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MEROMORPHIC CONNECTIONS

THE CLASSICAL POINCARÉ-BENDIXSON THEOREM

THEOREM (POINCARÉ-BENDIXSON)

Let X be a smooth vector field on the unit sphere S2 ⊂ R3.
Let γ : [0,T)→ S2 be a maximal integral curve of X.
Then the ω-limit set of γ either cointans a singular point of X or is a periodic
integral curve. Moreover, a recurrent integral curve is necessarily periodic.
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MEROMORPHIC CONNECTIONS

A P-B THEOREM FOR MEROMORPHIC CONNECTIONS

THEOREM (A.-TOVENA, 2009)

Let ∇ be a meromorphic connection on P1(C) ∼= S2.
Let σ : [0,T)→ P1(C) \ {poles} be a maximal geodesic.

Then either
1 the ω-limit set of σ is a pole p0 of ∇ (and hence σ(t)→ p0 as t→ T); or
2 the ω-limit set of σ is the support of a closed geodesic; or
3 the ω-limit set of σ is a simple cycle of saddle connections; or
4 σ intersects itself infinitely many times.

A recurrent geodesic either is closed or intersects itself infinitely many times.
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A recurrent geodesic either is closed or intersects itself infinitely many times.

σ geodesic iff ∇σ̇σ̇ = 0 iff σ̈ + (k ◦ σ)σ̇2 = 0, with k meromorphic.

The poles of∇ are the poles of k. Residues: Resp(∇).
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Let σ : [0,T)→ P1(C) \ {poles} be a maximal geodesic. Then either

1 the ω-limit set of σ is a pole p0 of ∇ (and hence σ(t)→ p0 as t→ T); or
2 the ω-limit set of σ is the support of a closed geodesic; or

3 the ω-limit set of σ is a simple cycle of saddle connections; or
4 σ intersects itself infinitely many times.

A recurrent geodesic either is closed or intersects itself infinitely many times.

Closed does not mean periodic. Speed depends on∑
poles inside

Im Resp(∇) .
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Let σ : [0,T)→ P1(C) \ {poles} be a maximal geodesic. Then either

1 the ω-limit set of σ is a pole p0 of ∇ (and hence σ(t)→ p0 as t→ T); or
2 the ω-limit set of σ is the support of a closed geodesic; or
3 the ω-limit set of σ is a simple cycle of saddle connections; or

4 σ intersects itself infinitely many times.

A recurrent geodesic either is closed or intersects itself infinitely many times.

Saddle connection: a geodesic connecting two poles.
Simple cycle of saddle connections: a Jordan curve composed by saddle

connections.
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THEOREM (A.-TOVENA, 2009)

Let ∇ be a meromorphic connection on P1(C) ∼= S2.
Let σ : [0,T)→ P1(C) \ {poles} be a maximal geodesic. Then either

1 the ω-limit set of σ is a pole p0 of ∇ (and hence σ(t)→ p0 as t→ T); or
2 the ω-limit set of σ is the support of a closed geodesic; or
3 the ω-limit set of σ is a simple cycle of saddle connections; or
4 σ intersects itself infinitely many times.

A recurrent geodesic either is closed or intersects itself infinitely many times.

∑
poles inside

Re Resp(∇) = −1 .
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MEROMORPHIC CONNECTIONS

A P-B THEOREM FOR MEROMORPHIC CONNECTIONS

THEOREM (A.-TOVENA, 2009)

Let ∇ be a meromorphic connection on P1(C) ∼= S2.
Let σ : [0,T)→ P1(C) \ {poles} be a maximal geodesic. Then either

1 the ω-limit set of σ is a pole p0 of ∇ (and hence σ(t)→ p0 as t→ T); or
2 the ω-limit set of σ is the support of a closed geodesic; or
3 the ω-limit set of σ is a simple cycle of saddle connections; or
4 σ intersects itself infinitely many times.

A recurrent geodesic either is closed or intersects itself infinitely many times.

∑
poles inside a loop

Re Resp(∇) ∈ (−3/2,−1) ∪ (−1,−1/2) .
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MEROMORPHIC CONNECTIONS

A P-B THEOREM FOR MEROMORPHIC CONNECTIONS

THEOREM (A.-TOVENA, 2009)

Let ∇ be a meromorphic connection on P1(C) ∼= S2.
Let σ : [0,T)→ P1(C) \ {poles} be a maximal geodesic. Then either

1 the ω-limit set of σ is a pole p0 of ∇ (and hence σ(t)→ p0 as t→ T); or
2 the ω-limit set of σ is the support of a closed geodesic; or
3 the ω-limit set of σ is a simple cycle of saddle connections; or
4 σ intersects itself infinitely many times.

A recurrent geodesic either is closed or intersects itself infinitely many times.

We have examples of 1, 2 and 4, but not (yet?) of 3.
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MEROMORPHIC CONNECTIONS

INGREDIENTS IN THE PROOF

Study of geodesics for holomorphic connections in simply connected
surfaces.

The Gauss-Bonnet theorem.

A sort of Poincaré return map.
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HOMOGENEOUS VECTOR FIELDS

THE LEAU-FATOU FLOWER THEOREM

A (germ of) holomorphic function tangent to the identity of order ν ≥ 1:

f (z) = z + aν+1zν+1 + · · ·
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HOMOGENEOUS VECTOR FIELDS

CAMACHO’S THEOREM

THEOREM (CAMACHO, 1978)
Any holomorphic function tangent to the identity of order ν ≥ 1 is locally
topologically conjugated to the time 1-map of the homogeneous vector field

Q = zν+1 ∂

∂z
.
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HOMOGENEOUS VECTOR FIELDS

HOMOGENEOUS VECTOR FIELDS

DEFINITION

A homogeneous vector field in C2 of degree ν + 1 ≥ 2 is a vector field

Q = Q1(z1, z2)
∂

∂z1
+ Q2(z1, z2)

∂

∂z2

where Q1, Q2 are homogeneous polynomials of degree ν + 1.

