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We prove that for every Borel vector field f, there exists a function u
of class C

1
whose gradient Du agrees with f outside a set of arbitrary

small measure.

Introduction

It is well-known that given any vector field f of class C
1 on a simply

connected open set ⌦ ⇢ RN , there exists a function whose gradient is f if
and only if curl f = 0, where curl f is the function of ⌦ into RN⇥N defined by

(curl f)j,i =
@fi
@xj

� @fj
@xi

for all j, i = 1, . . . , N .

By using convolutions, the analogous result may be easily proved when f is a
distribution and curl f = 0 in the distributional sense.

In this paper we prove that if f is a Borel vector field on ⌦ and " is a
positive real number, then there exists a function u of class C

1 such that f
agrees with Du outside an open set A with measure less than ". Notice that
this holds even if f is a field such that curl f 6= 0 everywhere; it may easily
be proved that in this case the set A must be dense in ⌦.

Our main result is the following.

Theorem 1. Let ⌦ be a open subset of RN (N > 1) with finite measure,

and let f : ⌦ ! RN
be a Borel function. Then, for every " > 0, there exist

an open set A ⇢ ⌦ and a function u 2 C
1
0 (⌦) such that

|A|  "|⌦| (1a)

f = Du in ⌦ \A, (1b)

kDukp  C "1/p�1kfkp for all p 2 [1,1], (1c)

where C is a constant which depends on N only.
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We add some remarks and further results.

Remark 2. Notice that when p = 1 the condition |⌦| < 1 may be dropped
and Theorem 1 may be stated as follows:

Let ⌦ be an open subset of RN and let f : ⌦ ! RN be a Borel function.
Then, for every " > 0, there exists a function u 2 C

1
0 (⌦) such that f = Du

outside an open set with measure less than " and kDuk1  Ckfk1 (C is the
same constant of Theorem 1).

If the function u in the statement of Theorem 1 is allowed to be taken in
the space BV , (1a), (1b) and (1c) may be strenghtened as follows.

Theorem 3. Let ⌦ be an open subset of RN
and let f : ⌦ ! RN

be

a function in L1
. Then there exists a function u 2 BV (RN ) and a Borel

function g : ⌦ ! RN
such that

Du = f · L N + g · H N�1, (2a)Z
|g| dH N�1  Ckfk1, (2b)

where L
N

is the Lebesgue measure in RN
, H

N�1
is the (N �1) dimensional

Hausdor↵ measure, and C is a constant which depends on N only.

Remark 4. In Theorem 1, (1c) gives an upper bound of the Lp norm of the
gradient of u which essentially depends on the measure of the set A. We may
ask whether this is the best estimate we can get in general, that is, whether
for some p formula (1c) may be replaced with

kDukp  �(") kfkp,

where � is a function such that lim"!0 �(") "1�1/p = 0.
The answer is “no” as the following proposition shows.

Proposition 5. Let ⌦ be an open subset of RN
with finite measure and

let f : ⌦ ! RN
be a Borel function. Let {un} be a sequence in W 1,p(⌦) and

let An =
�
x 2 ⌦ : f(x) 6= Dun(x)

 
. If we have that

lim
n!1

|An| = 0, and lim inf
n!1

|An|1�1/pkDunkp = 0, (3)

then curl f = 0 as a distribution on ⌦.

The proposition above shows that if curl f 6= 0 as a distribution on ⌦ (for
example, take N = 2 and f(x, y) = (y, 0) ), then no sequence {un} ⇢ W 1,p(⌦)
can satisfy (3).
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Theorem 1 can be applied to study integral functionals on Sobolev space of
the form (cf. [2])

F (u,A) =

Z

A
g
�
x,Du(x)

�
dx

where ⌦ is an open subset of RN , g : ⌦⇥RN ! [�1,1] is a Borel function,
A varies among all open subsets of ⌦ and u varies in the space W 1,p(⌦). We
may ask in which sense the function g which represents F is determined.

Corollary 6. Let ⌦ be an open subset of RN
and let h and g be two

Borel functions of ⌦⇥ RN
into [�1,1] such that for every u 2 C1

c (⌦)

h
�
x,Du(x)

�
= g

�
x,Du(x)

�
a.e. in ⌦, (4)

that is, h and g represent the same integral functional. Then there exists a

negligible Borel set N ⇢ ⌦ such that h(x, s) = g(x, s) for all x 2 ⌦ \ N and

s 2 RN
.

