass norm M, and
therefore also in the sense of currents; then formula (??) implies that

lim
n!1

Z

Rd
' eTṽun dµ̃ =

Z

Rd
' eTṽu dµ̃ for every ' 2 D(Rd). (3.3)

Since D(Rd) is dense in L1(µ̃) and the functions eTṽun are uniformly bounded in
L1(µ̃), (??) holds also for every ' 2 L1(µ̃), which means that

eTṽun ! eTṽu in L1
w (µ̃),

and the continuity of eTṽ is proved. ⇤

Proof of Theorem ??(i), case p < 1. As for the case p = 1, the operator eTv :
Lip(Rd) ! Lp

w(µ) is well defined and extends Tv. To prove that eTv is continuous,
we consider the vector field bv on Rd defined by

bv(x) :=
(

v(x)
|v(x)| if v(x) 6= 0,

0 if v(x) = 0.
(3.4)

Then bv is bounded and belongs to V (µ, x) for µ-a.e. x because so does v; hence
eTbv : Lip(Rd) ! L1

w (µ) is continuous by Theorem ??(i), case p = 1.
Moreover the identity v = |v|bv implies that eTvu = |v| eTbv u for every u, and there-

fore, for every ' 2 Lq(µ) where q is the Hölder conjugate of the exponent p, there
holds Z

Rd

� eTvu
�
' dµ =

Z

Rd

� eTbv u
�
|v|' dµ .

The continuity of eTbv and the fact that |v|' belongs to L1(µ) imply the continuity
of the right-hand side (with respect to u), and therefore also of the left-hand side,
which in turn implies the continuity of eTv. ⇤

Proof of Theorem ??(ii), case p = 1. Given y, y0 2 Rd and W subspace of Rd,
we write ✓(y, y0) for the angle between y and y0, and ✓(y,W ) for the angle between
y and W (both angles are set to be 0 if any of the vectors involved is null).

Let #(x) := ✓(v(x), V (µ(x)) for every x 2 Rd: by assumption # is strictly positive
on a set of positive µ-measure, and therefore we can find x̄ such that #(x̄) > 0 and
both # and v are approximately continuous at x̄. Then, having set � := 1

3#(x̄) and
w := v(x̄), for every ↵ with 0 < ↵ < � the set

E↵ :=
�
x 2 Rd : #(x) � 2� , ✓(v(x), w)  ↵

 

has positive µ-measure. Moreover, for every x 2 E↵ there holds

✓(w, V (µ, x)) � ✓(v(x), V (µ, x))� ✓(v(x), w) � 2� � ↵ > � ,

which means that the intersection of V (µ, x) and the cone C := {y : ✓(w, y)  �}
contains only 0. Therefore, by [?, Lemma 7.5], E↵ contains a compact set F↵ with
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positive µ-measure which is C-null in the sense of [?, Paragraph 4.11], and then, by
[?, Lemma 4.12], there exists a sequence of smooth functions fn : Rd ! R such that,
for every x 2 Rd,

(a) 0  fn(x)  1
n ;

(b) 0  dwfn(x)  1, and dwfn(x) = 1 if x 2 F↵;

(c) |dW fn(x)|  1/ tan� where dW is the restriction of the di↵erential d to the
subspace W := w? (and | · | is the operator norm).

Using statements (b) and (c) we obtain that:

(d) there exists a finite constant L such that Lip(fn)  L for every n;

(e) for ↵ small enough there exists a constant � > 0 such that Tvfn(x) � � for
every x 2 F↵ and every n.

We finally consider the functions un := u + L�1"fn. Statement (a) implies that
un ! u uniformly; (d) implies Lip(un)  Lip(u) + "; (e) implies Tvun � Tvu+ �0 on
F↵, where �0 := L�1"�, and therefore, possibly passing to a subsequence, we have
that Tvun ! w in L1

w (µ) for some w 6= Tvu. ⇤

To prove Theorem ??(ii) for p < 1 we need the following lemma.

3.1. Lemma. Let 1  p < 1 and T : C1
c (Rd) ! Lp(µ) be a linear operator. Let

(un) be a sequence of functions in C1
c (Rd) such that un ! u uniformly and Tun ! w

in Lp
w(µ), that is, weakly. Then there exists a sequence (ũn) of convex combinations

of the elements of (un) such that (a) ũn ! u uniformly, and (b) T ũn ! w in Lp(µ),
that is, strongly.