The time 1-map of a homogeneous vector field is tangent to the identity of
order ν:

f (z) = z + (Q1,Q2) + · · · .
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DEFINITION

A homogeneous vector field in C2 of degree ν + 1 ≥ 2 is a vector field

Q = Q1(z1, z2)
∂

∂z1
+ Q2(z1, z2)

∂

∂z2

where Q1, Q2 are homogeneous polynomials of degree ν + 1.

The time 1-map of a homogeneous vector field is tangent to the identity of
order ν:

f (z) = z + (Q1,Q2) + · · · .

CONJECTURE

Every generic map tangent to the identity of order ν is locally topologically
conjugated to the time-1 map of a homogeneous vector field.
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HOMOGENEOUS VECTOR FIELDS

CHARACTERISTIC DIRECTIONS

DEFINITION

A characteristic direction for a homogeneous vector field Q is a direction
[v] ∈ P1(C) such that the characteristic line Lv = Cv is Q-invariant.

Either Q has finitely many characteristic directions or all directions are
characteristic (dicritical vector field).
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CHARACTERISTIC DIRECTIONS

DEFINITION

A characteristic direction for a homogeneous vector field Q is a direction
[v] ∈ P1(C) such that the characteristic line Lv = Cv is Q-invariant.

Either Q has finitely many characteristic directions or all directions are
characteristic (dicritical vector field).

REMARK

The dynamics inside characteristic lines is 1-dimensional.
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HOMOGENEOUS VECTOR FIELDS

INTEGRAL CURVES AND GEODESICS

Let [·] : C2 \ {O} → P1(C) be the canonical projection.

THEOREM (A.-TOVENA, 2009)

Let Q be a non-dicritical homogeneous vector field in C2, and let Ω ⊂ C2 be
the complement of the characteristic lines. Then there exists a meromorphic
connection∇ on P1(C) whose poles are the characteristic directions of Q
such that a curve γ : [0,T)→ Ω is an integral curve of Q if and only if [γ] is a
geodesic for∇.

COROLLARY

Let Q be a homogeneous vector field in C2. Then a recurrent maximal integral
curve γ : [0,T)→ C2 either is periodic or [γ] : [0,T)→ P1(C) intersects
itself infinitely many times.

MARCO ABATE (UNIVERSITÀ DI PISA) P-B THEOREMS IN HOLOMORPHIC DYNAMICS ISAAC 2009 9 / 12



HOMOGENEOUS VECTOR FIELDS

INTEGRAL CURVES AND GEODESICS

Let [·] : C2 \ {O} → P1(C) be the canonical projection.

THEOREM (A.-TOVENA, 2009)

Let Q be a non-dicritical homogeneous vector field in C2, and let Ω ⊂ C2 be
the complement of the characteristic lines. Then there exists a meromorphic
connection∇ on P1(C) whose poles are the characteristic directions of Q
such that a curve γ : [0,T)→ Ω is an integral curve of Q if and only if [γ] is a
geodesic for∇.

COROLLARY

Let Q be a homogeneous vector field in C2. Then a recurrent maximal integral
curve γ : [0,T)→ C2 either is periodic or [γ] : [0,T)→ P1(C) intersects
itself infinitely many times.

MARCO ABATE (UNIVERSITÀ DI PISA) P-B THEOREMS IN HOLOMORPHIC DYNAMICS ISAAC 2009 9 / 12



HOMOGENEOUS VECTOR FIELDS

INTEGRAL CURVES AND GEODESICS

Let [·] : C2 \ {O} → P1(C) be the canonical projection.

THEOREM (A.-TOVENA, 2009)

Let Q be a non-dicritical homogeneous vector field in C2, and let Ω ⊂ C2 be
the complement of the characteristic lines. Then there exists a meromorphic
connection∇ on P1(C) whose poles are the characteristic directions of Q
such that a curve γ : [0,T)→ Ω is an integral curve of Q if and only if [γ] is a
geodesic for∇.

COROLLARY

Let Q be a homogeneous vector field in C2. Then a recurrent maximal integral
curve γ : [0,T)→ C2 either is periodic or [γ] : [0,T)→ P1(C) intersects
itself infinitely many times.

MARCO ABATE (UNIVERSITÀ DI PISA) P-B THEOREMS IN HOLOMORPHIC DYNAMICS ISAAC 2009 9 / 12



HOMOGENEOUS VECTOR FIELDS

INGREDIENTS IN THE PROOF

Blow-up M of the origin; the exceptional divisor S ∼= P1(C).

The normal bundle NS and its tensor power N⊗ν
S .

A morphism X : N⊗ν
S → TS.

A meromorphic connection on N⊗ν
S .

A canonical holomorphic ν-to-1 covering map χν : C2 \ {O} → N⊗ν
S .

A global geodesic field G on the total space of N⊗ν
S .
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HOMOGENEOUS VECTOR FIELDS

LOCAL STUDY AROUND SINGULARITIES

We can do more:

Give a formal (always) and holomorphic (for generic cases) classification
of the singularities.

Explain puzzling phenomena already known.

Construct examples of unexpected phenomena.

Give a complete description of the dynamics for large classes of
homogenous vector fields (and thus of maps tangent to the identity).
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HOMOGENEOUS VECTOR FIELDS

THANKS!

!4 !2 2 4
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