Proof of the results

To begin with, we prove the following auxiliary lemma.

Lemma 7. Let ⌦ be an open subset of RN
with finite measure, let f : ⌦ !

RN
be a continuous function and let ⌘ and " be positive real numbers. Then

there exist a compact set K ⇢ ⌦ and a function u 2 C
1
c (⌦) such that

|⌦ \K|  "|⌦| (5a)

|f �Du|  ⌘ on K, (5b)

kDukp  C 0"1/p�1kfkp for all p 2 [1,1], (5c)

where C 0
is a constant which depends on N only.

Proof. Of course we may suppose " < 1. Let K 0 be a compact subset of
⌦ such that |⌦ \ K 0| < |⌦| "/2 ; there exists a positive � such that, for all
x 2 K 0, y 2 ⌦

|x� y| < � ) |f(x)� f(y)| < ⌘ and Q(x, 4�) ⇢ ⌦ (6)

where Q(x, 4�) is the cube with center x and side 4�.
Let {Ti}i2I be the (finite) family of all closed cubes T whose sides’ length

is �, whose centers yi belong to lattice (�Z)N and which intersect K: by the
choice of �, each Ti is included in ⌦. For all i 2 I, let Qi be the closed cube
with the same center of Ti and side (1� "/(2N)) � ; let ai be the mean value
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of f on Ti and let �i be a function of class C
1 such that �i ⌘ 1 in Qi, �i ⌘ 0

outside Ti and

kD�ik1  8N

�"
. (7)

For all x 2 RN set

u(x) =
X

i

�i(x) < ai, x� yi > . (8)

It is easy to see that u is a function of class C
1 whose support is included

in
S

i Ti ⇢ ⌦ and whose gradient is ai within each cube Qi. Finally we set
K =

S
i Qi. We have to prove that u and K satisfy (5a), (5b) and (5c).

(5a): By the choice of each Qi we have that

|Ti \Qi| 
h
1�

⇣
1� "

2N

⌘Ni
|Ti| 

"

2
|Ti| (9)

and then, as each Ti is a subset of ⌦ by (6),

|⌦ \K|  |⌦ \K 0|+
X

i

|Ti \Qi|  "|⌦|.

(5b): By (8), Du is equal to the mean value of f on Ti within each Qi

and then |Du(x)� f(x)|  ⌘ within each Qi by (6).

(5c): By (8) we have that

Du(x) =
X

i

D�i(x) < ai, x� yi > +
X

i

ai �i(x);

and then, for all p 2 [1,1[, taking into account (6), (7) and recalling that
D�i = 0 outside Ti \Qi and that ai is the mean value of f on Ti,

kDukp 
X

i

⇣
kD�ik1|ai|

p
N�

⌘p
|Ti \Qi|

�1/p
+

X

i

|ai|p|Ti|
�1/p


X

i

⇣
8N3/2|ai|"�1

⌘p
"|Ti|

�1/p
+

X

i

|ai|p|Ti|
�1/p


�
8N3/2"1/p�1 + 1

�X

i

���
1

|Ti|

Z

Ti

f dx
���
p
|Ti|

�1/p


�
8N3/2"1/p�1 + 1

� h Z

⌦
|f |pdx

i1/p
.
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As the same inequality hold when p = 1 and " < 1, Lemma 7 is proved.

Proof of Theorem 1. Of course we may suppose " < 1 and that f is not
almost everywhere 0.

First Case. f is a continuous bounded function.