Proof. Since Tun ! w weakly in Lp(µ), by the version of Mazur’s lemma stated
in [?, Lemma 10.19], for every n = 1, 2, . . . there exist an integer N(n) � n and for
every k with n  k  N(n) there exist real numbers ↵n

k � 0 with sum equal to 1
such that the functions

wn :=

N(n)X

k=n

↵n
k Tuk

converge to w strongly in Lp(µ). To conclude we set

ũn :=

N(n)X

k=n

↵n
k uk .

Indeed (b) follows from the identity T ũn = wn and the fact that wn ! w in Lp(µ).
Moreover, since ũn � u is a convex combination of the functions uk � u with k � n,
by the convexity of the supremum norm k · k there holds

kũn � uk  �n := sup
k�n

kuk � uk ,

and �n ! 0 because un ! u uniformly. Thus (a) is proved. ⇤

Proof of Theorem ??(ii), case p < 1. Let bv be the vector field defined in (??).
Then bv satisfies the assumptions of Theorem ??(ii), case p = 1, and we take (un)
to be the sequence given in that statement.
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Using the identity Tvu = |v|Tbv u and the fact that Tbv un ! w in L1
w (µ) with

w 6= Tbv u, we obtain

Tvun = |v|Tbv un ! w0 := |v|w in Lp
w(µ), and w0 6= Tvu.

Finally we use Lemma ?? to construct from (un) a new sequence (ũn) such that
Tvun ! w0 strongly in Lp(µ). It is easy to check that the sequence (ũn) satisfies all
requirements. ⇤

Proof of Corollary ??(i). It is well known that each of the operators T can be
extended using a suitable distributional definition to a continuous operator from
the Sobolev space W 1,1(Rd) to L1

w (L d); this means that T can be extended to a
continuous operator eT : Lip(Rd) ! L1

w (L d).
Since µ ⌧ L d, the space L1

w (L d) embeds continuously in L1
w (µ) and therefore

eT is also a continuous operator from Lip(Rd) to L1
w (µ), and this implies that T is

closable from Lip(Rd) to L1
w (µ).

Moreover, L1
w (µ) embeds continuously also in (Lp

w(µ))loc,
5 thus eT is also a contin-

uous operator from Lip(Rd) to (Lp
w(µ))loc, and this implies that T is closable from

Lip(Rd) to (Lp
w(µ))loc.

Finally both Lp
w(µ) and Lp(µ) embed continuously in (Lp

w(µ))loc, and this implies
that T is also closable from Lip(Rd) to Lp

w(µ) and Lp(µ). ⇤

Proof of Corollary ??(ii). By the assumption on µ, Theorem ?? implies that
V (µ, x) 6= Rd on a set of positive µ-measure. Then there exists an element ek of the
canonical base of Rd such that ek /2 V (µ, x) on a set of positive µ-measure.

Thus the constant vector field ek satisfies the assumption of Theorem ??(ii), and
therefore there exist a sequence of functions un 2 C1

c (Rd) such that un ! 0 in
Lip(Rd) and the k-th partial derivatives @kun converge to some w 6= 0 in Lp(µ) if
p < 1, and in L1

w (µ) if p = 1.
To conclude we notice that the features of the sequence (un) imply the non-

closability of the gradient from Lip(Rd) to Lp
w(µ), and even to Lp(µ) if p < 1;

the sequence of vector fields (un ek) implies the non-closability of the divergence,
and finally the sequence of maps (Un) given by Un(x) := x + un(x) ek implies the
non-closability of the Jacobian determinant. ⇤

Proof of Corollary ??. This statement follows from Corollary ??(ii) arguing as
in Remark ??(ii). ⇤

3.2. Remark. At this point it should be clear that Theorem ?? and Corollaries ??
and ?? can be extended to more general di↵erential operators. More precisely, let
T be an operator from C1

c (Rd;Rm) in Lp(µ;Rn) of the form

(Tu)k :=
mX

j=1

Tvjkuj (3.5)

where vjk are vector fields in Lp(µ) for every 1  j  m and 1  k  n, and Tvjk is
the directional derivative defined in (??). (Note that for p = 1 this class includes
all linear first order di↵erential operator with constant coe�cients.)