Let {⌘n} be a sequence of positive real numbers; by induction on n we build
a sequence

�
un,Kn, fn

 
as follows: set u0 = 0, K0 = ø and f0 = f . Let n > 0

and let un�1, Kn�1 and fn�1 be chosen. Apply Lemma 7 to obtain a compact
set Kn ⇢ ⌦ and a function un 2 C

1
c (⌦) such that

|⌦ \Kn|  |⌦|2�n" (10a)

|fn�1 �Dun|  ⌘n on Kn, (10b)

kDunkp  C 0(2�n")1/p�1kfn�1kp for all p 2 [1,1]. (10c)

Define fn(x) = fn�1(x)�Dun(x) for all x 2 Kn and apply Titze’s lemma to
extend fn to the whole of ⌦ so that

sup
x 2 ⌦

|fn(x)| = sup
x 2 Kn

|fn(x)|  ⌘n. (11)

We set A = ⌦ \
T

n Kn, u =
P

n un and then choose a sequence {⌘n} so that
these definitions make sense and satisfy (1a), (1b) and (1c). By (10a) we
obtain

|A| 
1X

1

|⌦ \Kn| 
1X

1

|⌦|2�n" = |⌦|"

and (1a) holds. For all p 2 [1,1], (10c) and (11) yield

1X

1

kDunkp 
1X

1

C 0"1/p�12nkfn�1kp

 2C 0"1/p�1

"
kf0kp +

1X

1

2nkfnk1|⌦|1/p
#

 2C 0"1/p�1kfkp

"
1 +

|⌦|1/p

kfkp

1X

1

2n⌘n

#
.

As f is bounded and not almost everywhere 0, an easy computation shows

that the function p 7! |⌦|1/p
.
kfkp is continuous and positive on [1,1] ,

hence it has a positive upper bound a and we may choose all ⌘n small enough
to have that

P1
1 2n⌘n�1  1/a and then

1X

1

kDunkp  4C 0"1/p�1kfkp.
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Poincaré’s inequality (cf. [1, Chap. 9]) shows that the series
P

n un converges
in the C

1
0 (⌦) norm to a function u that satisfies (1c) with C = 4C 0. By

the definition of fn we have that, for all x in ⌦ \ A and for all integers m,
f(x)�

Pm
1 Dun(x) = fm(x) and then by (10b)

|f(x)�Du(x)|  |fm(x)| +
1X

m+1

|Dun(x)|  ⌘m +
1X

m+1

|Dun(x)|.

Hence (1b) immediately follows because the sequences ⌘m and
P1

m kDunk1
converge to 0.

Second Case. f is a Borel function.

Let " > 0 be fixed. There exists a positive r such that |B| < "/4, where
B = {x : |f(x)| > r}. By Lusin’s theorem there exists a continuous function
f1 : ⌦ ! RN which agrees with f outside a Borel set C with |C| < |B|. Set

f2(x) =

8
<

:

f1(x) if |f1(x)|  r,

r f1(x)
�
|f1(x)| if |f1(x)| > r.

The function f2 is bounded and continuous, agrees with f outside C [B and
since |C [B| < "/2 , there exists an open set A1 such that |A1| < "/2 and f2
agrees with f outside A1. Moreover, for all p 2 [1,1[,

Z

⌦
|f2|pdx 

Z

⌦\(B[C)
|f |pdx +

Z

B[C
rpdx


Z

⌦\(B[C)
|f |pdx + 2

Z

B
|f |pdx  2

Z

⌦
|f |pdx ,

that is, kf2kp  2 kfkp for all p (infact that the same inequality holds for
p = 1).

As f2 is bounded and continuous we may apply Theorem 1 to obtain an
open set A2 with |A2|  "/2 and a function u 2 C

1
c (⌦) such that Du = f2

outside A2 and kDukp  4C 0("/2)1/p�1kf2kp for all p 2 [1,1].
Hence Du = f outside the set A1[A2, |A1[A2|  ", and for all p 2 [1,1],

kDukp  4C 0("/2)1/p�1kf2kp  16C 0"1/p�1kfkp.

Then Theorem 1 holds with A = A1 [A2.

The proof of Theorem 3 is quite similar to the one of Theorem 1; with no
loss in generality we may suppose that ⌦ = RN .
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To begin with, we prove an auxiliary lemma that will be used instead of
Lemma 7.

Lemma 8. Let f 2 L1(RN ,RN ) and let ⌘ > 0. Then there exist a

function u 2 BV (RN ) and two Borel functions ga and gs such that Du =
ga · L N + gs · H N�1

and

kuk1  kfk1 (12a)

kf � gak1  ⌘ (12b)Z
|gs|dH N�1  C 0kfk1. (12c)

where C 0
is a constant which depends on N only.