5 And even in Lp
w(µ) if µ is a finite measure.
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Then one can prove the following result: if vjk(x) 2 V (µ, x) for µ-a.e. x and every
j, k, then T can be extended to a continuous operator eT : Lip(Rd;Rm) ! Lp(µ;Rn),
namely the one obtained by replacing each Tvij in formula (??) by the extension eTvij

given in Theorem ??(i). In particular T is closable from Lip(Rd) to Lp
w(µ).

Conversely, if vjk(x) /2 V (µ, x) for a set of positive µ-measure of points x and for
at least one couple of indices j, k, then T is not closable from Lip(Rd) to Lp

w(µ), nor
from Lip(Rd) to Lp(µ) with p < 1, nor from Lq(µ) to Lp(µ).

4. Closability of directional derivatives from Lq
to Lp

4.1. Theorem. Let 1  p, q  1 and let p0, q0 denote the corresponding Hölder
conjugates. Let v be a vector field in Lp(µ), and let Tv : C1

c (Rd) ! Lp(µ) be the
directional derivative operator defined in (??). Assume that there exists a Borel
function ↵ on Rd such that

• ↵ 6= 0 µ-a.e.;

• ↵ 2 Lp0(µ) and ↵v 2 Lq0(µ);

• N := ↵vµ is a normal 1-current.

Then Tv is closable from Lq(µ) to Lp(µ).

4.2. Remark. Unlike Theorem ??(i), the closability result above is not accompanied
by any di↵erentiability result for the operator eTv obtained by closing the graph of
Tv from Lq to Lp.

For example, let µ be the restriction of the Lebesgue measure to any bounded
open set ⌦ in R2 and let v(x) := (1, 2x1) and ↵(x) := 1 for every x 2 R2. Then
the assumptions in Theorem ?? are satisfied for every 1  p, q  1, and eTvu = 0
for every function u : R2 ! R of the form u(x1, x2) := g(x2 � x21) with g : R ! R
bounded and Borel; moreover there exist plenty of u of this form which are not
di↵erentiable at any point, in any direction.

The rest of this section is devoted to the proof Theorem ??. Unspecified mea-
sures (as the expression ds that appears in some integrals) are always the Lebesgue
measure L 1. The proof relies on the next two lemmas.

4.3. Lemma. Let N = b⌧� be a normal 1-current with |b⌧ | = 1 �-a.e. Then N can
be decomposed as follows:

N =

Z m

0
[�s] ds (4.1)

where m is a suitable positive number and

(a) for every s 2 [0,m], �s : [0, Ls] ! Rd is a Lipschitz path parametrized by
arc-length, that is, Ls is the length of �s and |�0s(t)| = 1 for a.e. t 2 [0, Ls];

(b) |N | = � =
Rm
0 �s ds with �s :=

��[�s]
��;

(c) �0s(t) = b⌧(�s(t)) for a.e. s 2 [0,m] and a.e. t 2 [0, Ls];

(d) �s is the push-forward according to �s of the Lebesgue measure on [0, Ls].

Proof. This decomposition is a variant of a well-know result by S. Smirnov [?].
The result as stated can be found in [?, Theorem 3.1], except for statement (c),
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which can be proved as in [?, Theorem 5.5(ii)], and statement (d), which is a direct
consequence of (c) and the area formula. We refer to [?] or [?] for more details.6 ⇤

4.4. Lemma. Let � be a finite positive measure on Rd that can be decomposed as
� =

Rm
0 �s ds, and let (vn) be a sequence of functions such that vn ! v in L1(�).

Then there exists a subsequence (nk) such that vnk ! v in L1(�s) for a.e. s 2 [0,m].

Proof. Let gn(s) :=
R
|vn � v| d�s. Since

Rm
0 gn(s) ds = kvn � vkL1(�), we have

that gn ! 0 in L1([0,m]), and therefore there exists a subsequence (nk) such that
gnk(s) ! 0 for a.e. s 2 [0,m]. ⇤

Proof of Theorem ??. Since Tv is linear, it su�ces to prove that Tv is “closable
at 0”, namely that given a sequence (un) ⇢ C1

c (Rd) and w 2 Lp(µ) such that un ! 0
in Lq(µ) and Tvun ! w in Lp(µ), then w = 0.

Having set E := {x : v(x) = 0}, there holds Tvun(x) = 0 for every x 2 E and
every n, and therefore w(x) = 0 for µ-a.e. E. This means that it su�ces to prove
the statement above when µ is replaced by its restriction to Rd \ E.

In other words, we can freely assume that v 6= 0 µ-a.e.
We set ⌧ := ↵v, and then ⌧ 6= 0 µ-a.e. by the previous assumption.
We also set b⌧ := ⌧/|⌧ |; then |N | = |⌧ |µ and N = b⌧ |N |.
Since un ! 0 in Lq(µ) and |⌧ | 2 Lq0(µ), then un|⌧ | ! 0 in L1(µ) or, equivalently,

un ! 0 in L1(|⌧ |µ = |N |). Using the decomposition |N | =
Rm
0 �s ds in Lemma ??(b)

and Lemma ?? we have that, possibly passing to a subsequence in n, un ! 0 in
L1(�s) for a.e. s 2 [0,m], and then, thanks to Lemma ??(d),

un � �s ! 0 in L1([0, Ls]) for a.e. s 2 [0,m],

which in turn implies

(un � �s)0 ! 0 in D 0(0, Ls) for a.e. s 2 [0,m], (4.2)

where D 0(0, Ls) denotes the space of distributions on the interval (0, Ls).

On the other hand, Tvun = run · v converges to w in Lp(µ) by assumption, and
since ↵ 2 Lp0(µ), then run · (↵v) ! ↵w in L1(µ). Recalling that ↵v = ⌧ = b⌧ |⌧ |
we rewrite the last convergence as (run · b⌧)|⌧ | ! ↵w in L1(µ) or, equivalently,
run · b⌧ ! ↵w/|⌧ | in L1(|⌧ |µ = |N |), and arguing as above we obtain that, possibly
passing to a subsequence in n,

(run · b⌧) � �s ! (↵w/|⌧ |) � �s in L1([0, Ls]) for a.e. s 2 [0,m]. (4.3)

Thanks to Lemma ??(c) we obtain that, for every n and a.e. s 2 [0,m],

(run · b⌧) � �s = (run � �s) · �0s = (un � �s)0 a.e. in [0, Ls],

and then (??) becomes

(un � �s)0 ! (↵w/|⌧ |) � �s in L1([0, Ls]) for a.e. s 2 [0,m] . (4.4)

From (??) and (??) we infer that

(↵w/|⌧ |) � �s = 0 a.e. in [0, Ls] for a.e. s 2 [0,m].

6 For example, the precise meaning of the integrals of in formula (??) and statement (b), and
the correct measurability assumption on the map s 7! [�s].
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By Lemma ??(d) this means that ↵w/|⌧ | = 0 �s-a.e. and for a.e. s 2 [0,m], which,
by Lemma ??(b), implies

↵w/|⌧ | = 0 |N |-a.e., that is, (|⌧ |µ)-a.e.
Finally we use that ↵ 6= 0 and ⌧ 6= 0 µ-a.e. to conclude that w = 0 µ-a.e. ⇤

5. Closability of multilinear operators and metric currents

In Theorem ?? we extend Theorem ?? to the class of alternating k-linear dif-
ferential operators defined in Paragraph ??.7 We then study some closely related
objects, namely metric k-currents in Rd. The key point is that metric k-currents can
be naturally viewed as alternating k-linear di↵erential operators (Remark ??(iii)).

Before stating Theorem ?? we recall the definition of k-tangent bundle of a mea-
sure and then define the class of k-linear operators we are interested in.

5.1. k-tangent bundle. (See [?, Section 4] for more details.) Given a measure µ
on Rd and an integer k with 1  k  d, the k-tangent bundle Vk(µ, ·) is a Borel map
Vk(µ, ·) on Rd whose values are vector subspaces of the space ^k(Rd) of k-vectors in
Rd defined as follows: a k-vector v belongs to Vk(µ, x) if and only if there exists a
normal k-current N in Rd with @N = 0 such that (??) holds.8

Given a k-vector v in Rd, we denote by span(v) its supporting plane (or span),
that is, the smallest subspace W of Rd such that v agrees with a k-vector on W (cf.
[?], Paragraph 5.8 and Proposition 5.9).