Proof. Let � be a fixed positive number. Let {Ti}i2I be the family of all
open cubes whose sides’ length is � and whose centers yi belong to lattice
(�Z)N . For all i 2 I let ai be the mean value of f on Ti , let �i be the
characteristic function of the set Ti , let ⌫i be the inner normal of @Ti (namely,
if x is a smooth point for @Ti then ⌫i(x) is the inner normal of @Ti in x,
otherwise ⌫i(x) is 0 ). For all x 2 RN set

u�(x) =
X

i

< ai, x� yi > �i(x)

An easy computation shows that u� belongs to BV and Du� = ga� ·L N + gs� ·
H

N�1 where ga� (x) =
P

i ai�i(x) and gs�(x) =
P

i < ai, x � yi > ⌫i(x).
Then

ku�k1 
X

i

p
N� |ai| · |Ti| 

p
N�kfk1

kga� k1 
X

i

|ai| · |Ti|  kfk1
Z

|gs� |dH N�1 
X

i

p
N�|ai|H N�1

�
@Ti

�

X

i

|ai|2N3/2|Ti|  2N3/2kfk1.

Now it is enough to show that � may be chosen so that (12a), (12b) and (12c)
hold. Hence the proof is complete if we show that

lim
�!0

kf � ga� k1 = 0. (13)

Let �� : L1 ! L1 be the linear operator taking each f into ga� . By construc-
tion we have that k��k  1 for all � and an easy computation shows that
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lim�!0 k��f � fk1 = 0 whenever f 2 Cc. Hence (13) follows because Cc is
dense in L1.

Proof of Theorem 3. As in the proof of Theorem 1 we build by induction
on n a sequence {un, fn} as follows.

Set u0 = 0 and f0 = f . Let n > 0 and suppose that un�1 and fn�1

has been chosen. Apply Lemma 8 to obtain a function un 2 BV such that
Dun = gan · L N + gsn · H N�1 and

kunk1  kfn�1k1, kgan � fn�1k1  2�nkfk1, and
Z

|gsn|dH N�1  C 0kfn�1k1.

Set fn = fn�1 � gan.
Hence the series

P
n un converges in BV norm to a function u and Du =

ga · L
N + gs · H

N�1 with ga =
P

n g
a
n, gs =

P
n g

s
n. Arguing as in the

proof of Theorem 1 we get kuk1  2kfk1 , ga = f almost everywhere andR
|gs|dH N�1  2C 0kfk1.

Proof of Proposition 5. Possibly passing to a subsequence we may assume

lim
n!1

|An|1�1/pkDunkp = 0. (14)

For all n set

gn(x) =

( |Dun(x)| if x 2 An,

0 if x /2 An.

Then |Dun|  |f | + gn everywhere by definition of An and kgnk1 
|An|1�1/pkDunkp by Schwartz-Hölder inequality. Now (14) implies that kgnk1
converges to 0; Hence {Dun} is a sequence of uniformly integrable functions
and Dunford-Pettis theorem (cf. [4, Theorem II.25]) ensures that it has at
least one limit point in w � L1(⌦,RN ). This limit point must be f , that is,
Dun converges to f in the weak topology of L1.

Then curl f = limn curlDun in the sense of distributions and the conclusion
follows immediately because curlDu = 0 for any distribution D

0(⌦) (cf. [5,
Chap. 6]).

Proof of Corollary 6. Set B =
�
(x, s) : h(x, s) 6= g(x, s)

 
and let ⇡ be the

projection of ⌦ ⇥ RN on ⌦. By the Aumann measurable selection theorem
(cf. [3, Theorems III.22 and III.23]) we have

(i) ⇡(B) is Lebesgue measurable

(ii) there exists a Lebesgue measurable function f : ⇡(B) ! RN whose
graph is a subset of B.
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As ⇡(B) is Lebesgue measurable, it is enough to show that |⇡(B)| = 0.
By contradiction, suppose that |⇡(B)| > 0; then, by (ii) and Theorem 1 there
exists a function u 2 C

1(RN ) such that f = Du in a compact set C of positive
measure. Therefore

h
�
x,Du(x)

�
6= g

�
x,Du(x)

�
for every x 2 C ,

and this contradicts the assumption (4).
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