Note that if v belongs to Vk(µ, x), then span(v) is contained in V (µ, x) ([?, Propo-
sition 5.6]). We do not know if the converse holds – namely if every k-vector v in Rd

such that span(v) ⇢ V (µ, x) belongs to Vk(µ, x) – except for the trivial cases k = 1
and k = d (see [?] for a more detailed discussion).

5.2. Alternating k-linear di↵erential operators. Let ⌧ be a k-vector field on
Rd (that is, a map from Rd to ^k(Rd)) which is bounded and Borel. We denote by
J⌧ the alternating k-linear di↵erential operator defined by

J⌧u := h⌧ ; du1 ^ · · · ^ duki (5.1)

for every u = (u1, . . . , uk) 2 (C1
c (Rd))k.9

In the next theorem we show that the closability and continuity properties of J⌧
are connected to the following two assumptions on ⌧ :

⌧(x) 2 Vk(µ, x) for µ-a.e. x, (5.2)

which in turn implies (cf. Paragraph ??)

span(⌧(x)) ⇢ V (µ, x) for µ-a.e. x. (5.3)

5.3. Theorem. Take ⌧ and J⌧ be as above.

7 For k = n this class includes the Jacobian determinant; for that particular operator Theorem ??
reduces to Corollary ??.

8 In other words, we have replaced the vector v and the normal 1-current N in the definition of
V (µ, x) by a k-vector and a normal k-current, respectively. In particular V1(µ, x) = V (µ, x).

9 Here dv denotes the di↵erential of the function v, intended as a 1-form, and h · ; · i is the duality
pairing of k-vectors and k-covectors.
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(i) If (??) holds, then every u 2 (Lip(Rd))k is di↵erentiable at µ-a.e. x 2 Rd with
respect to W (x) := span(⌧(x)), and the operator eJ⌧ : (Lip(Rd))k ! L1

w (µ)
given by

eJ⌧u(x) :=
⌦
⌧(x) ; dWu1(x) ^ · · · ^ dWuk(x)

↵
for µ-a.e. x, (5.4)

is well defined and extends J⌧ . Moreover eJ⌧ (u1, . . . , uk) is separately continuous
in each variable ui.

(ii) Conversely, if J⌧ (u1, . . . , uk) is separately continuous in each variable ui as a
map from C1

c (Rd) endowed with Lip-convergence to L1
w (µ), then (??) holds.

Accordingly, if (??) does not hold, then J⌧ is not closable from (Lip(Rd))k to
L1
w (µ).

(iii) If (??) holds, then eJ⌧ is continuous; it follows that J⌧ is closable from
(Lip(Rd))k to L1

w (µ).

5.4. Remark. As pointed out in Paragraph ??, we do not know if the su�cient
condition for closability (??) agrees with the necessary condition (??). Moreover we
do not know if the necessary condition (??) is also su�cient.

Proof of Theorem ??(i). Assumption (??) implies the existence of the di↵erential
dWu(x) for every u 2 Lip(Rd) and µ-a.e. x, and therefore eJ⌧u is well defined.

To prove the separate continuity of eJ⌧ , we first rewrite it in terms of the directional
derivative operators defined in (??). Given ui 2 Lip(Rd) for i = 1, . . . , k � 1, let v
be the (1-) vector field on Rd given by

v(x) := ⌧(x)x �dWu1 ^ · · · ^ dWuk�1

�
(5.5)

where x is the interior product of k-vectors and (k�1)-covectors (in this specific case,
vectors and covectors in the linear space W (x)), and define eTv according to (??).
Then, for every u 2 Lip(Rd),

eJ⌧ (u1, . . . , uk�1, u) =
⌦
⌧ ; dWu1 ^ · · · ^ dWuk�1 ^ dWu

↵

=
⌦
⌧ x(dWu1 ^ · · · ^ dWuk�1) ; dWu

↵
= hv ; dWui = Tvu .

Thus eJ⌧ (u1, . . . , uk�1, u) is continuous in u by Theorem ??(i). ⇤

Proof of Theorem ??(ii). We exploit again the connection between the operator
J⌧ and the directional derivative operators defined in (??). Given 1-covectors ↵i

with i = 1, . . . , k � 1, let v be the (1-) vector field on Rd given by

v(x) := ⌧(x)x(↵1 ^ · · · ^ ↵k�1) , (5.6)

and for every i let ui be the linear function on Rd such that dui = ↵i. Then for
every u 2 C1

c (Rd) there holds

J⌧ (u1, . . . , uk�1, u) =
⌦
⌧ ; ↵1 ^ · · · ^ ↵k�1 ^ du

↵

=
⌦
⌧ x(↵1 ^ · · · ^ ↵k�1) ; du

↵
= hv ; dui = Tvu .

Since J⌧ (u1, . . . , uk�1, u) is continuous in u, then Tv is also continuous, and then
Theorem ??(ii) implies v(x) 2 V (µ, x) for µ-a.e. x. Recalling (??) and using the
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fact that every (k � 1)-covector ↵ is a linear combination of simple covectors of the
form ↵1 ^ · · · ^ ↵k�1 we obtain that

⌧(x)x↵ 2 V (µ, x) for every ↵ 2 ^k�1(Rd) and µ-a.e. x,

and now (??) follows from the fact that span(⌧(x)) consists of all vectors of the form
⌧(x)x↵ with ↵ 2 ^k�1(Rd) (see [?, Proposition 5.9]).
Finally, the non-closability of J⌧ follows from the lack of continuity and the weak*
pre-compactness of bounded subsets of L1(µ). ⇤

Proof of Theorem ??(iii). Thanks to Theorems 1.1 and 1.2 in [?], assumption
(??) implies that there exists a normal k-current N = ⌧̃ µ̃ in Rd such that @N = 0,
and ⌧̃ and µ̃ extend ⌧ and µ in the sense specified in the proof of Theorem ??(i),
case p = 1; proof that we follow almost verbatim to obtain the continuity of eJ⌧ . ⇤

We recall now the definition of metric currents; see [?], [?] for more details.

5.5. Metric currents. Let (X, d) be a complete metric space, and let Lipb(X,R)
be the space of bounded Lipschitz functions on X. Given an k 2 N, a k-dimensional
metric current on X is a functional T : Lipb(X)⇥ (Lip(X))k ! R that satisfies the
following assumptions:

(i) linearity : T (f,⇡1, . . . ,⇡k) is linear in each variable;

(ii) continuity : for every f , T (f,⇡1, . . . ,⇡k) is sequentially continuous in the vari-
ables ⇡1, . . . ,⇡k with respect to pointwise convergence with uniformly bounded
Lipschitz constants;

(iii) locality : T (f,⇡1, . . . ,⇡k) = 0 whenever there exists i 2 {1, . . . , k} such that ⇡i
is constant on a neighbourhood of supp(f);

(iv) finite mass: there exists a finite measure µ on X such that, for every f and
every ⇡i, . . . ,⇡k,��T (f,⇡1, . . . ,⇡k)

��  Lip(⇡1) · · ·Lip(⇡k) · kfkL1(µ) . (5.7)

Finally, we define the support of T as the smallest closed set C ⇢ X such that
T (f,⇡1, . . . ,⇡k) = 0 whenever C \ supp(f) = ?.

5.6. Remarks. (i) Note that a metric current T is alternating in the variables
⇡1, . . . ,⇡k, that is, the value of T (f,⇡1, . . . ,⇡k) changes sign if we swap ⇡i and ⇡j
for any i, j (this follows from the chain-rule in [?, Theorem 3.5]).

(ii) If T has compact support, the continuity assumption (ii) is equivalent to
say that T (f,⇡1, . . . ,⇡k) is sequentially continuous in the variables ⇡1, . . . ,⇡k with
respect to the usual Lip-convergence.

(iii) Estimate (??) implies that T can be extended by continuity to all f 2 L1(µ),
and therefore T can be viewed as a (k-linear, alternating) operator that to every
(⇡1, . . . ,⇡k) 2 (Lip(X))k associate an element of (L1(µ))0 = L1(µ). If T has com-
pact support, this operator is continuous from (Lip(X))k to L1

w (µ).

In the rest of this section X is Rd endowed with the usual Euclidean distance.
In this setting it is natural to compare metric currents and classical ones: the basic
connection between these two notions is described in Paragraph ??; in Theorem ??
we give a new and more detailed description of such connection.
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5.7. From metric to classical currents. To every metric k-current T on Rd with
compact support one can associate a classical k-current eT defined as follows (cf. [?,
Theorem 11.1]):

⌦ eT ; !
↵
:=

X

i2I(d,k)

T (!i, xi1 , . . . , xik) (5.8)

for every k-form ! of class C1
c (Rd), written in coordinates as

! =
X

i2I(d,k)

!i dxi1 ^ · · · ^ dxik ,

where I(d, k) is the set of multi-indices i = (i1, . . . , ik) with 1  i1 < · · · < ik  d.
One easily checks that for every f,⇡1, . . . ,⇡K 2 C1

c (Rd) there holds

T (f,⇡1, . . . ,⇡k) =
⌦ eT ; f d⇡1 ^ · · · ^ d⇡k

↵
. (5.9)

5.8. Theorem. The following statements hold:

(i) Let T be a metric k-current on Rd with compact support. Then there exists a
finite measure µ with compact support and a bounded k-vector field ⌧ on Rd

such that (??) holds, that is, W (x) := span(⌧(x)) is contained in V (µ, x) for
µ-a.e. x 2 Rd, and

T (f,⇡1, . . . ,⇡k) =

Z

Rd
f h⌧ ; dW⇡1 ^ · · · ^ dW⇡ki dµ (5.10)

for all f 2 Lipb(Rd) and all ⇡1, . . . ,⇡k 2 Lip(Rd).

(ii) On the other hand, given a finite measure µ with compact support and a bounded
k-vector field ⌧ such that (??) holds, that is, ⌧(x) 2 Vk(µ, x) for µ-a.e. x 2 Rd,
then formula (??) defines a metric k-current T with compact support.

5.9. Remarks. (i) The assumption that T and µ have compact support in state-
ments (i) and (ii) above is only needed to express the continuity assumption in
the definition of metric currents (see Paragraph ??) in terms to the usual Lip-
convergence (cf. Remark ??(ii)), and it can be removed with some care.

(ii) A slight modification of the proof gives the following generalization of state-
ment (i): a functional T : Lipb(Rn) ⇥ (Lip(Rd))k ! R admits an integral repre-
sentation as in (??) if and only if T satisfies all assumptions in the definition of
metric currents except continuity, which is replaced by the following weaker as-
sumption: T (f,⇡1, . . . ,⇡k) is separately continuous in each variable ⇡i with respect
to Lip-convergence.

(iii) The assumption ⌧(x) 2 Vk(µ, x) for µ-a.e. x 2 Rd in statement (ii) is equivalent
to say that ⌧µ is a flat chain with finite mass (see Proposition ??(ii) below). Thus
formula (??) defines a map from the space of flat chains with finite mass into metric
k-currents,10 which is clearly a right inverse of the map T 7! eT defined in (??). The
Flat Chain Conjecture (see [?, Section 11], and Theorem ??) states that this map
is a bijection, that is, eT is a flat chain with finite mass for every metric current T .

10 This map has been already defined in [?, Theorem 5.5], but in a less explicit form.
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Proof of Theorem ??(i). Let eT be the (classical) current defined in (??). Esti-
mate (??) yields ��⌦ eT ; !

↵��  Ck!kL1(µ)

where C := #(I(k, d)) =
�d
k

�
and µ is the measure in Paragraph ??(iv). Thus eT

has finite mass and can be written as eT = ⌧µ where ⌧ is a bounded k-vector field.
Recalling (??) we obtain that for every f,⇡1, . . . ,⇡k 2 C1

c (Rd) there holds

T (f,⇡1, . . . ,⇡k) =
⌦ eT ; f d⇡1 ^ · · · ^ d⇡k

↵

=

Z

Rd
h⌧ ; d⇡1 ^ · · · ^ d⇡ki f dµ =

Z

Rd
J⌧ (⇡1, . . .⇡k) f dµ ,

(5.11)

where J⌧ : (C1
c (Rn))k ! L1(µ) is defined in (??).

Since T is continuous in the variables ⇡1, . . . ,⇡k with respect to Lip-convergence
(cf. Paragraph ??(ii) and Remark ??(ii)), identity (??) implies that J⌧ is a contin-
uous operator from (C1

c (Rn))k, endowed with Lip-convergence, to L1
w (µ).

Then Theorem ??(ii) implies that span(⌧(x)) ⇢ V (µ, x) for µ-a.e. x 2 Rd, and
therefore the integral at the right-hand side of (??) is well defined.

To conclude we notice that identity (??) holds for f,⇡1, . . . ,⇡k 2 C1
c (Rd) by (??),

and can be extended to f 2 Lipb(Rd) and ⇡1, . . . ,⇡k 2 Lip(Rd) by continuity.
Indeed, the continuity of the left-hand side of (??) follows from the definition of

metric currents, while the separate continuity of the right-hand side with respect to
each of the variables f,⇡1, . . . ,⇡k follows from the separate continuity of the operator
eJ⌧ proved in Theorem ??(i). ⇤

Proof of Theorem ??(i). Formula (??) can be re-written as

T (f,⇡1, . . . ,⇡k) =

Z

Rd

eJ⌧ (⇡1, . . . ,⇡k) f dµ (5.12)

where eJ⌧ is defined as in (??). Then T satisfies the continuity assumption in the
definition of metric currents because eJ⌧ is continuous from (Lip(Rn))k to L1

w (µ)
(Theorem ??(iii)). It is immediate to check that T satisfies all other assumptions in
the definition of metric currents. ⇤

We conclude this section by pointing out that the Flat Chain Conjecture is equiv-
alent to the converse of Theorem ??(iii) and Theorem ??(ii). Before giving a precise
statement we recall the definition of flat chains and some useful characterizations.

Flat chains. The space of k-dimensional flat chains in Rd is defined as the closure
of k-normal currents with respect to the flat norm. The next statement gives some
characterizations of flat chains with finite mass.

5.10. Proposition. Let T = ⌧µ be a k-current with finite mass in Rd, where µ is
a finite measure and ⌧ a k-vector field such that ⌧ 6= 0 µ-a.e.

(i) If k = d, T is a flat chain if and only if µ ⌧ L d.

(ii) If k  d, T is a flat chain if and only if (??) holds.

(iii) if k < d, T is a flat chain if and only if it can be written as the restriction of
a normal k-current to a Borel set.
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Proof. The proof of statement (i) is immediate. Statement (ii) follows from [?,
Theorem 1.2]. Statement (iii) follows from [?, Theorem 1.1]. ⇤

5.11. Theorem. Let k = 1, . . . , d. The following statements are equivalent:

(i) (Flat Chain Conjecture) Let T be a metric k-current. Then the current eT
defined in (??) is a flat chain.

(ii) (Converse of Theorem ??(ii)) Let T be a metric k-current, and let µ and ⌧ be
as in Theorem ??(i). Then (??) holds.

(iii) (Converse of Theorem ??(iii)) Let µ be a finite measure, ⌧ a bounded k-vector
field, and J⌧ the operator defined in (??). If J⌧ is closable from (Lip(Rd))k to
L1
w (µ) then (??) holds.

Proof. The equivalence of statements (i) and (ii) is an immediate consequence of
Theorem ?? and Proposition ??(ii). The equivalence of statements (ii) and (iii) is
an immediate consequence of the following facts: J⌧ is closable if and only if eJ⌧ is
well-defined and continuous (Theorem ??), and the continuity of eJ⌧ is equivalent to
that of T because of identity (??). ⇤

The following corollary is well known (see [?, Theorem 1.6] and [?, Theorem 1.15],
and the more recent proofs [?], [?]); we simply remark that it follows from our
previous results as well.

5.12. Corollary. The Flat Chain Conjecture is true for k = 1 and k = d.

Proof. For k = 1 and k = d properties (??) and (??) are equivalent (the case
k = 1 is trivial, while the case k = d follows from Theorem ??). This means that
Theorem ??(i) implies statement (ii) in Theorem ??, which implies the Flat Chain
Conjecture by the very same theorem. ⇤
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